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Abstract—We investigate the existence, the uniqueness and
the asymptotic behavior of the positive solution to first-order
nonlinear fuzzy difference equations which read as:

xn+1 = A+Bxne
−Cxn , n = 0, 1, · · · ,

where (xn) is a sequence of positive fuzzy numbers, A,B,C and
the initial value x0 are positive fuzzy numbers. Some conditions
are obtained for the existence of positive fuzzy solution and
stability of positive equilibrium. Finally an illustrative example
is given to show the effectiveness of the obtained results.

Index Terms—nonlinear fuzzy difference equation, asymptot-
ic behavior, boundedness.

I. INTRODUCTION

IT is well known that difference equations appear nat-
urally as discrete analogous of numerical solutions of

differential equation, and that delay differential equation
having many applications in economics, biology, computer
science, control engineering and so on. The study of discrete
dynamical systems described by difference equations or
difference equations systems has received great attention in
mathematical literature. In particular, the existence, persis-
tence, boundedness, local asymptotic stability, and global
character of positive solutions of difference equations have
been discussed in recent years [1-13]. For example, EI-
Metwally et al. [1] investigated the asymptotic behavior of
population model

xn+1 = α+ βxn−1e
−xn , n = 0, 1, · · · ,

where β is the population growth rate and α is the population
immigration rate.

In 2013, Ibrahim and Zhang [2] studied the rate of
convergence of a solution that converges to the equilibrium
(0,0) for a system of two high-order nonlinear difference
equations

xn+1 =
xn−k

q +
∏k

i=0 yn−i

, yn+1 =
yn−k

q +
∏k

i=0 xn−i

,

where p, q ∈ (0,∞), xi ∈ (0,∞), yi ∈ (0,∞) and i =
0, 1, · · · , k.

Papaschinopoulos and Schinas [3] investigated the global
behavior for the following two nonlinear difference equations

xn+1 = A+
yn

xn−p
, yn+1 = A+

xn

yn−q
, n = 0, 1, · · · ,
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where A is a positive real number, p, q are positive integers,
and x−p, · · · , x0, y−q, · · · , y0 are positive real numbers.

Although difference equations and a systems of difference
equations are very simple in their forms, it is extremely diffi-
cult to understand the behavior of their solutions. Moreover,
these models inherently process uncertainty or vagueness. In
order to consider these uncertain factors, fuzzy set theory
is a powerful tool for modeling uncertainty and processing
vague or subjective information in a mathematical models
[14,15]. More precisely, using of fuzzy difference equations
is a natural way to model the discrete dynamical systems
with embedded uncertainty.

Fuzzy difference equations is a difference equation where
parameters and initial values are fuzzy numbers, and it-
s solutions is sequences of fuzzy numbers. Due to the
applicability of fuzzy difference equation to the analysis
of phenomena where imprecision is inherent, this class of
difference equations are very important topic from theoretical
point of view and for applications. Recently there has been an
increasing interest in the study of fuzzy difference equations
(see[16-28]).

Motivated by the discussion above, we investigate the
dynamical behaviors of fuzzy difference equations. We spe-
cialize our study in this paper to the following family of
first-order nonlinear fuzzy difference equations

xn+1 = A+Bxne
−Cxn ;n = 0, 1, · · · , (1)

where (xn) is a sequence of positive fuzzy numbers, the
parameters A,B,C and the initial value x0 are positive fuzzy
numbers.

II. PRELIMINARY AND SOME DEFINITIONS

For the seek of completeness, we give some basic defini-
tions on fuzziness, necessary for the sequel.
Definition 2.1[18] A fuzzy number is a function if A : R →
[0, 1] satisfying conditions (i)-(iv) written below:
(i) A is normal, i. e., there exists an x ∈ R such that
A(x) = 1;
(ii) A is fuzzy convex, i. e., for all t ∈ [0, 1] and x1, x2 ∈ R
such that

A(tx1 + (1− t)x2) ≥ min{A(x1), A(x2)};

(iii) A is upper semi-continuous on R;
(iv) The support of A, suppA = {x : A(x) > 0} is compact.
Definition 2.2 [18] An α-cut, [A]α, is a crisp set which
contains all the elements of the universal set X that have
a membership function at least to the degree of α and can
be expressed as [A]α = {x ∈ X : A(x) ≥ α}, namely,
[A]α = [Al,α, Ar,α].

