
 

 

 

Abstract--Mobile robots, when navigating in diverse 

environments, rely on solutions to trajectory generation 

problems for achieving the best path. One of those solutions is a 

heuristic method named Particle Swarm Optimization (PSO). 

In a previous study, by using such method, the mobile robot 

could find the best route towards the target without collision; 

moreover, PSO offers the benefits of simplicity, ease of 

implementation, and few parameters to regulate. However, the 

original PSO algorithm cannot guarantee the optimal solution. 

Local optima still occur, especially in complex and dynamic 

environments, due to premature convergence. This causes 

mobile robot collisions with obstacles and generates a long path 

to the target. In the present study, in order to overcome the 

problem of premature convergence, dynamic PSO (DPSO) was 

developed by using a dynamic inertia function to set parameters 

to accelerate convergence and re-initialize particles.  The DPSO 

was analytically compared with two other algorithms, namely 

the original PSO (OPSO) and the Gaussian PSO (GPSO). 

Finally, the proposed DPSO is combined with Fuzzy Logic for 

obtaining the best control of leader-follower system. In the 

results, the proposed DPSO algorithm produced the optimum 

solution faster with convergence of less than 150 iterations for 

static obstacles and 200 iterations for moving obstacles, 4% 

shorter traveled lengths, 13% more smoothness, fast processing 

and guaranteed avoidance of collisions, and stable movement in 

reaching the target. When the proposed DPSO is combined with 

Fuzzy Logic, it can improve leader-follower performance in 

terms of trajectory control, time traveled to the target, and 

times response in several environmental conditions. 

 

Index Terms--Route Optimization, Non-holonomic, 

Leader-Follower, Particle Swarm Optimization 

I. INTRODUCTION 

 A distributed robot’s coordination and control in a group 

has attracted many researchers over the past few years. One 

of many research topics is the problem of coordination 

between robots in controlling their formation in some 

applications such as unmanned ground robots, unmanned 

aerial robots, unmanned underwater robots, flying robots, 

and satellites [1][2][3][4][5][6]. Various strategies have been 

proposed with a variety of approaches to control the 

formation of a group of robots, including behavior-based, 

virtual structure and leader-follower control [5][6][7][8]. 
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In factory or industrial environments for example, the 

leader-follower approach has become an important 

application replacing human tasks and, thus, helping people 

to live better lives. The following task is important to the 

mobile robot, since the target can be either a static or dynamic 

object. However, there are many problems that can occur 

when designing a robot to perform a following task. These 

problems include the accuracy of tracking the robot when the 

leader is moving, the distance to avoid collisions between the 

leader and follower, and the capability to avoid obstacles 

[6][7][8]. Besides, there are also issues related to the response 

time of the follower when the leader is moving and the 

communication between them. In leader-follower 

applications, one or more robots are appointed as the leaders, 

and the others are the followers. The leader serves as the 

reference to the follower robots, who need to position 

themselves and maintain the desired relative position with 

respect to the leader [8][9][10]. In such approach, to 

determine formation maneuvers, it is necessary only to 

determine the leader's path and the desired relative position 

and orientation between the leaders and the followers. When 

the direction of the leader's movement is known, the desired 

position (distance and angle) of the followers relative to the 

leader can be achieved by using the local control of each 

follower. However, if a leader's robot fails, it can lead to the 

failure of the entire controlling process.  

Therefore, controlling the leader-follower robots in terms 

of position and orientation for achieving targets within a short 

convergence time and with high accuracy in dynamic 

environments is desirable. Under such conditions, the 

optimization route must be implemented for robotic control 

in a simple algorithm. Several optimization methods have 

been proposed [11][12], these have excellent convergence 

characteristics but they face challenges in handling the 

complex computation. In the leader-follower robotic system, 

the computational resources are important, due to the swarm 

characteristics utilize the on-board sensor and processing. 

Therefore, minimization of computational resources is a very 

important requirement. Several approaches, with good 

performance results, have been proposed and reported 

[8][13][14]. They implement leader-follower robots with 

global information for sharing. However, due to their 

complexity, the computational cost is high. When the 

algorithm is implemented in a simple robot with onboard 

sensors and processors, a major problem is incurred. 

