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Android Malware Classification based on Mobile
Security Framework

Shefali Sachdeva, Romuald Jolivot, and Worawat Choensawat

Abstract—In this paper, a machine learning based technique
is proposed to classify android applications in three classes
based on the confidence level defined as safe, suspicious and
highly suspicious. Thirty six features are extracted and selected
from Mobile Security Framework based on penetration testing.
A set of experiments has been conducted on the scale of 13,850
android applications which includes 8,782 android applications
downloaded from apk-dl.com, 3,960 malware and 1,108 benign
applications. In order to compare the accuracy of the classifica-
tion model, a ground truth of the confidence level is created by
using VirusTotal. The proposed method can detect and classify
android applications into three confidence levels with 81.80%
accuracy. Experiment for binary classification, classify as being
malware or benign has yielded 93.63% accuracy.

Index Terms—Android Malware, Malware Detection, Virus-
Total and Classification Model, Benchmark Creation, Machine
Learning.

1. INTRODUCTION

NDROID has emerged as the most popular mobile

operating system in recent years. Android operating
system is a freeware, open source and customizable and it
offers a great platform to develop and release various type
of applications and games. This allows users to perform
multiple number of operations including accessing bank,
social media and cloud accounts and has replaced computers
in many aspects. According to a report from International
Data Corporation (IDC) [1], more than 85.00% of the mobile
devices are running on android and attracting a large number
of mobile application developers.

Among these developers, some have malicious intentions
and create malware applications. This has become a global
threat [2], [3], [4], [5] and comes in different forms such
as banking malware, mobile ransomware, mobile spyware,
MMS malware, mobile adware, and SMS Trojans. For ex-
ample, financial botnets such as ZeuS or ZITMO (ZeuS-in-
the-mobile) [6] are getting very popular and can lead to a
threat in banking organizations. These malware programs are
capable of stealing important information from the devices
and can conduct financial fraud.

To protect users against these threats, companies and
research scholars have developed malware detection soft-
ware and keep investigating the subject. Many anti-malware
software rely on signature based approaches [7], [8], [9] in
which hash code is compared with malicious files. Although
signature based approaches are reliable for known malware.
These approaches fail against zero day malware attacks
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[6] or when the malware mutates. The signature based
approaches of scanning android applications using antivirus
software also fail when the applications are repackaged. To
overcome this problem, many researches applied machine
learning techniques [10], [11] to detect malware. Currently,
most techniques focus on detecting whether an application
is malware or benign. There exist multiple methods which
are usually based on features extracted from the applications.
Different algorithms such as neural network, support vector
machine, naive bayes, etc. have been used to detect malware
with relatively good accuracy. As malware keeps evolving,
a method providing a confidence level on whether the ap-
plication is safe, suspicious or highly suspicious in terms of
being malicious is implemented. This could entrust the user
with the choice of installing the applications based on the
applications’ confidence level.

This paper proposed a classification model capable of
determining the confidence level of various android ap-
plications. The confidence level refers to the likeliness of
an application being malicious. The problem of building a
machine learning-based classifier to identify the confidence
level presents two main challenges: first, we must extract
features representation of the application; second, based on
our collected dataset, we have to come up with a method to
classify them into each level of confidence. Our contributions
can be described in two parts: (1) defining a confidence
level ground truth and (2) developing of a machine learning-
based classifier to evaluate the confidence level of android
applications.

To address the first problem, we use Mobile Security
Framework [12], [13] to extract a heterogeneous feature set,
and process for feature selection based on statistical analysis
(described in Section III-B). To address the second problem,
we create a ground truth for labeling each application into
one of the three confidence levels, namely safe, suspicious
and highly suspicious. The ground truth creation is based on
the results of VirusTotal [14]. We believe that the proposed
classification model provides a new way of warning users
by categorizing android applications based on the confidence
level.