It is obvious that if A is a positive real number then A
is a fuzzy numbers and that [A]α = [A,A], α ∈ (0, 1]. Then
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we say that A is a trivial fuzzy number.
Definition 2.3 [18] A fuzzy number A is completely deter-
mined by any pair A = (Al, Ar) of functions Al(α), Ar(α) :
[0, 1] → R satisfying the following conditions:
(i) Al(α) is bounded, nondecreasing and left continuous
function for all α ∈ (0, 1];
(ii) Ar(α) is bounded, nonincreasing and left continuous
function for all α ∈ (0, 1];
(iii) Al(α) and Ar(α) are right continuous for α = 0;
(iv) For all α ∈ (0, 1], Al(α) ≤ Ar(α).

For every A = (Al, Ar), B = (Bl, Br) and k > 0, we
define addition and multiplication as follows:
(i) (A+B)l(α) = Al(α)+Br(α), (A+B)r(α) = Ar(α)+
Br(α);
(ii) (kA)l(α) = kAl(α), (kA)r(α) = kAr(α).

The collection of all fuzzy numbers with addition and
multiplication defined by (i)-(ii) is denoted by E1.
Definition 2.4 [18] The distance between two arbitrary fuzzy
numbers A and B is defined as follows:

D(A,B) = sup
α∈[0,1]

max{|Al(α)−Bl(α)|, |Ar(α)−Br(α)|}.

(2)
It is clear that (E1, D) is a complete metric space.

The fuzzy analog of the boundedness and persistence (see
[18,19]) is as follows.
Definition 2.5 A sequence of positive fuzzy numbers (xn)
persists (resp. is bounded) if there exists a positive real
number M (resp. N ) such that

suppxn ⊂ [M,∞)(resp. suppxn ⊂ (0, N ]), n = 1, 2, · · · ,

Definition 2.6 A sequence of positive fuzzy numbers (xn)
is bounded and persists if there exist positive real numbers
M,N > 0 such that

suppxn ⊂ [M,N ], n = 1, 2, · · · .

Definition 2.7 A positive fuzzy number x is a positive
equilibrium of (1), if

x = A+Bxe−Cx.

Let (xn) be a sequence of positive fuzzy numbers and x is
a positive fuzzy number, Suppose that

[xn]α = [Ln,α, Rn,α], n = 0, 1, 2, · · · , α ∈ (0, 1], (3)

and

[x]α = [Lα, Rα], α ∈ (0, 1]. (4)

Definition 2.8 A sequence (xn) converges to x with respect
to D as n → ∞ if limn→∞ D(xn, x) = 0.
Definition 2.9 (i) The positive equilibrium x of (1) is stable if
for every ε > 0 there exists δ = δ(ε) > 0 such that for every
positive solution xn of (1), which satisfies D(x0, x) ≤ δ, we
have D(xn, x) ≤ ε for all n > 0.
(ii) The positive equilibrium x of (1) is asymptotically stable,
if it is stable and every positive solution xn of (1) converges
to the positive equilibrium x of (1) with respect to D as
n → ∞.

III. MAIN RESULTS

Lemma 3.1[29] Let g : R+×R+×R+ → R+ be continuous,
A,B,C are fuzzy numbers. Then

[g(A,B,C)]α = g([A]α, [B]α, [C]α). α ∈ (0, 1]. (5)

Lemma 3.2[19] Let u ∈ E1, [u]α = [ul(α), ur(α)], α ∈
(0, 1], then ul(α) and ur(α) can be regarded as functions on
(0,1], which satisfy
(i) ul(α) is non-decreasing and left continuous;
(ii)ur(α) is non-increasing and left continuous;
(iii)ul(1) ≤ ur(1).
Conversely for any functions a(α) and b(α) defined on (0, 1]
which satisfy (i)-(iii) in the above, there exists a unique u ∈
E1 such that [u]α = [a(α), b(α)] for any α ∈ (0, 1].

