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Abstract—One problem in cloud computing system is how to
conceal individual information. Although encryption technology
is one of methods to solve the problem, the computation
time required for encryption and decryption as the amount
of data increases is a bottleneck. On the other hand, the secret
processing of SMC, by reducing the amount of data processed
by partitioning data, achieves confidentiality and speeding up.
Compared with encryption technology, SMC can realize high-
speed and secret processing, but in order to perform it many
servers are required. Therefore, an easily method using SMC
and simple encryption has been proposed. Several algorithms
related to supervised, unsupervised and reinforcement learning
have been proposed so far as the methods of SMC on machine
learning. Since there is no learning data in reinforcement
learning, the result is obtained on the client without informing
the solution system (parameter) to any server. Algorithms for Q
learning and PS learning in digital model have been proposed
so far but no results on analog model have been obtained yet.

In this paper, an algorithm of Q learning in analog model is
proposed. Moreover, the effectiveness of the result is shown by
numerical simulation. of this column.

Index Terms—cloud computing, secure multiparty computa-
tion, Q-learning, analog model.

I. INTRODUCTION

W ITH increasing interest in Artificial Intelligence (AI),
many studies have been made with Machine Learn-

ing (ML). With ML, the supervised, the unsupervised and
Reinforcement Learning (RL) are well known. Recently, the
importance of RL in AI is increasing with the advancement
of learning. Due to respond to the increase in the amount
of data or complex problems for ML, the use of cloud
computing systems is spreading. The development of cloud
computing allows the use such as big data analysis to analyze
enormous information accumulated by the client, and to
create market value of data [1]–[6]. On the other hand,
the client of cloud computing system cannot escape from
anxiety about the possibility of information being abused
or leaked. In order to solve the problem, data processing
methods can be considered such as cryptographic one [1],
[2]. However, data encryption system requires both encryp-
tion and decryption for requests of client or user, so much
time is required for transformation of data. Therefore, safe
systems for distributed processing with secure data attract
attention, and a lot of studies with them have been done. It
is known that SMC’s idea of distributing learning data among
multiple servers is one method to realize this [3], [4]. As for
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SMC, many methods of learning by sharing learning data
into subsets have been proposed [3]–[6]. Then, in the case
where learning data does not exist explicitly like RL, how
should it be done? We have proposed an applicable model
also in this case. The idea is to divide not only learning data
but also learning parameters, find partial solutions at each
server, combine them and make it the solution of the system
[8]. Based on this idea, some algorithms for RL of SMC are
already proposed in previous papers [9], [10]. However, they
were methods using the digital model. On the other hand,
solutions to analog model are desired in the real world [11],
[12], [15]. It seems that the latter gives a solution closer to
the optimal solution than the former.

In this paper, SMC algorithms for Q-learning are proposed
in the analog model and their effectiveness using numerical
simulations is shown. The idea is that in the digital model,
only one action is selected at each time, whereas in the
analog model it is decided as a sum of weighted vectors of
actions. In Section 2, cloud computing system, related works
on SMC and how to share the data used in this paper is
explained. Further, a Q-learning method in the analog model
is introduced. In Section 3, two Q-learning methods in the
analog model for SMC are proposed. In section 4, numerical
simulations for a maze problem are performed to show the
performance of proposed methods.

II. PRELIMINARY

A. Cloud system and related works with SMC

The system used in this paper is composed of a client and
m servers. Each data is divided into m pieces of numbers
and is sent to each server (See Fig.1 for m = 2). Each
server performs its computation and sends the computation
result to the client. The client can get the result using them.
If the result is not obtained by one processing, then the
multiple processing is repeated. As for the cloud system,
there are many methods of secure preserving, but it seems
that SMC method using distributed processing is suitable for
the system. In particular, three types of conventional methods
for partitioning data to be securely shared are well known
[3], [4]. They are known as horizontal, vertical and arbitrary
partitioning methods. In the following, three methods are
only explained easily by using a data example of students’
marks shown in Table I. See Miyajima [8] about the detailed
explanation. In Table I, a and b are original data (marks) and
ID is the identifier of student. The number of servers is two.
The assumed task is to calculate the average of data for each
subject.