The particle swarm optimization (PSO) algorithm is one of 

the most efficient optimization strategies for continuous 

nonlinear optimization problems based on global information 

about the environment. It can be designed with simple 

algorithms for derivation of smooth and efficient trajectories 

[15][16][17]. Unfortunately, the original PSO algorithm is 

difficult to balance between exploration and exploitation 

Bambang Tutuko, Siti Nurmaini, Saparudin, Putri Sahayu 

Route Optimization of Non-holonomic  

Leader-follower Control Using Dynamic Particle 

Swarm Optimization 

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 

mailto:beng_tutuko@gmail.com
mailto:sitinurmaini@gmail.com
mailto:sahayuputri@gmail.com


 

 

 

capabilities. To overcome this limitation, several authors 

have proposed different methods to achieve better accuracy 

and convergence [18][19][20]. Finding a proper balance 

between such two processes is considered a challenging task 

due to the stochastic nature of meta-heuristics; so, an 

improved PSO original algorithm is desirable. PSO is used to 

avoid obstacles in dynamic environments that include 

navigation and real-time motion planning issues 

[13][14][16][21][22]. Only a few researchers have proposed 

methods for multi-robot control systems, especially in the 

leader-follower configuration based on the kinematic model. 

Hence, this research is important for the purposes of 

developing motion control and route optimization for 

leader-follower robots based on the non-holonomic 

kinematic model in Cartesian representation. 

The structure of this paper is as follows. In section 2, the 

process of kinematic models using Cartesian coordinates for 

controlling the formation of two non-holonomic mobile 

robots is described. In section 3, the route optimization 

design based on PSO method is explained. Some simulation 

results are included in section 4 to verify the feasibility of the 

model and the controller. Finally, conclusions and future 

work are discussed in section 5. 

II.  LEADER-FOLLOWER KINEMATIC SYSTEM 

In this section, the Cartesian coordinates for leader-based 

formation controls explains the kinematics model. For 

simplicity, the configuration of a three-wheeled robot team is 

considered, with the left and right wheels controlled and one 

free wheel for balancing. From the illustration of the 

leader-follower robot movement in Fig. 1, the values of the 

robot movement parameters are obtained,     being world 

coordinates, and     the fixed Cartesian coordinates of the 

leader robot. The parameters         and         are the 

global positions of the leaders and followers, where the 

subscript 'L' represents the leader and the subscript 'F' 

represents the follower. Meanwhile,    is the linear velocity 

of the leader and     is the linear velocity of the follower, 

while    is the angle orientation of the leader and    is the 

angle orientation of the follower. The kinematics model of 

mobile robot representation can be described by Cartesian 

representation (     rather than polar coordinates. Due to the 

representation by polar coordinates, only a single point on the 

controller will be produced, which might degrade the 

controller's performance [23].  

We can assume that the leader and follower robot follow 

the kinematics model of a unicycle robot in the inertial frame 

(see Fig. 1(a)). The kinematics of each robot can be expressed 

as 

 

 

     
     

     

              (1) 

 

where      is the general variable of the initial position of the 

robot                      T,     is a non-holonomic 

transformation matrix, and      is a forward kinematic 

matrix that is used to estimate position and speed. 

The non-holonomic transformation of the mobile robot can 

be seen through the change of the three initial robotic position 

variables     . By solving (1) for the change in the velocity 

of the right and left wheels, the single robot kinematic 

equation can be transformed into (2) below,  
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To adjust the robot’s position and orientation from actual to 

reference, the error position (3) is used as follows:  
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(a) Single robot 

 
(b) Leader-Follower robot 

Fig.1.  Leader-Follower Kinematic System 

 

In the same way, the kinematic system of the 

leader-follower robots is generated, but the parameters that 

will be measured are the relative distance between the leader 

and the follower robot. The modeling of the leader-follower 

system has been derived directly by kinematic analysis of the 

robot follower along the x and y coordinates relative to the 

robot leader. The leader L has configuration vector 

          
  while the follower F has a vector           

 . 

The control inputs of the leader and the follower are the linear 

and angular velocities        
  and        

 , respectively. 

