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Abstract—Several studies have focused on the formalization
of semi-formal methods, by derivation toward formal methods
such as the formalization of UML diagrams by transformation
toward Petri Nets, in order to take advantage of evidence tools
to perform model-checking or code generation. The objective
of this work is to propose a rigorous approach to build a UML
statechart and propose and automatic method to transform it
toward Time Colored Petri Nets. Our approach is to produce
patterns of UML statechart, composition rules of these patterns,
which will be used in the development process. The resulting
diagram is automatically transformed into Time Colored Petri
Nets by an algorithm that implements our derivation rules.
For the validation of our model, we apply our proposal to the
modelling of a machine for hot drinks.

Index Terms—statechart patterns diagram, temporal colored
Petri nets, Formalization of models, specification of information
systems.

I. INTRODUCTION

THe use of formal methods, qualified as low level ap-
proach such as automata, Petri Nets or timed automata

networks, to describe the dynamic of systems, leads us to
take advantage of existing verification, validation and code
generation tools[36][37][38].

The Petri Nets had been used for a long time as a base
model to represent behaviors of the concurrent systems,
with a particular attention to the problems of asynchronous
parallelism of distributed systems.

Since their introduction in [34], Petri Nets (PN) have
been widely used for the specification and verification of
systems [36][37][38] like communication protocols or real-
time systems. However, their formalisms does not offer much
flexibility to have a more accessible expressivity for the
system designer[8][19]. Using a high-level approach, allows
directly to express the concepts handled by the user. UML
(Unified Modeling Language) is the standard notation that
has been imposed by itself for the modeling of computer
systems, according to the object approach. It allows designers
to describe different aspects of complex systems, by using
its different types of diagrams. However, UML suffers from
an incessant criticism, due to its lack of formal semantics
[6], which is a problem when we want to ensure of the
consistency of the systems described using one or more of
its diagrams and generally addressing the verification steps
that follow the system modeling.
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Fig. 1. Example of UMLstatechart having multi-inputs and multi-
outputs

The formalization of UML is now the subject of numerous
studies, the main one is from the UML Precise Group [29].
The UML statechart, widely used for the description of the
dynamic of the system in the objects approach, also presents
weaknesses. Figure 1 is a syntactically correct example of
UML statecharts, that models our case study.

In this diagram, the state ”Choice of product” has 4
inputs and two outputs. The states ”Preparing Coffee” and
”Preparing Tee” have one input and two outputs. The state
”Lack of Water” has two inputs and one output. This free-
dom available to the designer in terms of number of inputs or
outputs that can have a state and the lack of composing rules
for the UML statecharts, leads to an UML statechart syn-
tactically correct, but does not favor an automatic derivation
toward formals methods. The automation of the derivation of
figure 1 to the TPN (Time Petri Network) diagram uses two
major functions, the translation function of a node toward
TPN and the linking function of the adjacent nodes (Figure
7, lines 5, 14 and 16). The new node created must include
all inputs and outputs associated with the nodes adjacent
to it. The problem that arises is that, in this approach, the
variation of the number of inputs or outputs gives new design
elements. The question that emerges is: How to produce a
finite set of transition rules of the semi-formal model to
formal model from a set of infinite elements? In addition,
the use of internal states with multiple inputs and outputs
leads to under-utilization of the UML statechart nodes.

We propose in this work a rigorous approach to produce a
UML statechart using patterns composition. We formalized
the result by automatic translation toward Timed Colored
Petri Nets. We also showed in our approach that it’s pos-
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sible to combined an UML statechart and an UML activity
diagram to describe the dynamics of a system. Our work is
organized in six sections. After this introduction, we present
in Section 2 an overview of works related to the formalization
of UML by derivation toward a formals methods. In Section
3 we present the principle of our machine for hot drinks, used
as case study. Section 4 develops our patterns by showing
through an example how they are composed to describe a
system. In Section 5, we formalize our patterns by offering
translation rules in Timed Colored Petri Net. We end our
work by a conclusion followed by some prospects.