The horizontal partitioning method assigns the horizon-
tally partitioned data to servers as follows :

Server 1 : data for ID = 1, 2
Server 2 : data for ID = 3, 4
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TABLE I
CONCEPT OF HORIZONTALLY AND VERTICALLY PARTITIONED METHODS

COMPOSED OF ONE CLIENT AND TWO SERVERS.

In the method, Server 1 computes two averages for sub-
jects A and B as (22+ 24)/2 and (32+ 37)/2, respectively.
Likewise, Server 2 computes two averages for subjects A
and B as (40+13)/2 and (40+45)/2, respectively. Servers
1 and 2 send calculated averages to the client and the
client obtains the averages of subjects A and B as 24.75
and 38.5, respectively. Since each server cannot know half
of the dataset, the method preserves security (or privacy).
Remark that each server also cannot know the result when
we consider average values as unknown parameters.

The vertical partitioning method is one of processing data
for each subject (See Table I). All the dataset are divided
into two servers, Server 1 and 2, as follows:

Server 1: dataset for subject A,
Server 2: dataset for subject B.
In this case, two averages with subsets A and B for Server

1 are computed as (22+24+40+13)/4 and (32+37+40+
45)/4, respectively. As a result, two averages for subset A
and B are 24.75 and 38.5, respectively. Each server cannot
know half of the dataset, so security preserving holds.

The third method, the arbitrary partitioning method, splits
horizontally and vertically the dataset into multiple parts, and
the method assigns the split parts to the servers.

For any of the above mentioned methods, if the number
of servers is fewer, that is, the size of a partitioned data is
larger, any server may more easily guess the feature of all
the data from its own subset of data. Therefore, the methods
need a large number of servers in order to keep security.
On the other hand, the method explained in the next section
divides each item of data and seems to keep it even in the
case of a small number of servers.

B. Secure divided data for SMC and their application to
machine learning

Let us explain secure divided data for the proposed method
using Table II [8]. Let a and b be two marks and m = 2 (See
Fig.1). Assume that the addition form is used for dividing
each item. For example, two marks a and b are divided into
two real numbers as a = a1+a2 and b = b1+ b2 as follows:
a = a1 + a2 : a1 = 1(r1/10), a2 = a(1− r1/10)
b = b1 + b2 : b1 = b(r1/10) and b2 = b(1− r1/10)
where r1 is a real random number for −9≤r1≤9. If r1 = −1,
then a1 = 0.2 and a2 = −2.2 are obtained. Remark that
Server 1 and Server 2 have all the data in column-wise of
a1 and b1 and a2 and b2 for each ID as shown in Table II,
respectively.

Let us explain how to compute the average for subject A
using data a. Server 1 and Server 2 compute the average of

Fig. 1. An example of secure shared data for m = 2.

TABLE II
DATA FOR SERVER 1 AND SERVER 2.

Additional form
ID subject A subject B a b

a b r1 a1 a2 b1 b2

1 -2 -6 -1 0.2 -2.2 0.6 -6.6
2 -8 2 -6 4.8 -12.8 -1.2 3.2
3 1 -9 5 0.5 0.5 -4.5 -4.5

Server 1 1.8 -1.7
Server 2 -4.8 -2.6
average -3 -4.3

a1 and a2, respectively. In this case, each average in column-
wise for a1 and a2 is 1.8 and −4.8, respectively. As a result,
the average is obtained as −3 from 1.8− 4.8.

Remark that each data for server is randomized and the
method does not need to use complicated computation as the
encryption system.

Let us explain about the application of secure divided data
to ML. In the conventional methods, the set of learning data
for ML is shared into some subsets. On the other hand,
the proposed one divides each item of the learning data
into plural pieces and processes them. From the point of
view, SMC algorithms for supervised learning such as BP
method and unsupervised learning like k-means method were
proposed [8]. Then, how is the algorithm of RL for SMC?
In this case, as there do not exist learning data explicitly,
the solution is obtained by repeating trial and error. Since
there is no data for learning, it seems that the conventional
method using subset of learning data is difficult to use. On
the other hand, several methods on security preserving for
RL have been proposed, but these are almost all methods
using encryption and homomorphic mapping [13], [14]. The
proposed method attempts to realize SMC by simple secret
computation processing which does not use such complicated
cryptographic processing and homomorphic mapping. That
is, the aim to reduce the computational complexity of client
while keeping the secret of data (Q-value information in
this case). In previous papers, we have already proposed
Q-learning and PS methods for SMC in the digital model
[9], [10]. In the next section, learning methods using secure
divided data in the analog model are proposed.