The relative distance between the leader and the follower 

must be determined so that they can move in the same 

trajectory. To illustrate the relative position between the 

robots in Cartesian coordinates, Fig. 1(b) is utilized to 

projected the relative distance in the x and y directions. In x-y 

Cartesian coordinates, the distance between the robot leader 

and the follower robot is  . By using the properties of 
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trigonometric functions i.e., a.b=|a| . |b| cos , the rotation 

matrix equation for the robot follower is obtained as shown in 

(4) below, 
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Based on Fig. 1, and assuming that the relative distance 

equation can be derived using the matrix rotation in (3), the 

robot leader's distance relative to the follower robot is defined 

in (5),       
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where the relative position of the follower robot in the x 

direction is    and in the y direction   , with relative 

orientation  . 

If the position of the leader robot         is determined 

and (  ,   ) are known and fixed to achieve and maintain the 

desired formation, parameter (  ,   )  must be controlled, and 

then the position with respect to the robot leader can be 

determined by controlling    →   
  (where   

  is the desired 

relative position in the x direction) and   →   
  (where   

  is 

the desired relative position in the y direction). Under normal 

conditions, the relative distance between the leader robot and 

the follower robot is   , which needs to be simultaneously 

projected to control the movement of the follower robot 

against the leader robot by using (6) to (9), as follows: 

 

  
          or,  (6) 

   
                                      (7)                        

  
          or,  (8) 

   
                                                                  (9)

             

The desired relative distance    between the robot leader 

and the follower robot is required to be constant or   =   , 

whereas the relative angle     is varied with time. Therefore, 

(7) and (8) become (10) and (11), as follows: 

 

   
       

        (10)          

   
       

      (11) (11) 

 
From (5) the model of     is as follows: 

 

                                          

            sin  +               

                                                   

                                                            (12)      

 
where    represents the linear velocity of the leader robot. 

The new state variable is defined to represent the orientation 

angle difference between the robot leader and the follower 

robot, as 

          or                                                 (13)                                     

 

If (13) is substituted into (12), it becomes (14): 

 

                                             

                                         

                                                                    (14)             

 

Due to the holonomic constraint of the mobile robot in 

(15), (14) is transformed to become (16), 

 

                                                                     (15) 

                                                                 (16)          

 

where         represents the angular velocity of the leader's 

robot, and    represents the linear velocity of follower’s 

robot. In the same way, from (11), the model of     will be 

obtained as follows: 

 

                   (17) 

 

The overall equation of the leader-follower kinematic 

model can be summarized as  
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where    is the angular velocity of the follower robot,    is 

the linear velocity of the follower robot,    is angular 

velocity of the leader robot, and    is the linear velocity the 

leader robot. By using the leader-follower approach,    and 

   are time functions that vary with input controls   and  .  

III.  DYNAMIC PARTICLE SWARM OPTIMIZATION  

Particle swarm optimization (PSO) is based on the 

behavior of a swarm of insects (e.g., ants, termites, bees) or 

birds [18][20]. The algorithm mimics the social behavior of 

such organisms. Social behavior consists of individual 

actions and the influence of other individuals in the group. 

The word "particle" denotes the individual. Each individual 

or particle behaves interconnected by using its own 

intelligence and also by being influenced by the behavior of 

its collective group [18]. Thus, if one particle finds the right 

or a short way to the target, the rest of the other group will 

also be able to follow the path immediately, even though they 

are located far away in the group. There are two kinds of PSO 

algorithm: the original PSO and the improved PSO 

[16][17][18][19]. In the original PSO (OPSO) algorithm, the 

inertial weight   ) is set at 1; thus, the convergence speed of 

particles is fast, and the adjustments of cognition and social 

components make particles search around one point. This can 

produce a local minimum condition, and the whole swarm 

will converge to this position.  However, if the inertial weight 

value as selected is about      , the whole swarm has 

difficulty jumping out of the local optimum. This 

characteristic produces a fatal weakness, because no global 

optimum (       is achieved. Hence, the dynamic inertial 

weight is desirable to regulate. 

In this paper, the PSO algorithm optimizes the 

leader-follower robots’ path to the target without collision. 

Therefore, it works not only for the optimization process, but 
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also to control the leader’s movement. The dynamic inertial 

weight is needed, due to the fact that the leader-follower 

robots move in an unstructured and dynamic environment. 

