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Abstract—Degradation caused by blurring is ubiquitous in
digital images, and blind image deblurring (BID) has been pro-
posed to solve this issue. Over the past several decades, various
techniques and tools have been developed for BID problems,
and continual efforts have been made to improve the speed and
accuracy of sharp image estimation. This study proposes a new
BID method, which incorporates a regularization technique,
sparsity-inducing priors, and the split Bregman method. In the
first phase, the proposed method equates blur estimation with
a constrained minimization problem in which sparsity-inducing
priors are employed to regularize the gradient image and blur
the kernel. The split Bregman method is then applied to divide
and conquer the minimization problem to optimize the blur esti-
mation. To enhance the accuracy of the outputs, a coarse-to-fine
updating procedure is integrated into the Bregman iterations.
The resulting subproblems are efficiently addressed during the
alternating iteration by employing methods such as the fast
Fourier transform (FFT) and hard shrinkage. In the second
phase, the total variation (TV) deconvolution model is applied
to sharp image reconstruction, and a classic half-quadratic
approach is applied to handle the model with high efficiency.
In our experiments, the proposed method and three similar
methods are employed to deal with synthetic blurry images
and real-world blurry images from open image databases. The
deblurring results are presented in the form of recovered images
and peak signal-to-noise ratio (PSNR) values. To compare speed
performances, the computation times for image deblurring are
computed and reported. The proposed method can be applied to
efficiently handle various types of blurry images and produce
satisfactory outputs. Experimental outputs indicated that the
proposed method provides superior restoration quality and
computing speed compared with alternatives.

Index Terms—blind deblurring, regularization technology,
sparse inducing, split Bregman, hard shrinkage.

I. INTRODUCTION

BLUR has always been a problem for digital images
and is becoming increasingly serious with the pop-

ularization of handheld imaging devices. Hence, research
on blind image deblurring (BID) has received increased
attention. In the field of BID, a blurry image is expressed
as Y = B⊗X +N where Y is the blurry image; B and X
are the unknown blur kernel and sharp image, respectively;
⊗ is the convolution operator; and N is the noise. In recent
years, researchers have successfully presented many effective
BID methods. Most of these methods can be classified as
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variational Bayesian (VB) methods [1-4], TV-regularized
methods [5-8], and sparse representation (SR) based methods
[10-13].

Likas et al. [1] were the first to apply a Bayesian
framework to solve the BID problem. To find closed-form
solutions for the Bayesian BID model, the authors adopt a
variational approximation approach derived from expectation
maximization. Fergus et al. [2] use a similar methodology
to that of [1], but with differences in prior knowledge and
estimation strategy. To avoid the shortcomings of the blur es-
timation method used in [1] and [2], Tzikas et al. [3] propose
modeling the point spread function by using a sparse-kernel
prior, which allows for estimating the support of the blur
kernel and encourages smooth blur. Zhou et al. [4] divide
the BID problem into two phases, i.e., image restoration and
blur estimation, and utilizing alternating minimization and
the variational Dirichlet process, respectively, to deal with
them. With the help of the nondimensional Gaussian mea-
sure and the Dirichlet distribution, this method yields good
performance in terms of alleviating artifacts and removing
kernel noise. In general, the performances of the VB methods
rely significantly on the selection of prior distribution models
and variational approximation approaches.

An attractive tool, TV has been successfully used in many
image processing fields. To achieve image edge recovery and
efficient blur estimation, Chan et al. [5] introduce TV into
the BID problem but fail to properly tackle the numerical
computing problems of the TV-regularized model. Li et
al. [6] employ split Bregman iteration to improve the TV-
regularized BID model presented by Chan et al. in [5].
To regularize the blur kernel, Liu et al. [7] construct a
new convex regularizer, in which the TV-based prior is still
imposed on a sharp image, to replace the TV-regularizer
in the BID model of Chan et al. Similarly, to refine the
classic TV-regularized model presented in [5], Liu et al. [8]
substitute a new data-fidelity term for the original and handle
the new TV-regularized model with a weighted approach that
aims to perform image deblurring rapidly. For TV-regularized
methods, in addition to the challenges posed by the numerical
computation of the TV-regularizer, the deblurred results are
influenced by initial settings [9].