II. LITERATURE REVIEW

Following Android popularity, mobile devices are becom-
ing more exposed to malicious attacks. According to a report
from Symantec [15] 18.50 million mobile malware were
detected in 2016, which is 105.00% more than previous year.
Many researchers have proposed different android malware
detection techniques. An overview of the latest techniques is
presented in this section.
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A. Malware detection based on static analysis

Static analysis approaches focus on comparing programs
to known malware based on the static information such as the
program code, permissions, system commands and intents
looking for signatures or patterns [16]. Based on the static in-
formation, many researchers applied Machine learning tech-
niques for malware detection [17], [10]. A machine learning
model ANASTASIA [18] is proposed by extracting features
like used permissions, system commands, intents, etc. This
approach can classified as benign or malware with 97.30%
accuracy. The method is based on static analysis, hence the
detection can be affected by repackaging techniques such as
code permutation, compression, etc. While K. Zhao et al. [19]
have introduced feature based machine learning technique
known as FEST: Feature Extraction and Selection Tool and
has an accuracy of 98.00%. The method has used dataset of
7,972 applications for feature extraction such as permissions,
API, Action, IP and URL features.

Building a classification model for malware detection
required known dataset for training stage. Recently, many
researches have been conducted by using VirusTotal API to
determine whether the application is malware or a benign
[20], [21], [22], [23] [24]. VirusTotal uses multiple anti-
virus scan engines ranges from popular vendors to small
companies, the results may vary among scans engines.

Martin et al. [20] have proposed a method to ana-
lyze and detect malicious android applications using meta-
information: ADROIT, which is based on a text mining
process and can be used to extract relevant information from
the meta-data. In the malware labeling process, the API
provided by the VirusTotal online portal is used which allows
analyzing applications with 56 different antivirus or scan
engines. If at least one scan engine tested positive the appli-
cation is marked as malware. However, the trustworthiness
of scan engines is not taken into consideration.

B. Malware detection based on dynamic analysis

While static analysis approaches focus on static informa-
tion of the application, dynamic analysis approaches aim at
monitoring usage behaviors during run-time [25]. Several ap-
proaches [26], [27] monitor the power usage of applications,
and report anomaly consumption. Others [5], [28] [29], [30]
monitor system calls and attempt to detect unusual system
call patterns. Although dynamic analysis approaches are ef-
fective in identifying malicious activity, run-time monitoring
often suffer from a large amount of overhead and cannot
be directly run on mobile devices. A hybrid method [31]
is proposed by combining static and dynamic analysis and
performs with 90.00% accuracy. For collecting the system
calling data of an application at runtime, dynamic analysis is
conducted and for the testing of the same data static analysis
is performed. Firstly, a set of patterns is defined for both
malware and benign applications and then the applications
are tested. However, the approach is limited to the database
of already save dataset patterns.

Most of the methods analyze application in binary fashion
that is whether the application is malicious or benign. In our
study, instead of categorizing the application in two cate-
gories, a technique is defined which categorize the confidence
level of android applications’ likeliness of being malicious.

Classification
Model

Feature
Extraction

Benchmark

Creation

Fig. 1. Methodology for Malware Classification.

The decision of installing application is left to the user based
on the confidence level.

III. METHODOLOGY

The objective of the proposed approach is to develop a
classification model and to determine the confidence level
of android applications. The methodology is divided into
three modules as shown in figure 1. In this work, we
gathered a collection of 8,782 Android applications down-
loaded automatically from apk-dl.com [32]. In order to label
them correctly based on the confidence levels, datasets of
known malware and benign are required. For that task, We
use 3,960 known malware applications provided by [18],
[33] and 1,108 known benign applications. Known benign
applications consist of 216 system applications and 892 most
popular (most downloaded and has four and above ratings
given by the users) applications downloaded manually from
Google play store.