The dynamic PSO (DPSO) is created by using (19) and (20) 

below, 

 

    
          

             
      

    

           
      

                                                           (19)

  

    
        

      
                     (20) 

 

Vector                       is the best previous 

position of the ith particle that gives the best fitness value, 

named the personal best position      . Vector    

                   is the best particle among all particles 

in the population, named the global best (      . The inertial 

weight   is used to balance the global exploration as well as 

the local exploitation.    and    are random numbers 

uniformly distributed between [0,1]. The velocity      is 

restricted to the range              in order to prevent the 

particles from flying out of the solution space. The 

acceleration coefficients    and    provide for a better 

balance of search space between the local exploitation and 

the global exploration.  

In the leader-follower case, the PSO must ensure that the 

leader reaches the target and that the follower robot can 

follow the leader and maintain its formation without 

collision. In this paper, the dynamic inertial weight   and the 

learning factors    and    are improved in (21) and (22). 

 

       
      

    
               (21)  

 

The DPSO algorithm serves to control the PSO capabilities 

in local searches efficiently and to achieve convergence to 

global optimum solutions. The inertial weight   is updated to 

obtain an adaptive   value for each iteration; therefore, the 

value can be dynamic and capable of improving the expected 

optimization result. The greater the value of iteration, the   

value will be smaller, and preferably, if the iteration is still 

early, the value   will tend to be larger. If the   value gets 

larger, the particle is more focused towards exploration, but 

as it gets smaller, it is more focused towards exploitation 

[16].  1 and  2 are the acceleration coefficients or learning 

rates of a single current particle for obtainment of a better 

balance between global exploration by all particles in 

neighboring topology and local exploitation to achieve the 

best fitness. In this paper,  1 and  2 are used to find the target 

and to avoid obstacles, due to the necessity of changing the 

vector of velocity and vector position. When obstacles move, 

the robot environment changes dynamically. However, 

targets need to be found in a short period of time. In this 

paper, a dynamic linear adjustment strategy for learning 

factors is proposed. The expression is given as in (18),  

 

   
    

    
      and    

    

    
      (22) 

where             and               = final value, 

and    = c initial value 

 
If the number of iterations is increased, the cognitive ability 

of the individual is gradually reduced by improvement of the 

learning factors and improvement of the global searching 

ability of the particles. This strategy can improve particles’ 

global search ability in the whole search space at early times, 

thus helping them to converge to the global optimum in the 

end.  

IV. RESULTS AND DISCUSSION 

In this work, the OPSO and the Gaussian PSO (GPSO) are 

compared with the proposed DPSO for the above-noted 

function minimization problems of leader-follower kinematic 

control. For such purpose, about 50 particles and 1000 

maximum iterations are taken. However, the number of 

particles is not very influential to the optimum solution 

generated PSO, but it affects the speed of the process. If the 

number of particles is too small, the process can get stuck on 

the local optimum even though the processing time is very 

fast. In contrast, large numbers of particles are rarely trapped 

in a local optimum, but the process takes longer. Respective 

inertial weights and acceleration coefficients are selected for 

balancing between exploration and exploitation capabilities. 

A. Static Obstacles 

To verify the proposed algorithm, a new leader-follower 

model based on a non-holonomic system for target seeking is 

simulated. Static and dynamic obstacles are utilized in the 

testing environment. In Fig. 2(a) and (b), the leader-follower 

robots move in relation to a static obstacle to reach the target. 

The leader robot is a blue line and the follower robot is a red 

line. The two types of PSO are used to view the movement 

performance. Obstacle avoidance in passing near and 

reaching the goal on a short trajectory is performed while 

avoiding the obstacle coming from the right and deviating 

from the straight line. The leader-follower robot using the 

OPSO is able to reach the target, but the resulting trajectory is 

not smooth; thus, a long processing time is taken and large 

amounts of data are generated in reaching the target. Using 

the proposed DPSO approach, the leader-follower robot 

movement performs better, using smoother movements, 

shorter travel times, and generating less data.   