C. Q-learning methods in the digital and analog models

First, let us explain about the Q-learning algorithm in the
digital model. The Q-learning is one of RL techniques for
environment-identity type [11]. It can be used to find an
optimal action-selection policy for a given Markov Decision
Process (MDP). In solving problems using Q-learning, it is
determined how the agent selects an action at any state. It
is performed by learning an action-value (Q-value) function
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that gives the expected utility of taking the action for the
current state [11], [12], [15]. The Q-value function is defined
as a function Q : S×A→R, where S, A and R are sets
of states, actions and real numbers, respectively. First, let
all Q-values be 0. Then each action for a state is selected
randomly. Boltzmann or ε-greedy method is used as the
method selected data randomly as shown later. If a desired
solution for the problem is not obtained, learning is iterated.
In the Q-learning, the action is selected based on the Q-
value function. If a solution is obtained, Q-values are updated
based on the updated formula. By iterating these process, it
is known that Q-value function is converges [11]. In the first
part of learning, the action for the state is selected randomly
and the action becomes decidable as learning steps proceed.

In learning step, Q-value function is updated as

Q(s, a)←Q(s, a) + α△ (1)
△ = r + γmax

a′∈A
Q(s′, a′)−Q(s,a) (2)

where r, α and γ are the reward, learning constant and dis-
count rate, respectively. The state s′ is the next state selected
for the state s and the action a. The term maxa′∈A Q(s′,a′)
means the Q-value Q(s′,a′

0) for an action a′
0 taking the

maximum number of Q(s′,a′). See the Ref. [9] about the
example of Q-learning in the digital model.

Let us think about the analog model of Q-learning. Let
us explain using an example of maze problem to make the
story easy to understand. The problem is how the agent can
find the shortest path to the goal from the start point. In
the digital model, one of actions at each position is selected.
Therefore, the path obtained as the result of learning becomes
a zigzag path as behavior. However, in the real problem, it is
desirable to get smooth path. An analog model is proposed as
a model to realize all directions for behavior (action). Several
methods have been proposed for Q-learning for the analog
model. Here, we introduce a learning method that determines
the action based on the distance between the current position
and state (position) of the agent. That is, while hard selection
of the action in the digital model is performed, the method
of the analog model achieves a soft matching selection for
the action. Let us explain how to select the action of Q-
learning in the analog model using Fig.2. Assign n states
(the center position c) in the space where the agent moves.
Let |A| = M .

Let d be the current position of the agent. First, the
distance Dj(d) between d and the center position cj of each
state for 1≤j≤n is computed as follows:

Dj(d) = exp

(
−||d− cj ||2

2b2j

)
(3)

where exp(·) means the Gauss function with the width bj .
Remark that the distance Dj(d) is large if the distance
between d and cj is near.

Next, the action a∗
j for each state sj is selected as the

action with the maximum number of Q-value (See Fig.2(a))
and the degree µj of coincide between d and sj is computed
as follows:

µj(d) =
Dj(d)∑n
i=1 Di(d)

for 1≤j≤n (4)

(a) Calculation of action a∗.

(b) An example of the action determination at the position
d for M = 2.

Fig. 2. The method to determine the action in the analog model.

and
n∑

j=1

µj(d) = 1 (5)

Further, the action a∗ for the agent is determined as the
composition of vectors as follow:

a∗ =
n∑

j=1

µja
∗
j (6)

For example, let us show an example with M = 2. Assume
that a∗

1 with µ1(d) = 0.8 and a∗
2 with µ2(d) = 0.4 are

selected as the upper and the right direction, respectively.
Then, the result is shown as the composition of two vectors
as Fig.2(b).

As a result, the agent at the position d moves in the
direction of a∗ and arrives at the new position d′. In this
case, the moving distance of the agent is selected randomly.