The so-called transform sparsity of images is the rationale
behind the SR technology that creates many of the repre-
sentative BID methods. Transform sparsity means that an
image can be represented by the least number of coefficients
in a transform domain such as the Fourier domain or the
wavelet domain. Cai et al. [10] utilize a framelet system to
code the sharp images and blur kernel. The l1-norms of the
resulting coefficients serve as the regularized terms. Because
of its sparseness, the blur kernel rarely includes helpful
information for estimation in coding. Based on a fusion of
the low-rank, nonlocal similarity, and sparse priors, Ren et al.

IAENG International Journal of Computer Science, 45:4, IJCS_45_4_10

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



[11] construct a new BID model whose cost function includes
as regularizers the quadratic l2-norm of the blur kernel and
l0-norm of the gradient image. Like Ren et al., Yu et al.
[12] resort to an alternating optimization strategy to estimate
unknowns in their BID problem. Comparatively speaking,
because BID is cast as a smooth minimization problem, the
BID work in [12] may be easier to complete. With a focus
on disposing of text images, Pan et al. [13] model the BID
problem as a novel optimization problem that enforces l0-
norm-based priors on the sharp image and its gradient. The
researchers present an edge-based method for addressing this
optimization problem.

Although new theories and methods are being proposed,
the efficient and accurate estimation of sharp images and
blur kernels still encounter obstacles due to the inherently
ill-posed nature of BID problems. An efficient BID method
is proposed in this study to estimate the sharp image and
blur kernel. The proposed method solves the BID issue in
two phases. The first phase jointly estimates the gradient
image and the blur kernel in an alternating process, and the
second phase performs deconvolution to obtain the sharp
image based on the blur estimation output. The remainder
of the paper is structured as follows: In Section 2, the
proposed two-phase BID is described in detail. Section 3
is the experimental section, wherein a comparative analysis
is carried out among several BID methods. The last section
draws conclusions.

II. PROPOSED BID METHOD

Regarding the ill-posed problems described above,
Tikhonov et al. [14] suggest using regularization as the
solver, and the last few decades have witnessed many
successful applications of regularization to the solution of
inverse problems in imaging. In the context of regularization,
BID problems can be uniformly written as

min
B,X
{J(B,X) = Q(B,X) + Φ1(B) + Φ2(X)}, (1)

where J(B,X) is the cost function; the first term of J(B,X)
is a data-fidelity term that maintains the consistency of the
sharp and blurry image; and Φ1(B) and Φ2(X), called
regularizers or regularized terms, are used to guarantee that
the BID problem converges in a stable manner to a nontrivial
solution. Early methods (e.g., [15]) tend to adopt ||B||22 and
||LX||22 as regularizers, recovering overly smoothed sharp
images. Subsequent TV-regularized and sparsity-inducing
models can effectively avoid this issue, and they have become
the mainstream options for solving BID problems.

As illustrated by Eq. (1), BID methods aim to restore sharp
images and blur kernels from given blurry images. This study
suggests a two-phase processing strategy to achieve this goal.

A. Blur Estimation

Given that the prominent edges of intermediate images
contribute to precisely estimating the blur kernel, the pro-
posed method formulates blur estimation as

min
U,B

1

2
||B ⊗ U −W ||22 + µ1||B||0 + µ2||U ||0,

s.t. bi ≥ 0,Σibi = 1
(2)

where U = (∇hX,∇vX)T and W = (∇hY,∇vY )T are
the gradients of the sharp image X and blurry image Y ,
respectively; ∇h and ∇v are the gradient operators in the
horizontal and vertical directions, respectively; || · ||0 denotes
the sparsity-inducing l0-norm, as it calculates the number
of nonzero elements, whereas l0-norm is fairly appropriate
for measuring the natural sparsity of the gradient image and
blur kernel; and the penalty weights µ1 and µ2 are positive
constants and regulate the strength of regularization. With bi
denoting an arbitrary element of B, bi ≥ 0 and

∑
i bi = 1

are the nonnegative and normalized constraints, respectively,
which stem from the natural attributes of the blur kernels.