Theorem 3.1 Consider the fuzzy difference equation (1),
where A,B and C are positive fuzzy numbers. Then, for
any positive fuzzy number x0 , there exists a unique positive
solution xn of (1) with initial condition x0.
Proof. We organize our proof along the lines of the proof of
Proposition 2.1 [18]. Assume that there exists a sequence of
positive fuzzy numbers (xn) satisfing (1) with initial condi-
tions x0. Consider the α-cuts,α ∈ (0, 1], n = 0, 1, 2, · · · , [xn]α = [Ln,α, Rn,α], [A]α = [Al,α, Ar,α],

[B]α = [Bl,α, Br,α], [C]α = [Cl,α, Cr,α].
(6)

It follows from (1), (6) and Lemma 3.1 that

[xn+1]α = [Ln+1,α, Rn+1,α] = [A+Bxne
−Cxn ]α

= [A]α + [B]α[xn]α[e
−Cxn ]α

= [Al,α, Ar,α]

+[Bl,α, Br,α][Ln,α, Rn,α]× [e−Cxn ]α

= [Al,α +Bl,αLn,αe
−Cr,αRn,α ,

Ar,α +Br,αRn,αe
−Cl,αLn,α ],

from which we have that for n = 0, 1, 2, · · · , α ∈ (0, 1] Ln+1,α = Al,α +Bl,αLn,αe
−Cr,αRn,α ,

Rn+1,α = Ar,α +Br,αRn,αe
−Cl,αLn,α .

(7)

Then it is obvious that, for any initial values condition
(L0,α, R0,α), α ∈ (0, 1], there exists a unique solution
(Ln,α, Rn,α). Now we prove that [Ln,α, Rn,α], α ∈ (0, 1],
where (Ln,α, Rn,α) is the solution of system (7) with the
initial condition (L0,α, R0,α), determines the solution xn of
(1) with the initial conditions x0 such that

[xn]α = [Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, 2, · · · , (8)

where A,B,C and x0 are positive fuzzy numbers, for any
α1, α2 ∈ (0, 1], α1 ≤ α2, we have

0 < Al,α1 ≤ Al,α2 ≤ Ar,α2 ≤ Ar,α1

0 < Bl,α1 ≤ Bl,α2 ≤ Br,α2 ≤ Br,α1

0 < Cl,α1 ≤ Cl,α2 ≤ Cr,α2 ≤ Cr,α1

0 < L0,α1 ≤ L0,α2 ≤ R0,α2 ≤ R0,α1 .
(9)
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We recall that

Ln,α1
≤ Ln,α2

≤ Rn,α2
≤ Rn,α1

, n = 0, 1, 2, · · · . (10)

By induction, we get from (9) that (10) holds for n = 0, 1.
Assume now that (10) is true for n ≤ h, h ∈ {1, 2, · · ·}. Then
we get from (6), (8) and (9) that, for n ≤ h,

Lh+1,α1 = Al,α1 +Bl,α1Lh,α1e
−Cr,α1Rn,α1

≤ Al,α2 +Bl,α2Lh,α2e
−Cr,α2Rn,α2 = Lh+1,α2

= Al,α2 +Bl,α2Lh,α2e
−Cr,α2

Rn,α2

≤ Ar,α2 +Br,α2Rh,α2e
−Cl,α2

Ln,α2 = Rh+1,α2

= Ar,α2 +Br,α2Rh,α2e
−Cl,α2

Ln,α2

≤ Ar,α1 +Br,α1Rh,α1e
−Cl,α1

Ln,α1 = Rh+1,α1 .

Therefore (10) is satisfied. Moreover from (7) we have, for
∀α ∈ (0, 1] L1,α = Al,α +Bl,αL0,αe

−Cr,αR0,α ,

R1,α = Ar,α +Br,αR0,αe
−Cl,αL0,α ,

(11)

where A,B,C and x0 are positive fuzzy numbers, then
we have that Al,α, Ar,α, Bl,α, Br,α, Cl,α, Cr,α, L0,α, R0,α

are left continuous. So from (11) we have that L1,α, R1,α

are also left continuous. By induction we can get that
Ln,α, Rn,α, n = 1, 2, · · · are left continuous.