A. Benchmark Creation using VirusTotal

The interest of a benchmark creation is to identify the
confidence level of android applications. The benchmark
is created using VirusTotal. VirusTotal is a subsidiary of
Google and is a web based application. It provides free and
unbiased service for analyzing and scanning applications,
URLs and documents. At the time of writing (December
2017), VirusTotal is using 77 scan engines or antivirus from
popular and small companies. Scan engines are developed
using different algorithms. The results may vary from one
scan engine to other when submitting identical applications.
Therefore, the reliability of scan engines has to be taken
into account for the benchmark creation and need to be
individually weighted. For this purpose a weight is defined
by statistical analysis for each scan engine. In order to test
the reliability of scan engines used by VirusTotal, a dataset
of known malware and benign applications is submitted,
verifying that the scan engine can correctly detect malware
as malware and benign as benign.

1) Scan-engine weight assignment: A dataset of 3,960
known malware and 1,108 known benign applications is sub-
mitted to VirusTotal. By knowing that submitted application
is a known malware or benign application, it is possible to
determine the accuracy of each scan engine. A true positive
rate is defined when the malware is detected as malware and
true negative rate is when a benign application is detected
as benign. The true positive and negative rate of each scan
engine is calculated and equation 1 gives the weight of the
scan engine.

(TP % MS) + (TN * BS)

Wi = MS+ BS

(D
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where W, is scan engine weight of scan engine ¢. TP and
T'N are true positive rate and true negative rate, respectively.
MS and BS are number of malware scanned and number
of benign applications scanned, respectively. Example results
of scan engine weight is shown in the table I.

In order to perform functional scan engines selection, two
conditions are taken into account: first, scan engines with less
than 50% true positive and negative rate are discarded, and
second, scan engines which are scanning less than 50% of
the whole dataset for benign and malware samples are also
evicted. Hence, 38 scan engines are selected and an example
list is shown in the table L.

2) Confidence Level Determination: After scan engine
weight assignment, a score is calculated for known malware
and benign applications using equation 2. A range for confi-
dence level is determined by using this score. On the basis of
application scores, the confidence level is divided into three
classes which are safe, suspicious and highly suspicious.
Figure 2 and figure 3 shows the scores for submitted benign
and malware applications, respectively. As shown in the
figure 3, no malware sample has an application score less
than or equal to 15. Therefore, the safe range is empirically
defined from O to less than and equal to 15.

Let S be a set of the scan engines returning the result
in a given time. An application score is calculated from
an average of returned results from the scan engines using
equation 2.

ZieS(Wi * VTR;)
Zies Wi
where Score is an application score, W; is the weight of scan

engine ¢, V'R, is a returned result of VirusTotal from scan
engine ¢ (1 for malware or O for benign application).

Score = * 100 2)
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Fig. 2. Application Scores of Submitted Benign Applications.

For the suspicious and highly suspicious range definition,
the highly suspicious range is defined for a score greater than
50 since more than the majority of the weighted indicated
application as malware. Similarly, based on the application
score, the suspicious range is defined from greater than 15
to less than equal to 50 as shown in figure 3. Table II shows
the confidence level range defined for safe, suspicious and
highly suspicious classes.

3) Applications Labeling: Application scores of all mal-
ware and benign applications are calculated and labeled using
the confidence level determination process. Similarly, this
process of application labeling is performed for a dataset of
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Fig. 3. Application Scores of Submitted Malware Samples.

random unknown applications (8,782) downloaded from apk-
dl.com. Figure 4 shows the overall process of the benchmark
creation. Table III shows the number of applications in each
class after all the applications is submitted for labeling. Based
on the benchmark creation, these labeled applications are
classified as safe, suspicious and highly suspicious.
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Fig. 4. Methodology of Application Classification into Three Confidence
Levels.