II. STATE OF ART

Software Engineering consists in proposing practical solu-
tions, founded on scientific knowledge, in order to produce
and maintain software with constraints on costs, quality and
deadlines. In this field, it is admitted that the complexity
of a software increases exponentially with its size [31][32].
To face these problems, todays mainstream approaches are
build on the concept of Model Driven Engineering. Our work
is based on formal analysis techniques based on models
evaluations, specifically operational models, defined in terms
of states and transitions such as TPN [24].The idea to couple
the semi-formal and formal methods was introduced in the
90s under the name of ”mixed approach” [14][5][4][33].
Our study is based on asynchronous models, primarily on
approaches using TPN. Most formal methods for the ex-
pression of the dynamic behavior are based on descriptions
that use ”state-transition” system. However, the TPN are
among the statechart formalism with powerful mechanisms
of abstraction and description. A complete state of art of all
work done in the field would be illusory. UML and Petri Nets
are two specification techniques recognized in software engi-
neering. Their coupling is motivated by the wish to use them
together in a software development process that integrates
both structural aspect and precision. The research results
concerning the derivation of UML towards formal methods
began with the thesis of Nguyen [21]. The main reason for
this derivation was to preserve the achievements of the semi-
formal methods already widespread, and strengthen with a
formal point of view, without requiring a reconstruction of
the system. Several teams have worked on the coupling
between UML and formal languages [11][10][13].

Lilius et al [17] propose a formalization of UML statechart
diagram for verification by the model-cheking method. The
authors use PROMELA which is an algebra process with an
asynchronous modeling paradigm, centered on the descrip-
tion of inter-process communications.

Attiogbé et al. [7] propose a generic approach to integrate
formal data in UML diagrams. The main reasons are firstly to
model the dynamic aspects of complex systems with a user-
friendly language and graphics such as statechart of UML
and secondly, to be able to specify formally and at a high
level of abstraction, the data involved in these systems, using
algebraic specifications.

At the University of Versailles Kamenoff [16] proposed
an approach of derivation of UML toward B, by adding
to the model the translation rules of the annotations OCL
(Object Constraint Language). UML diagrams involved are
class diagram and statechart diagram, enriched with the OCL
constraints. The above works are all about the derivation

of UML diagrams, that use as formal language either the
algebraic process or the B method.

At the University of Chicago, Saldhana et al [27] [28],
have worked on the derivation of class diagrams and
state/transitions toward Colored Petri Nets. This approach
uses an intermediate pattern ”the Object Petri Net Models
(OPM)” as a gateway, allowing to produce the Petri Net
model.

In [25][26], the authors have proposed a derivation of
collaboration diagrams and states/transitions UML, toward
the t-Timed Colored Petri Net, for the design of Real-Time
systems. Their approach is based on the COMET method for
the design of concurrent systems.

Bouchoul and Mostefai [9] proposed a formal approach for
the specification of reactive distributed systems by rewriting
logic. Their techniques consist of a twinning high level
algebraic Petri Nets and a formal object-oriented language.

At the University of Paris 13, André et al [2] proposed
an approach for the derivation of UML activity diagrams
toward Colored Petri Nets, using composition of patterns.
However, the approach has limitations to describe Real-Time
systems. This limit is corrected in [3], where the authors
proposed the derivation of the UML activity diagrams toward
time Petri Nets for Real-Time systems, using composition
patterns. Unlike the approaches discussed above, the proposal
in [3] uses basic patterns with a single input and a single
output, which by composition can produce composite objects
that can have multiple inputs and outputs. In this paper, the
approach is similar, but’s applied to elements of the statechart
diagram and supports automatic derivation of this diagram
toward the TPN. We have also show how we coupled the
two UML diagrams (Activity and statechart) to assure an
inter-diagram consistency.