The movement of the leader robot by OPSO requires a 

fairly long route in reaching the target; therefore, the 

execution time is longer by about 29.14 sec. Conversely, if 

the movement of the robot leader by DPSO is optimized for a 

shorter route, the execution time is faster by about 13.55 sec 

while the follower robot follows the movement of the robot 

leader in a relatively equal time. Moreover, if DPSO is used, 

the movement of the leader robot is smooth, and the robots 

can choose the simplest route to the target. In addition to the 

other test environments, a rectangular environment also is 

created. The robot must move from the initial position to the 

target position, as seen in Fig. 2 (c) and (d). The robot moves 

not smoothly and with a long trajectory using the original 

PSO. The performance is not satisfactory using OPSO: the 

processing times necessary to finish the route are about 29.15 

sec for the leader and about 29.18 sec for the follower, and at 

some points of the trajectory, the leader-follower robots crash 

into a wall. Meanwhile, by using DPSO, the processing time 

is about 13.50 sec for the leader and about 13.65 sec for the 

follower, with a short and smooth trajectory. Furthermore, 

the leader and the follower robots have the ability to maintain 

their positions relative to the wall without collision.   

From the robots’ trajectories in Fig. 2 (c) and (d), it is seen 

that from the initial position, the robot leader moves in search 

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



 

 

 

of the target and manages to find it, and the success of 

reaching the target is seen from the result of the route leading 

to a point. However, the route taken by the leader-follower 

robot using the DPSO algorithm in achieving the target is 

more efficient than using the OPSO algorithm. This is due to 

the DPSO algorithm’s use of parameter control of inertial 

function and coefficient acceleration to accelerate 

convergence and produce a global solution. 

 

 
(a) OPSO                                (b) DPSO 

 
(c) OPSO       (d) DPSO 

 
Fig. 2.  Trajectory control in simple environment 

 

Using the OPSO algorithm, premature convergence 

always happens; this condition occurs when particles 

converge and particle velocity is close to zero, but no global 

solution has been found. The time taken by each robot from 

the starting point to the target using the OPSO algorithm is 

about 66 seconds, while that taken using the DPSO algorithm 

is only 31 seconds. DPSO algorithm uses inertial parameters 

that are adaptable to the environmental dynamics that are 

encountered in the course of the target search. 

In complex environments (see Fig. 3 (a) – (f)), the 

proposed DPSO produces small processing times compared 

with the OPSO and GPSO, due to its ability to change the 

positions and orientations of the leader-follower robots in an 

adaptive manner. The leader-follower robots have the ability 

to achieve the target, but especially with OPSO, they cannot 

finish the task; rather, they stop at one point and stack in the 

local minima (see Fig. 3 (a) and 3 (d)). However, when the 

GPSO and DPSO algorithms are applied in the robot, the task 

can be completed. Unfortunately, with GPSO, the 

leader-follower robots crash into the wall (see Fig. 3 (e) and 3 

(b)), but they still move to the target. But when the leader 

movement is controlled based on DPSO, the robot is able to 

reach the target without a collision, via a short route and 

within a short processing time. Such also is the case with the 

follower robot.   

The leader-follower performance in X and Y coordinates 

when moving in a complex environment can be depicted as in 

Fig. 4 (a) – (c). By OPSO, the robots can reach the target, but 

they stop moving after 40 sec. When GPSO is applied, they 

finish the task in about 47 secs, which is a poor response, due 

to their having moved in gradual steps. Their performance is 

improved when they use DPSO: the task is accomplished in 

about 22 secs, with smooth movement and shortest route. 

 

B. Moving Obstacles 

In this section, the moving obstacle is considered to be 

another robot that crosses the path of leader robot. Such 

obstacles are used to test the robot leader's ability in a 

dynamic environment. The presence of a moving obstacle 

causes the issue of path search to be a matter of dynamic 

optimization. Path search with the dynamic optimization 

approach has a higher difficulty level, because it demands an 

optimization algorithm to have adaptability to changing 

search-space conditions.  

For testing of the proposed DPSO algorithm with moving 

obstacles, the simulations are performed by creating two 

environmental scenarios to ensure the leader's performance. 

The first scenario consists of static square obstacles in the 

form of walls that cut the path on which the mobile robot 

passes. The second scenario considers only moving obstacles. 

The performance of the robot’s movement as it passes 

through a moving obstacle can be seen in Fig. 5. From Fig. 5 

(a) to (i), it appears that the leader-follower robots by OPSO 

and GPSO are able to reach the target, but when they 

encounter a moving obstacle, they crash.  Especially in Fig. 5 

(j), the robots by OPSO cannot finish the task, as the U-Shape 

condition produces a local optima condition. By GPSO and 

DPSO, this does not happen: the robots have the ability to get 

out of the U-shape situation and move to the target. 