The conventional algorithm for Q-learning is shown as
follows :
[Q-learning algorithm for the analog model]
d : the current position.
d0 : the initial position.
Q(s,a) : Q-value for the state s and the action a.
S : The set of states.
A : The set of actions.
tmax : The maximum number of learning time.
Tmax and Tmin: Constants for Boltzmann selection.
cj : The center position of the state sj for 1≤j≤n.
Dj(d) : The distance between the state sj and the place d
for Eq.3.
ε : The probability for ε-greedy selection method.
p : The real number selected randomly from the interval
0≤p≤1.
Step 1

Let R+ and R−, α and γ be plus and minus reward,
learning constant and discount rate. Let S and A be defined.
Let Q(s,a) = 0 for s∈S and a∈A. Let t = 0. (Let ε be
defined for ε-greedy selection method.)
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Step 2
Let d←d0 be the start position.

Step 3
The distance Dj(d) and the degree µj for 1≤j≤n are

computed from Eqs.3 and 4.
Step 4 (In the case of Boltzmann selection method)

The action a∗
j at the state sj is selected based on the value

B(sj ,a) as follows :

B(sj , a) =
exp (Q(sj ,a)/T (t))∑
b∈A exp (Q(sj , b)/T (t))

(7)

T (t) = Tmax×
(
Tmin

Tmax

) t
Tmax

(8)

Let a∗
j be the selected action using Eqs.7 and 8.

That is, the action a∗
j from the set A is selected with the

probability B(sj ,a). It means that the selection becomes
from random decidable as the time increase.
Step 5

The action a∗ at the place d is computed using Eq.6.
Let d′ be the next position determined from the action a∗.

Step 6
Each value of Q(sj ,a

∗
j ) for the state sj and the action a∗

j

is updated as follows :

Q(sj ,a
∗
j )←Q(sj ,a

∗
j ) + µjα(r +△) (9)

△ =

n∑
j=1

{γµ′
j max
a′
j
∈A

Q(s′j , a
′
j)− µjQ(sj , a

∗
j )} (10)

, where µ′
j , s′j and a′j are parameters for d′ and if d′ is in

the goal area, then r = R+ and go to Step 7 else if d′ is not
in the movable place(state), then r = R− and go to Step 3
else r = 0 and go to Step 3.
Step 7

If t = tmax then the algorithm terminates else go to Step
3 with t←t+ 1.

If the ε-greedy method is used instead of Boltzmann
selection, Step 4 is replaced with the following Step 4’ :
Step 4’(In the case of the ε-greedy selection method)

Let p be the real number randomly selected. The action
a∗j for the state sj is selected based on ε-greedy selection as
follows :

a∗
j =

{
a s.t. maxa∈A Q(sj ,a) for p≥ε (a)
randomly selected for otherwise (b)

(11)

That is, if p is greater than or equal to ε, then the action
a∗
j satisfying the condition of Eq.11(a) is selected otherwise

the action a∗
j is randomly selected.

The method means that the selected method becomes
randomly if ε is large and the selected method becomes
decidable if ε is small.

III. Q-LEARNING FOR SECURE MULTIPARTY
COMPUTATION IN THE ANALOG MODEL

In Q-learning for SMC on cloud system, Q-values are
divided to each server in addition form . Each server updates
divided Q-values and sends the result to the client. The client
can get new Q-values by adding the results of m servers. The
process is iterated until the evaluating value for the problem
satisfies the final condition. The problem is how Q-values on
the client are updated using Q-values divided on each server.
The divided representation of Q-value is given as follows :

Q(s,a) =
m∑

k=1

Qk(s,a) for s∈S and a∈A (12)

In the following, two learning methods are proposed.
The proposed methods can be easily applied to other Q-

learning algorithms in the analog model.

A. Q-learning for SMC

The first algorithm using Boltzmann (ε-greedy) selection
method is shown in Table III. The initial values of client
and servers are set in Initializing Step. In Step 1, the initial
position is set. In Step 2, the distance Dj(d) and the degree
µi for the current position d and each center position cj of
state sj for 1≤j≤n are computed. In Step 3, the action a∗

j for
the state sj is selected based on Boltzmann selection method.
Further, the next action a∗ is determined as the vector sum
of a∗

j for 1≤j≤n and the new position d′ is obtained from
the action a∗. Furthermore, the degree µj

′ of coincide for the
position d′ is computed from d′ and sj (1≤j≤n). In Step
4, the updating rate △k

b for b∈A and 1≤k≤m is computed
in each server. In Step 5, the updating rate △∗ is computed
using △k

b for b∈A and 1≤k≤m. Further, the updating rate
ξk for each server is determined using βk(sj ,a

∗
j ) and △∗.