III. CASE STUDY: THE MACHINE FOR HOT DRINKS

We applied our proposals to the specification of a simple
machine for hot drinks. The machine is made up of buttons
which allows to serve tea or coffee, LEDs which indicates
at every moment the state of the system (lack of water, in
service) and sensor coupled to the tank which gives the
volume of water available at every moment. At power on,
the machine waits for the selection of a product. When a tea
button is pressed, the system checks the water availability,
the machine goes into service mode and the tea is served
after 60 seconds. If it’s a coffee button, the system checks the
availability of water, the machine goes into service mode and
the coffee is served after 20 seconds. In case of water failure,
the machine goes to the water defect state. If the machine
makes 300 seconds without any button pressed, the system
switches to standby mode. We have described in [3] this
system, by a Composite Time Activities Diagram (CTAD).
Figure 2 shows an improved version of this diagram. The
inclusion of temporal aspects in the modeling of internal
tasks in the states justifies our choice for timed-Colored
Petri Nets. The selection of the type of product by the user
generates other parameters, that are specific to this product
such as the volume of water and the time required for it
to be manufactured. These parameters are stored in tank of
data and represent in our TPN modeling, the coloration of
our tokens.
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Fig. 2. CTAD of the machine for hot drinks

The overall behavior of the machine can be described by
a combination of the UML statechart diagram and the UML
activity diagram. Indeed, the internal activity of CSMD is
described by a CTAD, present in figure 2.

IV. OUR PATTERNS STATECHART

UML (Unified Modeling Language) [23] has become the
standard notation for object models in recent years. Its syntax
and semantics are given in the natural languages, completed
by assertions in OCL [22]. Although the UML meta-model
provides a semantics, it’s imprecise and insufficient to check
the consistency of diagrams constituting the model. Such
inconsistency problems can occur either at the intra-diagram
level or at the inter-diagram level. In order to study such
properties in UML diagrams dynamic, one of the methods
is to provide a formal semantics for a part of UML. UML
has several diagrams organized in multiple view and we will
focus in this work on the dynamic view specifically to the
UML statechart.

A. UML statechart

The UML statechart describes all possible states of an
object. As most object-oriented methods, UML is based
on Statecharts of David Harel [15]. Unlike the sequence
diagrams that include all objects involved in a single use
case, statechart diagrams indicate all state changes of a single

object across all use cases in which it’s implicated. It is

a synthetic view of the dynamic operation of an object.
However, the lack of rigor in its construction leads to
models that do not facilitate the automation of the process
of derivation toward a formal method (see paragraph 1). In
[18], the authors proposed a redefinition of the semantics of
the UML statechart elements. We present below the elements
of the UML statechart as patterns of construction.

B. Knowledge reused methods

The increasing complexity of information systems and
their more rapid evolution have motivated interest in the
reuse models and methods [31] [32]. In this research, we
have proposed modular and reusable patterns, encapsulated
in objects that communicate through ports. We named
them CSMD (Composite State Machine Diagram). Reuse of
knowledge can be accomplished by several mechanisms [30]:

• Specialization: this is to adapt the knowledge provided
by specialization for the system being modeled.

• The parameterizations: here, the entity to be reused is
associated with a set of settings.

• The composition: here, the knowledge’s provided are
associated to each other coherently, to form a fragment
of the complete system.

We proposed in this work a reused method which use the
composition of designed patterns. Software pattern describes
a problem frequently encountered in a particular context of
development with a general proven solution for this problem
[1] [12]. Several studies have focused on modeling by the
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TABLE I
SEMANTIC OF THE PATTERNS OF THE STATECHART DIAGRAM ELEMENTS

Name of the node Pattern notation Semantic

Initial state

Marks the beginning of a
process describing the in-
ternal elements of a sys-
tem object. It is only used
once in a diagram.

Final state

Marks the end of a pro-
cess describing the inner
workings of an object of
the system. It can be used
many times in a diagram.

Internal state

Represents a node of
a statechart diagram in
which several actions and
activities can be executed
when it is active. At the
entrance of the node,
the action ”Action E”
is executed. At the end
of it’s execution, the
activity described by
CTAD is executed. If
during this execution,
event represented by
the black spot occurs,
the action ”Action I”
corresponding is run.
During this execution, the
activity is momentarily
stop. At the exit of
the node, the action
”Action S” is executed.
If the message carried by
an output transition of the
node is valid, the internal
activity is interrupted.

Shallow History

Activation of the message
”Message 1” disables the
CSMD2 and enable the
last state visited by the
CSMD directly internal to
CSMD1. Indeed, a transi-
tion that target the Shal-
low History is equivalent
to a transition that targets
the last state visited in the
region containing the H.