B. Feature Extraction using Mobile Security Framework
(MobSF)

The interest of the proposed method is to use features
to classify applications into confidence level. In order to
extract features for all applications, MobSF framework is
used. MobSF is an open source mobile testing framework
for android, i0OS, Windows developed in Python. It is an
automated penetration testing framework, capable of detect-
ing the vulnerabilities, which an attacker can exploit in the
mobile application. MobSF performs reverse engineering on
apk files and extracts data (used as features in our model).
MobSF can perform static and dynamic analysis and provides
option for scanning bulk applications using command line.
The static analyzer can detect insecure permissions.

MobSF stores scanning results in the SQLite database.
In order to extract features of android applications a list of
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TABLE 1
LIST OF SELECTED SCAN ENGINES AND WEIGHT BASED ON THE TRUE POSITIVE AND NEGATIVE RATE.

# ScanEngine Weight | True Positive | True Negative | Malware Scanned Out of 3,960 | Benign Scanned Out of 1,108
1 ESET-NOD32 98.80 99.00 98.00 3,476 894
2 NANO-Antivirus 98.41 98.00 100 3,473 895
3 SymantecMobilelnsight 98.25 99.00 96.00 1,945 647
4 ZoneAlarm 95.48 94.00 100 2,025 661
37 TrendMicro-HouseCall 65.00 52.00 95.00 3,426 858
38 Baidu 64.69 56.00 100 2,198 717
TABLE II

CONFIDENCE LEVEL CLASS AND RANGE.

# | Confidence Level Class Range

1 Safe 0 < Score < 15
2 Suspicious 15 <Score < 50
3

Score >50

Highly Suspicious

TABLE III
NUMBER OF APPLICATIONS IN EACH CLASS.

# | Confidence Level Class | Number of Applications
1 Safe 7,197
2 Suspicious 588
3 Highly Suspicious 2,640

recent scans is extracted from MobSF local server (SQLite
database) using an in-house developed bot. The results
obtained from MobSF is now exploitable as it is, hence
a conversion from raw to quantifiable data is required.
Therefore, the raw data extracted is transformed to identify
the features. For raw data transformation, we identified all
the possible values every field can have. Examples of raw
and transformed data of permissions, manifest analysis and
domains are shown below.

1) Manifest Analysis Feature: There is an xml file named
app manifest in every android application in its root directory
as per defined by Google. This manifest file contains all
the essential application information such as permissions,
application activities, services, actions, etc. This manifest
analysis is quantified by counting the number of all possible
values of manifest analysis which are high, medium and low
for each application.

An example of manifest analysis raw data of one ap-
plication is: ['stat’: 'medium’, ’desc’: 'This flag allows
anyone to backup your application data via adb. It allows
users who have enabled USB debugging to copy applica-
tion data off of the device.’, ’title’: *Application Data can
be Backed upjbr;[android:allowBackup=true]’, ’stat’: "high’,
’desc’: *An Activity is found to be shared with other apps on
the device therefore leaving it accessible to any other appli-
cation on the device....: "high’, ’desc’: *An Activity is found
to be shared with other apps on the device therefore leaving
it accessible to any other application on the device........ 1.
The transformed and quantified data for manifest analysis is
shown in table IV.

TABLE IV
QUANTIFIED DATA AND COUNT FROM MANIFEST ANALYSIS RAW DATA

# Quantified Data Total Count
1 Manifest Analysis High 2
2 | Manifest Analysis Medium 1
3 Manifest Analysis Low 0

2) Domains Feature: The domain is defined as domain
name and ip address and is unique for every device. The
domain raw data consists a field named bad and the value
of field is defined as no. An example for one application of
domain raw data is:

[‘u.talkingdata.net’: ’bad’: 'no’, ’gaan-
droid.talkingdata.net’: ’bad’: ’'no’, ’10.10.32.105:9092’:
’bad’:  ’no’, ’log.intouch.timogroup.com’: ’bad’: ’no’,

’log.collection.pplaypro.com’: *bad’: 'no’].

In order to quantify the raw data, total number of good and
bad domains are counted and the result for above mention
application is shown in table V.

TABLE V
QUANTIFIED DATA AND COUNT FROM DOMAINS RAW DATA.