It means to divide △∗ into m pieces of numbers. In Step 6,
the Q-value Qk(sj ,a

∗
j ) for each server is updated. In Steps

7 and 8, it is checked if the final condition satisfied or not.
If the final condition is not satisfied, then the next episode
is iterated. The algorithm is called M1 method.

B. Q-learning with dummy updating

In M1 method, designated Q-values are updated based on
µj for 1≤j≤n. Therefore, there is the possibility that the
server knows information on which Q-value is important. In
order not to inform the server of the update information,
an improved method with dummy updating is proposed in
which all the Q-values are updated.

The fundamental idea of Q-learning with dummy updating
is that all Q-values are updated at each step. Therefore, it
seems that each server cannot know which Q-value is im-
portant or not. Let us explain the improved M1 method. The
number pk(s,a) is randomly selected such that |pk(s,a)|≤1
and ηk(s,a) is calculated as follows :

ηk(s,a) =


pk(s,a)∑m

l=1
pl(s,a)

for s = sj and a = a∗
j (A)

for 1≤j≤n
pk(s,a)∑m

l=1
pl(s,a)

− 1
m for otherwise (B)

(13)
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TABLE III
M1 METHOD OF Q-LEARNING FOR SMC.

Client k-th Server (1≤k≤m)
Initialization The numbers R+, R−, r, α and γ are given. Let t = 0. Let Qk(s, a) = 0 for s∈S and a∈A.
Step 1 Let d←d0.
Step 2 Calculate Dj(d) and µj for d and cj(1≤j≤n).
Step 3 Send all Q-values Qk(s,a) for s∈S and a∈A to the client.
Step 4 Calculate Q(s,a) =

∑m

k=1
Qk(s,a) for s∈S and a∈A.

Select the action s∗j for the state sj based on Boltzmann
selection of Eq.(7). Let a∗ =

∑n

j=1
µja

∗
j be the vector

sum of a∗
j (1≤j≤n). Let d′ be the next position determined

by a∗. The degree µ′
j of coincide between d′ and sj for

1≤j≤n is computed.
Step 5 If the position d′ is possible(movable), then send the degree

µj for 1≤j≤n to each server else go to Step 4.
Step 6 Calculate △k

b = rµ′
jQk(s

′
j , b)− µjQk(sj , a

∗
j ) for 1≤j≤n

and send them to client.
Step 7 Calculate △b =

∑n

k=1
△k

b and △∗ = r +maxb∈A△b

and send r +△∗ to all servers, where r = R+, R− and
0 if d′ is in goal, not in movable position and otherwise,
respectively.

Step 8 Select m pieces of random numbers βk(s, a)
s.t.
∑m

k=1
βk(s, a) = 1. Let ξk = αβk(sj , aj)△∗ for

1≤k≤m. Send ξk for 1≤k≤m to each server.
Step 9 The Q-value Qk(sj , a

∗
j ) is updated as follows :

Qk(sj , a
∗
j )←Qk(sj , a

∗
j ) + µjξk

Step 10 If d′ is in goal state, then go to
Step 11 else go to Step 2 with d←d′.

Step 11 It t = tmax then the algorithm terminates
else go to Step 1 with t←t+ 1.

Fig. 3. The figure for the maze problem.

where s = sj and a = a∗
j for 1≤j≤n are selected states

and actions.
Remark that each case of A and B for Eq.13 holds∑m
k=1 ηk(s,a) = 1 and 0 for s∈S and a∈A, respectively.

That is, all Q-values for states and actions are randomly
updated using pk(s,a) and each server cannot know which
Q-value is import or not at each step.

The second algorithm using Boltzmann(ε-greedy) selec-
tion method is shown in Table IV. The algorithm is called
M2 method.