Now we prove that the support of xn, suppxn

=
∪

α∈(0,1][Ln,α, Rn,α] is compact. It is enough to show that∪
α∈(0,1][Ln,α, Rn,α] is bounded. Let n = 1, Since A,B,C

and x0 are positive fuzzy numbers, there exist constants
MA > 0,MB > 0,MC > 0,M0 > 0, NA > 0, NB >
0, NC > 0, N0 > 0 such that, for all α ∈ (0, 1], [Al,α, Ar,α] ⊂ [MA, NA], [Bl,α, Br,α] ⊂ [MB , NB ],

[Cl,α, Cr,α] ⊂ [MC , NC ], [L0,α, R0,α] ⊂ [M0, N0].
(12)

So, from (11) and (12) we have

[L1,α, R1,α] ⊂
[
MA +MBM0e

−NcN0 ,

NA +NBN0e
−McM0

]
. (13)

From which we can get that, for all α ∈ (0, 1].∪
α∈(0,1]

[L1,α, R1,α] ⊂
[
MA +MBM0e

−NcN0 ,

NA +NBN0e
−McM0

]
. (14)

Therefore (14) implies that∪
α∈(0,1]

[L1,α, R1,α] is compact,

and ∪
α∈(0,1]

[L1,α, R1,α] ⊂ (0,∞).

Deducing inductively, we can follow that∪
α∈(0,1][Ln,α, Rn,α] is compact, and∪

α∈(0,1]

[Ln,α, Rn,α] ⊂ (0,∞), n = 1, 2, · · · . (15)

Therefore, (9), (15) and since Ln,α, Rn,α are left continuous,
we have that [Ln,α, Rn,α] determines a sequence of positive
fuzzy numbers (xn) such that (10) holds .

Next, we will prove that, for ∀α ∈ (0, 1], xn is a
unique solution of (1) with the initial condition x0. Assume
that there exists another solution xn of (1) with the initial
conditions x0. Then from arguing as above we can easily
prove that

[xn]α = [Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, 2, · · · . (16)

Then from (8) and (16), we have [xn]α = [xn]α, α ∈
(0, 1], n = 0, 1, 2, · · ·, namely, xn = xn, n = 0, 1, · · · . Thus
the proof of Theorem 3.1 is completed.

Lemma 3.3 (Comparison principle) Let a ∈ [0,∞), b ∈
[0,∞) and let {Xn}∞n=0, {Yn}∞n=0 be sequences of real
numbers, such that X0 ≤ Y0, and for n = 0, 1 · · · Xn+1 ≤ aXn + b,

Yn+1 = aYn + b,

Then Xn ≤ Yn, for all n ≥ 0.

Lemma 3.4 Consider the difference equation system, for n =
0, 1, · · ·,  yn+1 = a1 + b1yne

−c1zn ,

zn+1 = a2 + b2zne
−c2yn ,

(17)

where a1, b1, c1, a2, b2, c2 and the initial values y0, z0 are
positive real numbers. If

b1 < ec1a2 , b2 < ec2a1 . (18)

Then solution of (17) is bounded and persists.
Proof. Assume that {(yn, zn)}∞n=0 is a positive solution of
(17). Then it follows from (17) that, for n ≥ 0, we have yn+1 = a1 + b1yne

−c1zn > a1,

zn+1 = a2 + b2zne
−c2yn > a2.

(19)

Thus yn+1 = a1 + b1yne
−c1zn < a1 + b1yne

−c1a2 ,

zn+1 = a2 + b2zne
−c2yn < a2 + b2zne

−c2a1 .
(20)

Now we consider the following system of difference equa-
tions, for n = 1, 2, · · ·,

Yn+1 = a1 + b1Yne
−c1a2 , Zn+1 = a2 + b2Zne

−c2a1 ,

with initial conditions y0 ≤ Y0, z0 ≤ Z0, and it follows from
Lemma 3.3 that

yn ≤ Yn, zn ≤ Zn, n ≥ 0.

So

lim
n→∞

Yn =
a1

1− b1e−c1a2
, lim

n→∞
Zn =

a2
1− b2e−c2a1

,

and

lim
n→∞

sup yn ≤ a1
1− b1e−c1a2

, lim
n→∞

sup zn ≤ a2
1− b2e−c2a1

.