Deep History

Activation of the mes-
sage ”Message 1” dis-
ables CSMD2, and the
last active simple state in
CSMD1 recently used be-
come enabled. If the in-
ternal state in CSMD1 is
a composite CSMD, the
last internal state becomes
active, and so on through
the hierarchy.

Transition

If the message carried by
the transition is valid, the
node upstream of the tran-
sition is deactivates and
the node downstream of
the transition is activated.

patterns. Applications are found for the modeling of business
process [2] [20] and for the modeling of software processes
[30], [3]. Here, we introduce the concept of CSMD for
”Composite State Machine Diagram”, which is the result of
a complex UML statechart or composite diagram. It is built
by the composition of the elements of our patterns. Figure 3
is a diagram of the CSMD. Pi (1 ≤ i ≤ N ) is the ith entries
of the CSMD and Qj (1 ≤ j ≤M ) is the jth outputs, where
N is the number of inputs and M is the number of outputs.

Choice node

If the message carried by
the transition is valid, ex-
ecution continues to the
CSMDi for which [condi-
tion i] (1 ≤ i ≤ n) is true.

Junction node

The validity of the mes-
sages ”messages i” to
the outputs of the nodes
CSMDei for 1 ≤ i ≤ n
disables these active nodes
and nodes CSMDsj for
which the logical expres-
sion [Expl j] (1 ≤ j ≤ n)
is true.

Fork node

The validity of all mes-
sages ”[pre i]” (1 ≤ i ≤
n) disables the CSMDei
nodes and enable paral-
lely the CSMDsj nodes for
1 ≤ j ≤ m.

Fig. 3. Diagram of a CSDM

They are each associated with an elementary action.
The table 1 describes the elements of our proposal. It gives

for each pattern the name of the diagram node,
the pattern notation and its semantics. The transition from

one state to another is controlled by the validity of the carried
message. A message will be valid if the event occurs and the
related condition is true.

We have presented different elements of our proposal
above. The transition from one node to another is controlled
by the message that carries this transition.

C. Composition rules of our patterns
We define below the composition rules of our design

patterns, so that we can used to build a composite CSMD.
Rule 1: Initial state

It’s a CSMD which does not have input and

having itself as output.

Rule 2: Finale state
It’s a CSMD which does not have output

and having itself as input.

Rule 3:Internal state

is an elementary CSMD having a single

input and a single output.

Rule 4: Junction node

It’s a CSMD having as input the free inputs
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inherited from CSMDei (1 ≤ i ≤ N ) and as output the free
outputs inherited from CSMDsj for (≤ j ≤M ).

Rule 5 : Fork node

It’s a CSMD having as input the free inputs

inherited from CSMDei (1 ≤ i ≤ N ) and as outputs the
free outputs inherited from CSMDsj (1 ≤ j ≤M ).

Consider it’s a CSMD having a clearly identi-

fied output. and are CSMD having clearly
identified inputs

Rule 6 : Choice node

It’s a CSMD having as input the free inputs

inherited from CSMDe and as outputs the free outputs
inherited from CSMDsi (1 ≤ i ≤ n).

Rule 7 : Transition

It’s a CSMD having as input free inputs

inherited from CSMD1 and as output free outputs inherited
from CSMD2.

Rule 8: Shallow History

It’s a CSMD having as inputs the free

inputs inherited from CSMD2 and as outputs the free outputs
inherited from CSMD1.

Rule 9: Deep History

It’s a CSDM having as inputs the free

inputs inherited from CSMD2 and as outputs the free outputs
inherited from CSMD1

We can build more complex CSMD by applying the rules
above.

D. CSMD of the machine for hot drinks

Figure 4 is a CSMD that models the overall operation of
the machine for hot drinks. It is obtained by applying our
CSMD composition rules. Each CSMD is described by a
set of parameter and offer to its environment a set of input
and output ports. The CSMD5 models the operation of our
machine for hot drinks. It’s built using the CSMD4 and the

Fig. 4. CSMD of machine for hot drinks

initial state, by applying the composition rule 4. The CSMD4
models the operations of the sub-machine that supports the
preparation of the product and the management of the lack
of water. It is built from CSMD1, CSMD2 and CSMD3, by
applying the composition rule 6.