IV. NUMERICAL SIMULATIONS FOR THE PROPOSED
ALGORITHMS

In numerical simulations, the problem is to find the short-
est path for the agent from the start position to goal area
by Q-learning methods (See Fig.3). In Fig.3, the agent can
go to any position except for black and outer areas. In order
to find the shortest path, the agent iterates trial and error to
move from the start to goal area based on each algorithm.
The simulation conditions are as follows:

1) Let the start position d0 = (1, 1), black(wall) area
B = {(x1, x2)∈R2|4≤x1, x2≤6} and the goal area
{(x1, x2)∈R2|9≤x1, x2≤10}, where R is the set of all real
numbers.
2) Let A = {0, π

2 , π,
3π
2 } and the set of central positions

C(S) = {(x1, x2)∈Z2|1≤x1, x2≤9}−B, where each of the
set A means four directions up, down, right and left in Fig.3,
and Z is the set of all integers. Let n = |C(S)|. The states
are set as a lattice pattern at regular intervals.
3) Let Tmax = 5.0 and Tmin = 0.03 for Boltzman selection
and ε = 0.1 for ε-greedy selection.
4) The moving distance h for the agent at each position
d is selected randomly for 0.01≤h≤0.5 and the action is
determined by each algorithm.
5) If the agent selects to move to wall or outer area, the
agent ignores the selection and reselects a new action, where
r = −1 is given as the negative reward. It is not counted in
the number of trials.
6) If the agent arrives at the goal area in the maximum
number of learning time, then the agent starts the new trial,
where the reward r = 1 is added to Q-value as the positive
reward.
7) Let tmax = 10000, r = 10, α = 0.5, γ = 0.92, and m = 3
and 10. Twenty trials for learning and test are performed for
each algorithm.
8) In the test simulation, experiments are carried out with
five positions as the starting points as shown in Fig.3. The
result is evaluated as the rate of the number of successful
trials and the average of moving distance from each starting
point to goal area.

Figs.4 and 5 show the efficiency graphs. They represent
the moving distance to the learning time. In Figs.4 and 5,
the conventional (ε-greedy or Boltzmann), M1 for m = 3
and 10, and, M2 for m = 3 and 10 mean the conventional
algorithm with ε-greedy or Boltzmann as selection method,
proposed algorithms for M1 with m = 3 and 10, and for M2
with m = 3 and 10, respectively. All the results are almost

IAENG International Journal of Computer Science, 45:4, IJCS_45_4_14

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



TABLE IV
M2 METHOD OF Q-LEARNING FOR SMC.

Client k-th Server (1≤k≤m)
Initialization The numbers R+, R−, r, α and γ are given. Let t = 0. Let Qk(s, a) = 0 for s∈S and a∈A.
Step 1 Let d←d0.
Step 2 Calculate Dj(d) and µj for d and cj(1≤j≤n).
Step 3 Send all Q-values Qk(s,a) for s∈S and a∈A to the client.
Step 4 Calculate Q(s,a) =

∑m

k=1
Qk(s,a) for s∈S and a∈A.

Select the action s∗j for the state sj based on Boltzmann
selection of Eq.(7). Let a∗ =

∑n

j=1
µja

∗
j be the vector

sum of a∗
j (1≤j≤n). Let d′ be the next position determined

by a∗. The degree µ′
j of coincide between d′ and sj for

1≤j≤n is computed.
Step 5 If the position d′ is possible(movable), then send the degree

µj and µj for 1≤j≤n to each server else go to Step 4.
Step 6 Calculate △k

b = rµ′
jQk(s

′
j , b)− µjQk(sj , a

∗
j ) for 1≤j≤n

and send them to client.
Step 7 Calculate △b =

∑n

k=1
△k

b and △∗ = r +maxb∈A△b

and send r +△∗ to all servers, where r = R+, R− and
0 if d′ is in goal, not in movable position and otherwise,
respectively.

Step 8 Select m pieces of random numbers pk(s,a) s.t. |pk(s,a)|≤1.
Calculate ηk(s,a) of Eq.(13) for s∈S and a∈A. Let
ξk = αηk(s,a)△∗ for 1≤k≤m. Send ξk for 1≤k≤m
to each server.

Step 9 The Q-value Qk(sj , ai) is updated as follows :
Qk(sj , ai)←Qk(sj , ai) + µjξk

Step 10 If d′ is in goal state, then go to
Step 11 else go to Step 2 with d←d′.