# | Domains | Count
1 Good 5
Bad 0

3) Permission Feature: A permission is defined as a re-
striction to protect from the misuse and gives a limited access
of the critical data and code. In android the permissions are
categorized by Google into four protection levels namely
dangerous, normal, signature and signatureOrSystem. These
protection levels are examined to improve the accuracy of the
model through conducting count permission of known mal-
ware and benign applications. For example the permission
raw data extracted of one application is:

[u’android.permission. ACCESS_FINE_LOCATION’:
[dangerous’, ’fine (GPS) location’, ’Access fine location
sources, such as the Global Positioning......VIBRATE:
['normal’, ’control......[’signature’, ’ Allows cloud to device
messaging’, ’Allows the application to receive push noti-
fications.’],........ “android.permission.READ_CONTACTS:
[dangerous’, 'read contact data’.................. ].

For quantifying this raw data, the total number of normal,
dangerous, signature and signatureOrSystem permissions are
counted for every application and the result of above men-
tioned application is shown in table VI.

TABLE VI
QUNATIFIED DATA AND COUNT FROM PERMISSIONS RAW DATA.

# Quantified Data Total Count
1 Normal Permissions 3
2 Dangerous Permissions 10
3 Signature Permissions 1
4 | signatureOrSystem Permissions 0

The above explained features are extracted using MobSF.
From MobSF the number and type of features acquired are
27 such as permissions, manifest analysis, domains, etc.
respectively and are detailed in table VII.
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TABLE VII

LIST AND DESCRIPTION OF 27 FEATURES.
# | Feature Name Description
1 Manifest Analysis High Counted total number of high manifest analysis used by an each application.
2 | Manifest Analysis Medium Counted total number of medium manifest analysis.
3 Manifest Analysis Low Counted total number of low manifest analysis.
4 | Normal Permission Counter total number of normal permissions.
5 Dangerous Permission Counted total number of dangerous permissions.
6 Signature Permission Counted total number of signature permissions.
7 signatureOrSystem Permission | Counted total number of signatureOrSystem permissions.
8 Cnt_Act Counted total number of activities performed by each application.
9 Cnt_Pro Counted total number of providers.
10 | Cnt_Ser Counted total number of services.
11 | Cnt_Bro Counted total number of broadcast receivers.
12 | Issued Certificate status.
13 | Native It verifies if an application is in C/C++.
14 | Dynamic It verifies if an application downloads the executable contents dynamically.
15 | Reflect Reflection provides flexibility to identify API characteristics during run time.
16 | Crypto Cryptographic operations: encryption, key generation and key agreement, etc.
17 | Obfus Obfuscation: to provide the security against reverse engineering.
18 | Domains Good Counted total number of good domains.
19 | Domains Bad Counted total number of bad domains.
20 | Dang Info Code analysis: counted total number of info dang.
21 | Dang High Code analysis: counted total number of high dang.
22 | Dang Warning Code analysis: counted total number of warning dang.
23 | Dang Secure Code analysis: counted total number of secure dang.
24 | E_Act Counted total number of exported activities.
25 | E_Ser Counted total number of exported services.
26 | E_Bro Counted total number of exported broadcast receivers.
27 | E_Cnt Counted total number of exported contents.

4) Permission Feature Analysis: Apart from 27 features
extracted from MobSF, we focus on additional features that
have high impact to distinguish between benign and malware
applications. Therefore, a comparison analysis between mal-
ware and benign applications is performed. According to the
previous studies [10], [17], permission features are consid-
ered to be impacted. Based on all the extracted permissions,
there are 141 permissions from four protection levels. Within
each level, our aim is to select permissions that are more
likely to be used in malware but unlikely to be used in benign
applications, and vice versa.