The CSMD 1, 2 and 3 perform the activities modeled in
Figure 2 by the CTAD2, CTAD3 and ”Lack of Water”. The
entries in our composite states are named Ei and the outputs
Sj, they materialize the actions performed when one crosses
the port. We give below a list of actions associated with each
port.

• E1: Light the LED: machine is enable.
• E2: Light the LED: machine is in service.
• E3: Light the LED: lack of water indicator.
• S1: Switch off the LED: machine ready.
• S2: Switch off the LED: machine in service.
• S3: Switch off the LED: lack of water.
The task performed by the CSMD1 consumes the data

”Vmax” and produces the data, ”t” and ”v” consumed by
the task performed by the CSMD2.

V. FORMALIZATION OF THE STATECHART DIAGRAM

This section focuses on the translation of our UML stat-
echart patterns. After justifying the choice of Petri Network
type used in our work, we propose the translation of our
modeled elements in this formalism. A translation of our
machine for hot drinks is provided at the end of the section.

A. Time Colored Petri Networks

The use of non-formal approaches which is de facto
standards as UML of the OMG (Object Management Group)
have many shortcomings, particularly in terms of formal
semantics, which seriously undermines the implementation
of a formal verification of UML diagrams. We have used
in this work as mentioned in the introduction a translation
approach that consists of deriving the statechart diagrams
toward the Timed Colored Petri Network. Several reasons
have guided our choice of Petri Nets. They are widely used
for the verification and validation of the systems. The Time
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Colored Petri Nets allow to quickly get executable models;
they provide the opportunities of simulation, verification and
evaluation of performance very early in the development
cycle. The temporal aspect of our Petri Net is associated
with the use of the composite activity diagrams proposed in
[3] for the modeling of the actions performed in the state of
our statechart diagram. We have proposed in this work the
UML patterns activity diagrams, for the modeling of real-
time systems. We introduced delay operations for a fixed
time, variable time and the limited time to complete the
semantics of classical UML transition (see Figure 2). Our
case study focuses on a simple machine for hot drinks. The
machine allows us to prepare a type of product selected by
the user. Parameters used to select the product will be the
coloring carried by the tokens in our Petri Net. We have
given below a formal definition of the Petri Net used.

Definition: A Time Colored Petri Net [35] is a tuple (P, T,
C, Pre(), Post(.) M0; I) where

• P is a finite set of places,
• T is a finite set of transition, with T ∩ P = φ,
• Pre(.) ∈ (NP )T is the upstream incidence function,
• Post(.) ∈ (NP )T is the downstream incidence func-

tion,
• M0 is the initial marking,
• C is the color function,
• I : T −→ J is a function that associates to each

transition a static interval of the operation duration of a
token in a place.

B. Translation of the UML statechart patterns toward Time
Colored Petri Nets

Table 4 shows the transformation rules of our case study
in Colored Petri Net. By applying these rules, it is possible
to transform each CSMD toward the Colored Petri Nets.
The notation Tr(CSMDi) will be used in the sequel like the
translation in the Colored Petri Nets of the CSMDi.

The initial state is translated by a place carrying a token
connected to a transition.

The end node is transformed into a place.
The internal state is transformed into Petri Net by using

three places and three transitions. Two simple places, re-
spectively model the input and output in the state and, one
composite place which is the model of the activity performed
in this state. The input task of the state is carried by the
transition node of the input place, while the output task is
carried by the transition node of the output place.

The transition loop allows to manage the temporary inter-
ruption of the activity.

The local history is managed by a place, from where
all the internal states to the composite state in description
converged. From each output of the state in description, the
number of the last state is memorize in the variable ”h”,
while the variable ”live” set to ”true” indicates the output
of this state. When returning to the state in description, the
variable ”live” changes to ”false” and execution continues in
the ”h” state.