 

 

 

 

 

 

 

 

 

 
(a) OPSO                       (b) GPSO                    (c) DPSO 

 

 

 

 

 

 

 

 

 

 
           (d) OPSO                       (e) GPSO                    (f) DPSO 

 
Fig. 3.  Trajectory control with static obstacle in cluttered environment 
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(a) OPSO 

 

 

 
(b) GPSO 

 

 

 
(c) DPSO 

Fig. 4. The Respon of Robot in X-Y Coordinate  on Complex Environment 

(Fig. 3 (d), (e), (f)) 

 

 

 
(a) OPSO                     (b) GPSO                       (c) DPSO 

 
(d) OPSO                     (e) GPSO                  (f) DPSO 

 
                 (g) OPSO                   (h) GPSO                    (i) DPSO 

 
                 (j) OPSO                      (k) GPSO                (l) DPSO 

 
Fig. 5.  Trajectory control with moving obstacles with 4 environments 

 

Using the OPSO algorithm, the robots cannot quickly 

change direction or velocity when they encounter a moving 

obstacle. Therefore, movement is processed only in 

accordance with the parameter value that was determined in 

the initial condition, which situation produces collisions and 

system instability. The inertial functions are able to adjust the 

cognition and social components by using the GPSO 

algorithm, making the particles search around in several 

points. Even though the leader-follower robots still would 

crash, they are more stable in their movement. Also, due to 

shorter time to reach the target, the GPSO algorithm is able to 

change the values of the particles’ position and velocity to 

appropriate ones.  

However, when DPSO is applied for moving obstacles, the 

problems can be overcome. The leader-follower robots move 

quickly to the target via a short route, are able to avoid 

collisions with moving obstacles and walls, and show stable 
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movement. This is due to the dynamic inertial weight and the 

learning factor, which can improve robot performance and 

enable the global search ability of particles in the whole 

search space. The leader-follower robots can find the 

particles’ position and velocity for the safest value in the 

shortest time. This allows the leader to move on a safe route 

with a smooth trajectory without collision. Improvement of 

learning factors and inertial weights can reduce the individual 

particles’ cognitive ability and improve their global search 

ability when the number of iterations is increased. All robot 

performances using the three algorithms’ optimizations can 

be seen in Table I. 
TABLE I 

PERFORMANCE OF LEADER-FOLLOWER ROBOT 

Moving 

obstacles 

Algorithm 

PSO GPSO DPSO 
Leader Follower Leader Follower Leader Follower 

Resource 

(kb) 

28.6 28.8 21.7 21.8 16.8 17 

Time (sec) 23.32 23.32 16.84 16.84 14.94 14.94 

Data 

(iteration) 

1032 1032 771 771 599 599 

Static and 

moving 

Obstacle 

Algorithm 

PSO GPSO DPSO 
Leader Follower Leader Follower Leader Follower 

Resource 

(kb) 

28.7 28.6 22 21.2 20.1 21.1 

Time (sec) 81.42 81.42 74 74 20.6 20.6 

Data 

(iteration) 

1035 1035 760 771 718 718 

 

In all of the experiments performed using OPSO and 

GPSO, the robot leader managed to reach the target only via a 

very long route and after colliding with obstacles. This 

happens because the robots cannot adapt to environmental 

changes. At time t the robots are able to move towards the 

target, but in the period (t + 1), there is a moving obstacle that 

necessitates difficult changes of robot position and direction 

of movement, which changes result in a collision. With the 

PSO algorithm, convergent characteristics incur difficulty for 

the leader-follower robots in adapting to a dynamic 

environment; or, in other words, the particles tend to go to a 

certain point. Basically, the PSO algorithm was not 

developed to handle environmental changes, but this does not 

imply impossibility. By means of DPSO, divergence 

properties are enhanced to overcome the natural convergence 

characteristics of the PSO by moving the positions of 

particles randomly. This particle transfer is expected to 

enable change of robot position and orientation quickly for 

avoidance of collisions with obstacles. 