For the selection of permissions, two datasets of known
benign and malware are used to compute the frequency
of permissions, for example READ_PHONE_STATE per-
mission was found in 93.03% of malware applications and
37.11% of benign applications. The difference between two
groups are 55.92%. The percentages of permission counts in
malware and benign groups and its difference are shown in
Table VIII.

The average of used permissions plus its deviation is used
as a threshold for selecting relevant permissions as shown
in Equation 3, where Thresy, is a threshold used for the
protection level L, Avgy, and Stdy, are average and standard
deviation of all permissions belonging to the protection level
L, respectively.

Thres;, = Avgy, + Stdy, 3)

From four protection levels: normal, dangerous, signature
and signatureOrSystem, the obtained value of the threshold
for normal, dangerous, signature and signatureOrSystem is
15.24, 20.23, 1.80 and 2.13, respectively. If the threshold
value is low, it means either the permissions in these protec-
tion levels are rarely used or the frequency of permissions
used in malware and benign groups is closed. Since the
only permissions which made high impact in differentiating

between malware and benign applications are selected, we
decided to consider only two protection levels, normal and
danger, to select relevant permissions.

To select permissions from normal and danger protection
levels, the only permissions are selected which have a
differencepermissions which falls under the threshold of the
calculated sum which are used as features as shown in the
table VIIIL.

Hence, in this study, a classification model is developed
based on 36 features in total which consists of 27 features
shown in table VII and nine additional permission features
shown in the table VIIL

C. Classification Model

After all applications are labeled, next is to build a
classification model. Classification methods require a training
phase or may referred as learning phase, where a model is
trained from a data set of labeled objects as illustrated in the
figure 5. This model can then be applied for predicting class
labels on unseen data referred as testing phase. In this paper,
three classes are used for developing a classification model
to provide the user with a confidence level of how likely ap-
plications are malicious rather than providing a binary yes/no
answer. Using such model, the user can decide whether or
not to proceed with the installation of the applications. For
the classification model, we use supervised learning based
on the 36 features described previously. Supervised learning
is a machine learning task which uses labeled training data
that consists of input values and known output values.
Figure 6 shows the testing phase where an application with
features are fed to the classification model to predict the
confidence level of the application as safe, suspicious and
highly suspicious.
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TABLE VIII
LIST OF SOME OF THE EXTRACTED PERMISSIONS.

# Permission Name Protection Level Malware Count (%) | Benign Count (%) | |Diff] (%)
1 READ_PHONE_STATE Dangerous 93.03 37.11 55.92
2 GET_TASKS Dangerous 67.12 17.91 49.21
3 ACCESS_COARSE_LOCATION Dangerous 67.94 26.57 41.37
4 SYSTEM_ALERT_WINDOW Dangerous 48.67 16.14 32.53
5 GET_ACCOUNTS Normal 9.21 39.67 30.46
6 ACCESS_FINE_LOCATION Dangerous 57.51 28.44 29.07
7 ACCESS_WIFI_STATE Normal 75.53 49.90 25.63
8 WRITE_EXTERNAL_STORAGE | Dangerous 90.13 69.69 20.44
9 RECEIVE_BOOT_COMPLETED | Normal 49.69 34.15 15.54
10 READ_SYNC_SETTINGS Normal 0.10 4.33 4.23
140 | ACCOUNT_MANAGER Signature 0.85 8.07 7.22
141 | STATUS_BAR signatureOrSystem 1.22 3.44 222
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IV. EXPERIMENTS AND RESULTS

We conducted two experiments as follows:

Experiment I: We used the dataset of three classes of
confidence levels from the benchmark creation as shown in
the table III .

Experiment II: We used the dataset containing 3,000 malware
and 3,000 benign applications.

For both experiments, we used WEKA to test ten different
machine learning techniques using 36 features. The ten
classifiers are random forest, random committee, bagging,
Imt, random subspace, simple logistic, logistic, classification
via regression, kstar and neural network. To evaluate the
performance of machine-learning classifiers, k-fold cross
validation is used. We performed a k-fold cross validation
with k£ = 10. In this way, our dataset was split 10 times into
10 different sets of training (90% of the dataset were used for
training) and testing (10% of the total dataset). We evaluated
the following aspects of our method:

i. Accuracy of the classification model.
ii. Influence of different data sizes.
iii. Effectiveness of the extracted features.