Therefore {(yn, zn)}∞n=0 is bounded and persists, the proof
is completed.
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Theorem 3.2 Consider the fuzzy difference equation (1),
where A,B,C and initial value x0 are positive fuzzy num-
bers. If for ∀α ∈ (0.1],

Br,α < eCl,αAl,α . (21)

Then every positive solution of (1) is bounded and persists.
Proof. Assume that xn is a positive solution of equation (1)
such that (8) holds. From (7), we have, for n = 1, 2, · · · , α ∈
(0, 1],

Al,α ≤ Ln,α, Ar,α ≤ Rn,α (22)

From Lemma 3.3 and (20), we can get, for n = 1, 2, · · ·,
Ln,α ≤ Al,α

1−Bl,αe−Cr,αAr,α
,

Rn,α ≤ Ar,α

1−Br,αe−Cl,αAl,α
.

(23)

Hence from (12), (20) and (21) we can get, for n ≥ 1, α ∈
(0, 1],

[Ln,α, Rn,α] ⊂
[
MA,

NA

1−NBe−MCMA

]
. (24)

From which it is obvious that, for n ≥ 1.∪
α∈(0,1]

[Ln,α, Rn,α] ⊂
[
MA,

NA

1−NBe−MCMA

]
, (25)

from which we get∪
α∈(0,1]

[Ln,α, Rn,α] ⊂
[
MA,

NA

1−NBe−MCMA

]
. (26)

The positive solution of (1) is bounded and persists.

Lemma 3.5 Consider the difference equations system (17),
where ai, bi, ci(i = 1, 2) are positive real numbers. If (18)
hold, then there exists a unique positive equilibrium (y, z)
such that

a1 < y <
a1

1− b1e−c1a2
, a2 < z <

a2
1− b2e−c2a1

. (27)

Proof. Let (y, z) be the solution of the following system. y = a1 + b1ye
−c1z,

z = a2 + b2ze
−c2y.

(28)

Set
f(y) = a1 + b1ye

− a2c1

1−b2e−c2y − y. (29)

Then

f(a1) = b1a1e
− c1a2

1−b2e−c2a1 > 0, lim
y→∞

f(y) = −∞ (30)

and

f
′
(y) = b1e

− a2c1

1−b2e−c2y

−b1y
c1a2b2c2e

−c2y

(1− b2e−c2y)2
e
− a2c1

1−b2e−c2y − 1

< 0. (31)

It follows from (30) and (31) that (28) has exactly one
solution y > a1. Similarly, we can obtain that z > a2.

From (28), we have

y <
a1

1− b1e−c1a2
, z <

a2
1− b2e−c2a1

.

The proof is completed.

Theorem 3.3 Consider the difference equation system (17),
where ai, bi, ci(i = 1, 2) are positive real numbers and the
initial values y0, z0 are positive real numbers. Assume that
(18) and that the following condition holds

max

{
b1e

−c1a2(1 +
a1c1

1− b1e−c1a2
),

b2e
−c2a1(1 +

a2c2
1− b2e−c2a1

)

}
< 1, (32)

Then the positive equilibrium (y, z) of system (17) is glob-
ally asymptotically stable.
Proof. We first prove that the positive equilibrium point
(y, z) is locally asymptotically stable. We can easily obtain
that the linearized system of (17) about the positive equilib-
rium (y, z) is

Φn+1 = DΦn,

where

D = (dij)2×2 =

 b1e
−c1z b1c1ye

−c1z

−b2c1ze
−c2y b2e

−c2y

 .

The norm of this matrix is

∥D∥ = max
{
b1e

−c1z(1 + c1y), b2e
−c2y(1 + c2z)

}
.

From (32), we get that

∥D∥ ≤ max

{
b1e

−c1a2(1 +
a1c1

1− b1e−c1a2
),

b2e
−c2a1(1 +

a2c2
1− b2e−c2a1

)

}
< 1.

Therefore, since |λi| < ∥D∥ < 1, λi(i = 1, 2) are the
eigenvalues of D, we have all eigenvalues of D lie inside the
unit disk. This implies that (y, z) is locally asymptotically
stable.
Let (yn, zn) be a positive solution of (17). We prove that

lim
n→∞

yn = y, lim
n→∞

zn = z. (33)

Using Lemma 3.3, we get Γ1 = limn→∞ sup yn < ∞, Γ2 = limn→∞ sup zn < ∞,

γ1 = limn→∞ inf yn > 0, γ2 = limn→∞ inf zn > 0.
(34)

Then from (17) and (34), we have
Γ1 ≤ a1

1−b1e−c1γ2
, γ1 ≥ a1

1−b1e−c1Γ2
,

Γ2 ≤ a2

1−b2e−c2γ1
, γ2 ≥ a2

1−b2e−ccΓ1
.