The deep history is managed by a place, from where
all the internal states to the composite state in description,
including its sub-states converged. In each output of the state
in description, the number of the last active state including

<?xml version="1.0"? encoding="ISO-8859-1"> 
<!DOCTYPE CSMD_DIAGRAM[ 
<!ELEMENT Begin_Node EMPTY> 
<!ELEMENT Junction EMPTY> 
<!ELEMENT Fork EMPTY> 
<!ELEMENT End_Node EMPTY> 
<!ELEMENT E_CSMD (#PCDATA)> 
<!ELEMENT S_CSMD (#PCDATA)> 
<!ELEMENT CTAD (#PCDATA)> 
<!ELEMENT Internal_Node (CTAD)> 
<!ELEMENT CSMD (Internal_Node | Choice | Junction | Fork | End_Node| 
(E_CSMD, (CSMD|CTAD), S_CSMD)*)> 
<!ELEMENT Choice (True_Choice, Else_Choice?)> 
<!ELEMENT True_Choice (CSMD)> 
<!ELEMENT Else_Choice (CSMD)> 
<!ATTLIST Junction Num_Element ID  #REQUIRED 
    ID_Elements_Jun IDREFS #REQUIRED 
     ID_Next_Element IDREF #REQUIRED> 
<!ATTLIST Choice ID_Element ID #REQUIRED> 
<!ATTLIST CSMD ID_Element ID #REQUIRED> 
<!ATTLIST Internal_Node ID_Element ID #REQUIRED> 
<!ATTLIST Begin ID_Element ID #REQUIRED> 
<!ATTLIST Fork ID_Element ID #REQUIRED 
     ID_Top_Elements IDREFS #REQUIRED 
     ID_Targets_Element IDREFS #REQUIRED> 
<!ATTLIST End_Node ID_Element ID #REQUIRED> 
<!ATTLIST CTAD ID_Element ID  #REQUIRED 
     Param1 CDATA #IMPLIED 
     Param2 CDATA #IMPLIED 
     Param3 CDATA #IMPLIED 
     Param4 CDATA #IMPLIED 
     Param5 CDATA #IMPLIED> 
<!ATTLIST (E_CSMD ID_Element ID  #REQUIRED 
     Param1 CDATA #IMPLIED 
     Param2 CDATA #IMPLIED 
     Param3 CDATA #IMPLIED 
     Param4 CDATA #IMPLIED 
     Param5 CDATA #IMPLIED> 
<!ATTLIST S_CSMD ID_Element ID  #REQUIRED 
     Param1 CDATA #IMPLIED 
     Param2 CDATA #IMPLIED 
     Param3 CDATA #IMPLIED 
     Param4 CDATA #IMPLIED 
     Param5 CDATA #IMPLIED> 
]> 

Fig. 5. DTD of our XML code

its active sub-states is stored in the variable ”h” while the
variable ”live” is set to ”true” in order to indicate the output
in the state. To return to the state in description, the variable
”live” is changes to ”false” and execution continues in the
”h” state.

The transition node between Tr(CSDM) is translate by a
waiting place and a transition node carrying the message that
controls the crossing toward the Tr(CSMD) following.

The junction node is represented by a place that is the
destination of all arcs to merge, followed by a transition node.

The decision node is obtained by a place call ”test”,
connected to a set of transitions, each carrying a guard. We
use this translation to check the volume of water in our case
study.

The synchronization node is transformed by a single
transition between the composite places downstream and the
composite places upstream.

Our model is stored as a XML (Extensible Markup Lan-
guage) file (fig. 6)[39], that is validate by a DTD (Document
Type Definition) (fig. 5).
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TABLE II
TRANSLATION OF OUR PATTERNS INTO PETRI NETS

Type of the ele-
ments

UML representa-
tion

Translation into Petri Nets

Initial
state
Final
state

Internal
state

Shallow
History

Deep
History

Transition

Choice
node

Junction
node

Fork
node

Many translation algorithm on Petri Nets have been pro-
posed in the literature [40][41]. The algorithm (Fig. 7)
implements our translation rules above. This algorithm uses
as data structures, a pointer to the first node of the input
diagram and a list to store the nodes through which we have
already past. The functions ”Makenode( )” and ”Linknode(
)” are respectively used to transform a node in PN and
to establish the link between current node and its adjacent
nodes.

C. Translation of the case study in Petri Nets

Figure 8 presents the translation in Time Colored Petri Net
of our machine for hot drinks.