A. Experiment I: Confidence Level Classification

This experiment is performed for the classification of an-
droid applications in three different classes according to the
confidence level. In this experiment, two different balanced
applications datasets are used.

Dataset 1: This application dataset contains 900 applica-
tions which are 300 applications from each safe, suspicious
and highly suspicious class.

Dataset 2: This dataset consists of 1,500 applications that
is 500 applications each from safe, suspicious and highly
suspicious class.

The both datasets are tested using 10 cross validation.
The interest of using different sizes of datasets is to test
the dataset size effect on the accuracy. The results in the
table IX and X shows that random forest algorithm obtains
highest performance in all the other algorithms and as the
dataset size increases, the accuracy increases respectively.
In the table IX the results for 900 applications are shown.
For this dataset Random Forest algorithm obtains highest
accuracy of 79.11% in all.

TABLE IX
RESULTS OF DIFFERENT ALGORITHMS WITH 900 APPLICATIONS
DATASET FOR CONFIDENCE LEVEL BASED CATEGORIZATION.

# | Algorithm Accuracy %
1 Random Forest 79.11
2 | Random Committee 77.56
3 Bagging 77.33
4 | LMT 77.11
5 Random Subspace 76.33
6 | Simple Logistic 75.44
7 | Logistic 74.44
8 Classification Via Regression 74.33
9 KStar 73.67
10 | Neural Network 73.11

In the table X the results of 1,500 applications are shown.
The same ten classifiers used above are compared for this
dataset and Random Forest attains the highest accuracy of
81.80%. The aim of comparing the results and accuracy of
two different size of datasets is to evaluate the effect of the
dataset size, to make sure that there is a progressive increase
as this will plateau once certain number of applications are
submitted.
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TABLE X
RESULTS OF ALGORITHMS WITH 1500 APPLICATIONS DATASET FOR
CONFIDENCE LEVEL BASED CATEGORIZATION.

# | Algorithm Accuracy %
1 Random Forest 81.80
2 | Random Committee 81.00
3 Random Subspace 78.27
4 | Bagging 77.33
5 Classification Via Regression 77.27
6 | LMT 77.20
7 Simple Logistic 76.93
8 Logistic 76.27
9 | KStar 76.20
10 | Neural Network 76.07

The confusion matrix of the Random Forest algorithm for
1,500 applications dataset is depicted in the table XV. This
shows that safe class is 89.00% accurate by detecting 445
applications as safe out of 500 safe applications. Hence, the
true positive of safe class is 445 and false positive is 31 and
24. Whereas, the suspicious class has gained lowest accuracy
of 73.00% and can detect 365 applications as suspicious out
of 500. Highly suspicious class has detected 417 applications
out of 500 and gained the highest accuracy of 83.40%.

B. Experiment II: Binary Classification

The purpose of this experiment is to test the effectiveness
of the features extracted in this study. In this experiment
the applications are divided into two categories which are
malware and benign. In order to calculate the accuracy
of the model, 3,000 applications from benign and 3,000
applications from malware class are used. The accuracy of
ten different algorithms is tested and results are shown in
table XI. In this experiment the Random forest algorithm
has obtained the highest accuracy of 93.63%.

TABLE XI
RESULTS OF DIFFERENT ALGORITHMS WITH 6000 APPLICATIONS
DATASET FOR BINARY CATEGORIZATION.