(35)

From (35), it follows that
Γ1γ2 ≤ a1γ2

1−b1e−c1γ2
, Γ2γ1 ≤ a2γ1

1−b2e−c2γ1
,

Γ2γ1 ≥ a1Γ2

1−b1e−c1Γ2
, Γ1γ2 ≥ a2Γ1

1−b2e−c2Γ1
.
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From which we can get
a2Γ1

1−b2e−c2Γ1
≤ Γ1γ2 ≤ a1γ2

1−b1e−c1γ2
,

a1Γ2

1−b1e−c1Γ2
≤ Γ2γ1 ≤ a2γ1

1−b2e−c2γ1
,

(36)

Set

g(y) =
a2y

1− b2e−c2y
, f(z) =

a1z

1− b1e−c1z
, (37)

and

y ∈
(
a1,

a1
1− b1e−c1a2

)
, z ∈

(
a2,

a2
1− b2e−c2a1

)
.

Then form (37) , we can get that
g

′
(y) = a2[1−b2e

−c2y(1+c2y)]
(1−b2e−c2y)2

,

f
′
(z) = a1[1−b1e

−c1z(1+c1z)]
(1−b1e−c1z)2

,

(38)

Since

y ∈
(
a1,

a1
1− b1e−c1a2

)
z ∈

(
a2,

a2
1− b2e−c2a1

)
,

we can get
1 − b2e

−c2y(1 + c2y) > 1− b2e
−c2a1

×(1 + a2

1−b2e−c2a1
) > 0,

1 − b1e
−c1z(1 + c1z) > 1− b1e

−c1a2

×(1 + a1

1−b1e−c1a2
) > 0.

(39)

Therefore from (38) and (39), we can get

g′(y) > 0, f ′(z) > 0,

for

y ∈
(
a1,

a1
1− b1e−c1a2

)
, z ∈

(
a2,

a2
1− b2e−c2a1

)
.

Hence, g, f are monotone increasing function, together
with (36), it implies that Γ1 = γ1,Γ2 = γ2 and we get in
fine that limn→∞ yn = y, limn→∞ zn = z. The proof of
Theorem 3.3 is completed.

Remark 3.1 Condition (32) of Theorem 3.3 is different
from that of [4], These condition guarantee the existence
of the unique positive equilibrium of (17) to be globally
asymptotically stable.

Theorem 3.4 Consider the fuzzy difference equation (1),
where A,B,C and the initial value are positive fuzzy num-
bers, If (21) hold, then the following statements are true.
(i) The system (1) has a unique positive equilibrium.
(ii)The every positive solution xn of (1) converges to the
unique positive equilibrium x with respect to D as n → ∞.
Proof. (i) We consider the system Lα = Al,α +Bl,αLαe

−Cr,αRα ,

Rα = Ar,α +Br,αRαe
−Cl,αLα .

(40)

Obviously, (40) has a unique solution (Lα, Rα).
Assume that xn is a positive solution of (1), so that [xn]α =

[Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, 2 · · ·. Then applying
Theorem 3.3, we have

lim
n→∞

Ln,α = Lα, lim
n→∞

Rn,α = Rα. (41)

From (22) and (40), we have, for 0 < α1 ≤ α2 ≤ 1,

0 < Lα1 ≤ Lα2 ≤ Rα2 ≤ Rα1 (42)

Since Al,α, Ar,α, Bl,α, Br,α are left continuous, it follows
from (40) that Lα, Rα are also left continuous. From (12)
and (40) we have

Lα ≥ Al,α ≥ MA,

Rα =
Ar,α

1−Br,αe−Cl,αLα
≤ NA

1−NBe−MAMC
.

(43)

Therefore (43) implies that

[Lα, Rα] ⊂
[
MA,

NA

1−NBe−MAMC

]
.

From that it is clear that
∪

α∈(0,1][Lα, Rα] is compact∪
α∈(0,1][Lα, Rα] ⊂ (0,∞).

(44)

From Lemma 3.2, (40), (42) and (44), it follows that Lα, Rα,
determine a fuzzy number x such that

x = A+Bxe−Cx, [x] = [Lα, Rα], α ∈ (0, 1],

and so x is a positive equilibrium of (1).