The composite place Tr(CSMD5) is obtained by joining
the node Tr(CSMD4) and the initial state to the place ”J”.
Tr(CSMD4) is constructed by applying the transformation
rule of the decision nodes. The place ”Test1” interconnects
Tr(CSMD1), Tr(CSMD2) and Tr(CSMD3). The CSMD1,
CSMD2 and CSMD3 are states such as shown in Table 4. At
the entrance, respectively at the exit of each states, the actions
”E1” and ”E2” respectively ”S1” and ”S2” are executed.
The activities implemented in the state are described by

<?xml version="1.0"? encoding="ISO-8859-1" standalone="no"> 
<CSMD_Diagram> 

<Begin ID_Element="4"/> 
<Junction Num_Element="2" ID_Element_Jun="2 3 4"  ID_Next_Element="1"/> 
<CSMD Num_Element="1"  > 

<E_CSMD Num_Element="11"  Param1="ON" Param2="Machine Enable"> 
 Led_Control_Procedure 
</E_CSMS> 
<CTAD Num_Element="12" Param1="VMAX" param2="?" Param3="?"> 
 Generate_v_t_Data 
</CTAD> 
<S_CSMD Num_Element="13" Param1="OFF" Param2="Machine Enable"> 
 Led_Control_Procedure 
</S_CSMS> 

</CSMD> 
<Choice Num_Element="5" > 

<True_Choice> 
<CSMD Num_Element="2"> 

<E_CSMD Num_Element="21"  param1="ON" Param2="In to 
Service"> 

   Led_Control_Procedure 
</E_CSMS> 
<CTAD Num_Element="22"  Param1="t" Param2="v"> 
 Prepare_Product 
</CTAD> 
<S_CSMD Num_Element="23" Param1="OFF" Param2="In to 
Service"> 
 Led_Control_Procedure 
</S_CSMS> 

</CSMD> 
</True_Choice> 
<Else_Choice> 

<CSMD Num_Element="3"> 
<E_CSMD Num_Element="31" param1="ON" Param2="Lack of 
Water"> 

   Led_Control_Procedure 
</E_CSMS> 
<CTAD Num_Element="32" > 
</CTAD> 
<S_CSMD Num_Element="33" param1="OFF" Param2="Lack of 
Water"> 

   Led_Control_Procedure 
</S_CSMS> 

</CSMD> 
</Else_Choice> 

</Choice> 
</CSMD_Diagram> 

Fig. 6. XML code of the case stordie model

Fig. 7. Algorithm for the automatic transformation

the translations of the CTAD: Tr(CTAD2), Tr(CTAD3) and
Tr(Lac of water). The task Tr(CTAD3) has a place named
choice and a place named ”water state”. The place ”choice”
have the type ”product” and each of its tokens would be
colored by (prod, v, t) representing the selected product, the
volume of water and the time required for its manufacture.
The Place ”water state” has the type ”Param Product” and
each of its tokens would be colored by (prod, v, t, v max),
which will be transmitted in the network. The coloration
vmax gives the current volume of water in the tank. The
Petri Net diagram (fig. 6) that models our machine for hot
drinks is used as input to a model checker supporting a
formal verification of temporal properties. This check can
be done using tools such as TINA [8] or Romeo [19].
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Fig. 8. Petri net diagram of the machine for hot drinks

VI. CONCLUSION

We have proposed in this work an automatic approach
to formalize the UML statechart diagram by translating it
toward the time Colored Petri Nets. Firstly, our method
consisted to proposing statechart diagram elements patterns,
associated with a set of composition rules to obtain a
more rigorous design approach. By applying the composition
rules of our statechart diagram patterns, it is possible to
compose design objects more voluminous that we called
CSMD. Secondly, we formalized our patterns by automatic
translation of its elements in the time Colored Petri Nets.
We applied our proposal for modeling a simple machine for
hot drinks. Through this example, we show how our patterns
composition rules and the transformation method into the
Petri Nets is done. By using the Petri Nets model of our
example as input of model checking tools such as TINA or
Romeo the verification of some properties of the system is
possible. The approach also shows a possible combination
between statechart diagrams and activity diagrams. Indeed,
the internal activity of CSMD is described by a CTAD.
Our future works shall propose a new software development
approach. using these patterns.
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