Directly handling the minimization problem (2) is illogical
given the l0-norm and two known variables in its cost
function. To settle minimization problems such as problem
(2), many BID methods resort to simply alternating min-
imization schemes to approximate the optimum solutions.
However, compared with the newly emerging split Breg-
man approach [16-17], alternating minimization tends to be
gradual, unstable, and insufficiently accurate. Therefore, this
paper adopts the split Bregman method to dispose of problem
(2) and estimate the blur kernel in a low-overhead and high-
speed manner. The split Bregman method combines variable
splitting and Bregman iteration [18] and has demonstrated
unique advantages in image processing [19-21]. Through
variable splitting, the split Bregman method first converts
problem (2) into the following equivalent problem:

min
U,B,S,Z

1

2
||B ⊗ U −W ||22 + µ1||Z||0 + µ2||S||0.

s.t. bi ≥ 0,Σibi = 1, Z = B,S = U
(3)

Afterwards, Bregman iteration decouples problem (3) into a
series of subproblems:

Bk+1 = argmin
B

||B ⊗ Uk −W ||22 + λ1||B − Zk −Dk
1 ||22,

s.t. bk+1
i ≥ 0,Σib

k+1
i = 1

(4)

Zk+1 = argmin
Z

λ1
2
||Bk+1 − Z −Dk

1 ||22 + µ1||Z||0, (5)

Dk+1
1 = Dk

1 +Bk+1 − Zk+1, (6)

Uk+1 = argmin
U

||Bk+1⊗U −W ||22 +λ2||U −Sk−Dk
2 ||22,

(7)

Sk+1 = argmin
S

λ2
2
||Uk+1 − S −Dk

2 ||22 + µ2||S||0, (8)

Dk+1
2 = Dk

2 + Uk+1 − Sk+1. (9)

In Eq. (3), the auxiliary variables Z and S relax the cost
function to facilitate minimization with respect to each
unknown variable. In Eqs. (4)-(9), the penalty weights λ1
and λ2 are constant and positive, and D1 and D2 serve
as constraint errors. The split Bregman method permits the
penalty weights to remain constant in addition to the benefits
of quick convergence and a stable solution.

Problems (4) and (7) are least-square problems whose
terms are all quadratic. In accordance with Plancherel’s
theorem [22], the Fourier transform of the sum of quadratic
terms is equal to the sum of the Fourier transforms of each
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quadratic term. Thus, in the fast Fourier transform (FFT)
domain, Eqs. (4) and (7) can be written respectively as

F (Bk+1) = argmin
F (B)

{||F (B)� F (Uk)− F (W )||22

+ λ1||F (B)− F (Zk)− F (Dk
1 )||22},

s.t. bk+1
i ≥ 0,Σib

k+1
i = 1

(10)

and

F (Uk+1) = argmin
F (U)

{||F (Bk+1)� F (U)− F (W )||22

+ λ2||F (U)− F (Sk)− F (Dk
2 )||22},

(11)

where F denotes the FFT operation and � represents the
scalar product. Bk+1 and Uk+1, can be efficiently computed
by

Bk+1 = F−1

(
F ∗(Uk)� F (W ) + λ1F (E1)

F ∗(Uk)� F (Uk) + λ1

)
(12)

and

Uk+1 = F−1

(
F ∗(Bk+1)� F (W ) + λ2F (E2)

F ∗(Bk+1)� F (Bk+1) + λ2

)
, (13)

where F−1 is the inverse FFT operation, F ∗ is the complex
conjugate of F , E1 = Zk +Dk

1 and E2 = Sk +Dk
2 , and the

division is conducted in an elementwise manner. Eqs. (12)
and (13) avoid computationally inefficient matrix multipli-
cations and matrix divisions by using FFTs. Given that U
and W are gradient images, the number of FFT operations
decreases remarkably. Although the l0-norm easily leads to
an NP-hard problem, problems (5) and (8) can be settled
using the closed-form analytical solutions

Zk+1 = Shrink(Bk+1 −Dk
1 ,

√
2µ1

λ1
) (14)

and

Sk+1 = Shrink(Uk+1 −Dk
2 ,

√
2µ2

λ2
), (15)

where Shrink is the well-known hard shrinkage operator
used to compute Zk+1 and Sk+1 in the element-by-element
modes, which are defined as

Shrink(a, t) =

{
= 0 if |a| ≤ t

= a if |a| > t.
(16)

A coarse-to-fine update manner, such as that in [2], is
adopted to improve the performance of blur estimation. The
blurry images downsampled at different resolutions, together
with the blurry image itself, are used to build an image
pyramid. At the coarsest level, the pyramid image of lowest
resolution is applied to estimate the coarsest-level blur kernel.
After the blur kernel obtained at a coarser level is upsampled,
it serves as the input for blur estimation at the next-finer level,
along with the pyramid image for the corresponding level.
At the finest level, the final estimation of the blur kernel is
acquired.

Based on the above analysis, the proposed method for blur
estimation can be summed up as Method 1, shown below.