Step 11 It t = tmax then the algorithm terminates
else go to Step 1 with t←t+ 1.

the same as the conventional cases. Tables V and VI show the
results of the test simulations, where Tests 1 to 5 mean the
cases with different starting points as shown in Fig.3. In each
Table, No. Suc. and M.D. mean the number of successful
trials for twenty trials and the average of moving distance for
successful trials. Further, the result on each server means one
in the cases where the same trials are performed using only
Q-values of each server. For example, 0.95 of No.success
and 9.83 of M.D. for Test 1 of client in the conventional
method mean 19/20 and 9.83 steps as the average for 20
trials to the goal from the start point of Test 1 in Table V.
All the results for client of M1 and M2 methods are almost
the same as the conventional ones. As for servers, trials only
using server’s information are almost unsuccessful and a lot
of times are needed even in the successful cases.

Finally, let us explain about the result of selection methods.
As shown in Figs. 4 and 5, the ε-greedy method is superior in
learning time to Boltzmann method. But, Boltzmann method
is superior in accuracy of the test simulation to ε-greedy
method as shown in Tables V and VI.

V. CONCLUSION

In this paper, Q-learning algorithms in the analog model
for SMC were proposed and the effectiveness of them
were shown in numerical simulations. In Section 2, cloud
computing system, related works on SMC and a secure
data dividing mechanism used in this paper were explained.
Further, Q-learning methods in the digital and analog models
were introduced. In Section 3, Q-learning methods in the
analog model for SMC were proposed. First, a Q-learning
algorithm in the analog model was proposed using divided
Q-values and the effectiveness was shown. The feature of
Q-learning method for the analog model was that the action
was selected as the weighted sum of plural actions. In

Fig. 4. The result of efficiency for M1 method of Q-learning for SMC.

Fig. 5. The result of efficiency for M2 method of Q-learning for SMC.
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TABLE V
THE RESULT OF OPTIMALITY OF Q-LEARNING FOR BOLTZMANN SELECTION.

Test 1 Test 2 Test 3 Test 4 Test 5
No.Suc. M.D. No.Suc. M.D No.Suc. M.D No.Suc. M.D No.Suc. M.D

Conventional Client 0.95 9.83 1.0 9.62 1.0 5.71 1.0 11.06 0.95 12.75
(m = 3) Client 1.0 10.75 1.0 9.70 1.0 7.00 1.0 11.20 0.95 11.95

M1 Server 1∼10 0.05 0 0.13 0.10 0.05
(m = 10) Client 0.95 10.31 1.0 10.17 1.0 5.66 1.0 11.24 1.0 11.47

Server 1∼10 0 0 0.05 0 0
(m = 3) Client 0.95 9.75 1.0 9.34 0.95 5.34 1.0 11.23 1.0 18.46

M2 Server 1∼10 0 0 0.05 0.05 0.05
(m = 10) Client 1.0 10.32 1.0 9.83 1.0 5.29 1.0 10.72 1.0 11.46

Server 1∼10 0 0.05 0.025 0.05 0.05

TABLE VI
THE RESULT OF OPTIMALITY OF Q-LEARNING FOR ε-GREEDY SELECTION.

Test 1 Test 2 Test 3 Test 4 Test 5
No.Suc. M.D. No.Suc. M.D No.Suc. M.D No.Suc. M.D No.Suc. M.D

Conventional Client 0.65 8.89 0.95 11.39 0.95 5.39 0.95 10.33 0.70 19.93
(m = 3) Client 0.75 9.80 1.0 10.09 1.0 5.88 1.0 11.97 0.80 18.07

M1 Server 1∼10 0.03 0 0.08 0.03 0
(m = 10) Client 0.80 9.49 0.9 11.33 1.0 5.94 0.95 11.41 0.85 20.40

Server 1∼10 0.02 0.02 0.12 0.01 0.02
(m = 3) Client 0.80 9.43 0.85 11.10 0.95 5.27 1.0 10.79 0.75 27.80

M2 Server 1∼10 0 0 0 0 0
(m = 10) Client 0.85 10.78 0.95 11.36 1.0 5.21 0.8 10.31 0.75 11.05

Server 1∼10 0 0 0 0 0

the proposed algorithm, there was the possibility that some
servers know secure computation. Therefore, an improved
Q-learning algorithm in the analog model was proposed. It
was the method with dummy updating and it seems that any
server is difficult to know secure computation. In section 4,
numerical simulations for a maze problem were performed
to show the performance of proposed methods. In the future,
we will reduce the computational complexity of the client
and show the safety of algorithms for SMC in theoretical
proof.
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