Let x is another positive equilibrium of (1), then there
exist function Lα : (0, 1] → (0,∞), Rα : (0, 1] → (0,∞),
such that

x = A+Bxe−Cx, [x]α = [Lα, Rα], α ∈ (0, 1].

From which we get

Lα = Al,α+Bl,αLαe
−Cr,αRα , Rα = Ar,α+Br,αRαe

−Cl,αLα .

So Lα = Lα, Rα = Rα, α ∈ (0, 1], we can get x = x. This
completes the proof of (i).
(ii) From (41), we can get

lim
n→∞

D(xn, x)

= lim
n→∞

sup
α∈(0,1]

{max{|Ln,α − Lα|, |Rn,α −Rα|}}

= 0 (45)

From which it is clear that every positive solution xn of
(1) converges the unique equilibrium x with respect to D as
n → ∞.

IV. NUMERICAL EXAMPLE

To illustrate our result, we give an example to show
effectiveness our results obtained .

Example 4.1 Consider the following fuzzy difference equa-
tion

xn+1 = A+Bxne
−Cxn , n = 0, 1, · · · , (46)
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where A,B,C are fuzzy numbers such that

A(x) =

{
10x− 2, 0.2 ≤ x ≤ 0.3,

−5x+ 2.5, 0.3 ≤ x ≤ 0.5,
(47)

and

B(x) =

{
10x− 4, 0.4 ≤ x ≤ 0.5,

−10x+ 6, 0.5 ≤ x ≤ 0.6,
(48)

and

C(x) =

{
5x− 3, 0.6 ≤ x ≤ 0.8,

−5x+ 5, 0.8 ≤ x ≤ 1,
(49)

we take the initial value x0, such that

x0 =

{
10x− 3, 0.3 ≤ x ≤ 0.4,
−5x+ 3, 0.4 ≤ x ≤ 0.6,

(50)

from (47), (48), (49), for α ∈ (0, 1], we have
[A]α = [0.1α+ 0.2, 0.5− 0.2α],

[B]α = [0.1α+ 0.4, 0.6− 0.1α],

[C]α = [0.6 + 0.2α, 1− 0.2α].

(51)

And 

∪
α∈(0,1][A]α = [0.2, 0.5],

∪
α∈(0,1][B]α = [0.4, 0.6],

∪
α∈(0,1][C]α = [0.6, 1]

(52)

Moreover from (50), for α ∈ (0, 1] , we have

[x]0 = [0.1α+ 0.3, 0.6− 0.2α] (53)

and so

∪
α∈(0,1]

[x0]α = [0.3, 0.6] (54)

From (46), it results in a coupled system of difference
equation with parameter α ∈ (0, 1] , Ln+1,α = 0.1α+ 0.2 + (0.1α+ 0.4)Ln,αe

−(1−0.2α)Rn,α ,

Rn+1,α = 0.5− 0.2α+ (0.6− 0.1α)Rn,αe
−(0.6+0.2α)Ln,α

(55)
and, Br,α < eAl,αCl,α , for every α ∈ (0, 1], the condition
(21) is satisfied, so from the Theorem 3.3 we get that every
positive solution xn of (55) is bounded and persists, and in
addition, (46) has a unique positive equilibrium

x = (0.233, 0.46, 1.046).

Every positive solution xn of (46) converges to the unique
positive equilibrium x with respect to D as n → ∞ (see
Fig.1-Fig.5).
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Fig. 1. The dynamical behavior of (55).
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Fig. 2. The solution of system (55) at α = 0.
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Fig. 3. The solution of system (55) at α = 0.5.

V. CONCLUSION

In this paper, the first-order nonlinear fuzzy difference
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Fig. 4. The solution of system (55) at α = 0.75.
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Fig. 5. The solution of system (55) at α = 1.

equation

xn+1 = A+Bxne
−Cxn , n = 0, 1, · · ·

is discussed. Firstly, the existence of the positive solution
to this equation is proved. Secondly, we found that under
condition Br,α < eAl,αCl,α , α ∈ (0, 1], the positive solutions
of first-order nonlinear fuzzy difference equation are bounded
and persistent, and there exists an unique positive equilibrium
x such that every positive solution converges it. Finally, a
numerical example is given to illustrate our results obtained.
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