# | Algorithm Used Accuracy %
1 Random Forest 93.63
2 | Random Committee 92.88
3 Random Subspace 91.35
4 | Bagging 90.90
5 | LMT 90.42
6 | Classification Via Regression 90.10
7 Neural Network 89.97
8 | KStar 89.85
9 Simple Logistic 88.43
10 | Logistic 88.43

C. Experiment III: Principal Component Analysis (PCA)

This experiment is conducted to investigate whether the
features extracted inn this study encounter the curse of
dimensionality in machine learning. In order to avoid curse
of dimensionality dimension reduction is conducted. Curse of
dimensionality often occurs when dealing with data in high-
dimensional spaces. In our case, the original data consist of
36 features, hence the curse of dimensionality is not encoun-
tered. To reduce the dimension experiments are performed on
1,500 applications dataset and explained as below.

PCA is applied with ten principal components and The
calculated variance ratio and cumulative sum of various

components are detailed in the table XII and shown in figure
7.

TABLE XII
CALCULATED VARIANCE AND CUMULATIVE SUM.
Axis | Variance% | Cumulative%
1 61.45 61.45
2 21.23 82.68
3 9.34 92.02
4 4.71 96.73
5 1.53 98.26
6 0.74 99.00
7 0.23 99.23
8 0.18 99.41
9 0.16 99.57
10 0.09 99.66
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Fig. 7. Graphical Representation of Variance and Cumulative Sum.

From these results it is clearly visible that the cumulative
sum after six components is saturated to 99.00%. Hence, the
performance of 1,500 applications dataset is tested with six
components in which Random Forest has attained highest
accuracy of 69.31%. The results of ten tested algorithms
are shown in the table XIII. This is concluded from this
experiment that dimension reduction is not necessary since
it does not improve the overall results and has reduced the
accuracy.

TABLE XIII
PCA RESULTS OF TEN ALGORITHMS WITH 1500 APPLICATIONS
DATASET.
# | Algorithm Used Accuracy %
1 Random Forest 69.13
2 | Bagging 69.07
3 Random Committee 67.87
4 | KStar 67.13
5 Random Subspace 66.80
6 | LMT 66.20
7 Classification Via Regression 66.13
8 | Neural Network 63.13
9 | Logistic 62.60
10 | Simple Logistic 62.33

Furthermore, the confusion matrix of the Random Forest
algorithm for 1,500 applications dataset for both methods:
confidence level classification and PCA is compared and
shown in the table XIV. The results show that the per-
formance of all the classes that is safe, suspicious and
highly suspicious in case of PCA is much lower than the
performance of confidence level classification.

(Advance online publication: 7 November 2018)
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TABLE XIV
CONFUSION MATRIX OF RANDOM FOREST ALGORITHM FOR 1,500
APPLICATIONS DATASET.

[6]

Class Accuracy %
Confidence Level Classification PCA
(36 Features) (6 Components)
Safe 89.00 66.00
Suspicious 73.00 61.80
Highly Suspicious 83.40 70.80

V. CONCLUSION AND FUTURE WORK

In this paper, an android malware detection and classifica-
tion model is developed which uses 36 informative features
to categorize malicious applications based on the confidence
level of application. The confidence level is categorized into
three classes: safe, suspicious and highly suspicious. Static
analysis is performed on large scale labeled dataset of 13,850
android applications. This dataset contains known malware,
benign applications and random applications downloaded
from apk-dl.com. Ten machine learning classification algo-
rithms are tested to determine the most highly performing
one in terms of accuracy and speed. The experimental
evaluations show that this model is capable of determining
the confidence level of android applications with an accuracy
of 81.80% using the Random Forest algorithm.

As a future work, first, an online platform can be imple-
mented to identify the confidence level of android applica-
tion. This online platform can provide a better understanding
to the user weather to download the application or not
based on the confidence level. Second, a method combining
static and dynamic analysis can be implemented for mal-
ware detection. Features such as behavior based: memory
consumption, CPU usage, network usage, system calls, etc.
can be extracted. Third is to increase the dataset both in terms
of malware and benign applications so to determine how big
the dataset needs to be in order to obtain the best results in
terms of high accuracy.
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