Method 1 Proposed Method for Blur Estimation
Input: image pyramid {Wj}N0 with W = W0

Input: initial U0 (same size as WN )
Input: µ1, µ2, λ1 and λ2
Output: Bk+1 at finest-level
1: loop coarse-to-fine:
2: repeat
3: Compute Bk+1 using Equation (12)
4: Compute Uk+1 using Equation (13)
5: until stopping criterion is met
6: Upsample Uk+1 and W to initialize next finer level

B. Image Deconvolution

The BID problem becomes an image deconvolution prob-
lem, or a non-BID problem, after estimating the blur kernel.
Considering the disturbances caused by noise and, possibly,
small errors in blur estimation, we model the image deconvo-
lution as the following classic TV-regularized minimization
problem to robustly reconstruct the sharp image:

min
X
{1

2
||B ⊗X − Y ||22 + µ||∇X||1}, (17)

where ∇ = (∇h,∇v)T is the gradient operator. The TV-
regularized model is known to excellently suppress artifacts
caused by estimation errors and noise. Various methods can
be used to solve Problem (17). The method presented in [23]
is employed as the solver because of its processing efficiency
and accuracy. This method transforms problem (17) into

min
X,C
{1

2
||B ⊗X − Y ||22 + µ||C||2 +

β

2
||C −∇X||22}. (18)

Then, problem (18) is solved using a half-quadratic approach
with µ and β0 equal to 5× 104 and 1, respectively.

III. EXPERIMENTS AND RESULTS

Experiments are conducted on synthetic and real-world
blurry images which are representative and widely adopted
to evaluate BID methods. The benchmark images shown in
Figs. 1 and 2 are downloaded from open databases [24-
26]. The proposed method, along with its three alternatives
[4], [10], and [13], are applied to these images, producing
deblurred outputs, as illustrated in Figs. 3-9 and Tables I
and II. To fairly and objectively conduct the experiments,
the results of the three alternatives are obtained by running
the source code published by the corresponding authors.
Throughout the experiments, the “stopping criterion” in the
description of Method 1 refers to 20 repetitions, and the
parameters of the proposed method are set as follows: µ1 =
0.025, µ2 = 0.004, λ1 = 0.01, and λ2 = 0.0002. When dealing
with the images shown in Fig. 2, each method is employed
10 times and, to compare the speeds, the average times are
recorded in TABLE I. All the BID methods are executed
on a notebook computer equipped with the Windows 7 (64-
bit) operating system, MATLAB R2012a (64-bit), Intel Core
i5-4258U @ 2.40 GHz, and 4 GB RAM.

Experiments on Images in Database [24]. The first group
of deblurring tests is carried out on a database which contains
32 grayscale images. These images are generated from four
sharp benchmark images, shown in Figs. 1(a)-1(d). Each of
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the sharp images is blurred with eight different types of
kernels, illustrated in Figs. 1(e)-1(l). In the coarse-to-fine
procedure, we initialize the sizes of the blur kernels to 3× 3
and gradually enlarge the sizes to their real values. Eight
blurry versions of each sharp image in database [24] are
processed by the four BID methods, and the resulting average
PSNR values are presented in the histograms in Fig. 3. PSNR
is adopted as the objective quantitative criterion of output
quality to compare the abilities of the four BID methods. Fig.
3 shows clearly that, when restoring the images in database
[24], the proposed method results in the best image quality
compared to the other three methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1: Sharp Images and Blur Kernels in Database [24]

Experiments on Images in Database [25]. The second
group of deblurring tests are performed on a database con-
taining synthetic blurry color images. In the coarse-to-fine
procedure, we update the sizes of the blur kernels in order:
5 × 5, 9 × 9, 13 × 13, 17 × 17, 21 × 21, 25 × 25 and
31× 31. PSNR is also adopted as the objective quantitative
criterion of output quality for comparisons, to be utilized
after the synthetic blurry images demonstrated in Figs. 2(a)
and 2(b) are deblurred. As shown in Tables I and II, the
proposed method achieved superior results (i.e., the highest
PSNR values) and had the lowest computation time among
the four BID methods. This can be visually verified by Fig.
4. When dealing with the synthetic blurry images in Figs.
2(a)-2(b), method [10] only removes part of the blur, and the
residual blur negatively influences the visual quality of the
deblurred images. Method [13] eliminates the blur in Figs.
2(a)-2(b) well, but it provides oversmooth outputs, erasing
some key details. Except for missing a few small details,
method [4] recovers more visually pleasing synthetic images
than method [13] and benefits from edge enhancement. The
proposed method obtained clearer reconstructions of the
synthetic blurry images, displaying sharper edges and fewer
ring artifacts than its three alternatives.

Experiments on Images in Database [26]. The third

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 2: Blurry Images from Databases [25] and [26]: (a) to
(b) Synthetic Blurry Images; (c) to (j) Real-World Blurry

Images

group of deblurring tests is carried out on a database con-
taining real-world blurry color images. In the coarse-to-fine
procedure, we update the sizes of the blur kernel in the same
manner as that in the second group of experiments. As the
corresponding ground truth images for the real-world blurry
images are unknown, their deblurred results are directly and
qualitatively compared and analyzed. As shown in Figs. 5-8,
when handling real-world blurry images, conclusive results
somewhat differ from the types of results described above.
Method [10] fails to remove the most visible blur, which
results in notable ring artifacts at the edges of the output.
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Fig. 3: Average PSNR Values Obtained from Handling the Blurry Images in Database [24]

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Restored Sharp Images from Synthetic Blurry Images in Figs. 2(a)-2(b): (a) to (b) Outputs of Method [10]; (c) to
(d) Outputs of Method [13]; (e) to (f) Outputs of Method [4]; (g) to (h) Outputs of the Proposed Method

These are shown clearly in Fig. 6(c), Fig. 8(a) and so on.
Thus, in the visual sense, its results are inferior to those
of the other three methods. Since some of the edges are
smoothed out, the real-world sharp images estimated by
method [13] seem less natural. Moreover, in Figs. 6(g), Fig.
8(h) and so on, unpleasing blurry edges can be observed.
Although method [4] recovers more natural-looking real-
world images in contrast to method [13], the residual blur
is still visible, as illustrated by Fig. 6(k), Fig. 8(i) and so
on. Comparing the images in Figs. 5-8 and the computation
times reported in TABLE I, among the four BID methods,
the proposed method provides the most visually satisfying
output results in the least amount of time. The results have
clearer edges, fewer ring artifacts, brighter tones and finer
details. To experimentally analyze the convergence of the
proposed method, the evolving curves of the cost function
when reconstructing sharp images are plotted in Fig. 9.
As demonstrated by this figure, the values of cost function

keep decreasing with iteration, indicating that the proposed
method converges.

IV. CONCLUSION

This study presents an efficient BID method that divides
the work of deblurring into two stages. In the first stage, blur
estimation was equated to a regularized minimization prob-
lem with constraints. The split Bregman method, FFTs, and a
hard shrinkage approach were combined to resolve the blur
estimation problem in a coarse-to-fine updating procedure.
In the second stage, since the blur kernel was known, the
reconstruction of the sharp image was treated as an image
deconvolution problem and represented by the classic TV-
regularized model. An efficient classic method based on half-
quadratic regularization was employed to resolve the image
deconvolution problem. In the experimental section, a set of
synthetic blurry images and real-world blurry images were
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Fig. 5: Processing Results for the Blurry Images in Figs. 2(c)-2(f): (a) to (d) Outputs of Method [10]; (e) to (h) Outputs
of Method [13]; (i) to (l) Outputs of Method [4]; (m) to (p) Outputs of the Proposed Method

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 6: Local Regions of the Reconstructed Sharp Images in Fig. 5: (a) to (d) Local Regions of the Outputs of Method
[10]; (e) to (h) Local Regions of the Outputs of Method [13]; (i) to (l) Local Regions of the Outputs of Method [4]; (m)

to (p) Local Regions of the Outputs of the Proposed Method

TABLE I: Average Time (seconds) for Dealing with the Blurry Images in Fig. 2

Methods Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d) Fig. 2(e) Fig. 2(f) Fig. 2(g) Fig. 2(h) Fig. 2(i) Fig. 2(j)
[10] 6291.44 6219.64 8314.26 4776.20 4005.39 9496.43 7673.92 6013.82 3118.42 2578.63

[13] 654.55 674.43 765.56 613.69 399.02 621.33 651.60 285.17 217.67 156.83

[4] 305.69 314.85 980.08 475.63 159.85 1140.50 305.88 382.05 121.37 300.41

Proposed 284.26 263.87 277.90 216.50 141.22 395.52 139.87 206.37 115.49 109.89

deblurred by the proposed method and three similar state-of-
the-art methods. The experimental results demonstrated that
the proposed method accomplished deblurring tasks more
quickly and accurately than the three alternatives.
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