C. PSO Performances  

In the PSO algorithm, population size correlates with 

convergence. Increasing the population size can decrease the 

number of iterations required to find the optimum. However, 

the convergence rate and the optimal solution depend not 

only on the number of swarm but also on the objective 

function to be minimized/maximized. In this paper, the 

swarm population is selected to be about 40, without regard 

to dimensionality. A small population size will cause 

premature convergence; a large population size will allow for 

accurate results, but an extremely large population size will 

increase the computational time and memory requirement. 

Therefore, the number of iterations and swarm size should be 

selected for optimal convergence results for certain 

conditions. In this paper, the swarm population is changed 

from 10 to 30 to determine the PSO performance.  In all of the 

experiments with the OPSO, GPSO and DPSO algorithms 

using swarm populations of 10 and 30, there was a long travel 

time to the target (see. Fig. 6(a) to (f)), with large iteration 

numbers up to 7000 and, in some environments, robot failure 

to reach the target (see Fig. 6 (a), 6(b), and 6(d)).  

 

 
        (a) 10 (295 sec)         (b) 30 (346 sec)         (c) 40 (250 sec) 

 
      (d) 10 (313 sec)           (e) 30 (180 sec)           (f) 40 (86 sec) 

 
   (g) 10 (119 sec)         (h) 30 (64 sec)         (i) 40 (30 sec) 

 
Fig. 6.  Swarm population and leader-follower performance 

 
When the number of swarm population is increased to 40, it 

produces a short route, a faster processing time (64 secs from 

30 secs, and 180 secs from 86 secs), and a smaller iteration 

number (see Fig. 6 (i) and (f)). Even under the condition of 

leader-follower failure, performance was improved and the 

task could be achieved (see Fig. 6 (c), (e), and (f)). 

D. Proposed DPSO with Fuzzy Logic control 

In this section, the proposed DPSO algorithm is combined 

with Fuzzy Logic to improve the leader-follower 

performance in terms of trajectory control and time traveled 

to the target.  In this experiment, the selected DPSO 

parameters are used for tuning the fuzzy membership 

functions (MFs). This is an important stage of the fuzzy logic 

algorithm. The fuzzy MFs will produce the rule base and use 

the fuzzy inference mechanism. If the MFs can be 

dynamically changed for every environmental condition, the 

output of the fuzzy logic control can be adapted every time. It 

is necessary for the leader robot to control its movement so as 

to reach the target with good performance. The 

leader-follower control process using Fuzzy-DPSO can be 

seen in the block diagram of the control system in the 

following Fig. 7.  
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Fig. 7.  The block diagram of Fuzzy-DPSO algorithm to improve the 

leader-follower movement in route optimization 

 

The four stages are fuzzification, rule base, inference, and 

defuzzification. Fuzzification is a process that can change the 

input crisply, which includes numbers or crisp values. It is 

converted to a fuzzy system in the form of linguistic values 

based on certain MFs. The fuzzy membership function 

consists of 9 parameters and 3 linguistic values that are 

Negative, Zero, and Positive. The fuzzy rule base identifies 

the values of position and orientation error 

                    as the fuzzy inputs and the linear 

velocity       and angular velocity       as the fuzzy 

outputs. The inference method used is Mamdani (Min-Max). 

Defuzzification, the final stage in a fuzzy logic system, is the 

process of mapping a quantity of the fuzzy set in the form of a 

crisp value. 

In this section, DPSO is used to set a more optimal route by 

dynamically changing the fuzzy input MFs and to better 

control the movement of the leader robot to reach the target. 

Without fuzzy logic, the leader route to be taken would not be 

optimal, and the resulting movement would be unsmooth. 

The results would be different if the proposed DPSO were 

utilized to dynamically adjust the fuzzy MFs and, thereby, 

produce some rule bases corresponding to the environmental 

situation. By using such rules, the leader robot produces good 

position and orientation to achieve the target, and the 

follower moves in the same direction with good orientation. 

Fig. 8 shows the plot of fuzzy MFs after tuning, with 10, 20, 

30, 40 and 50 swarm populations respectively. 

 
 TABLE II  

INITIALIZATION INPUT ERROR MFS 

 

 Particles Fitness 

S1 -1.5, -1, -1, 1.1, 1.3, 1.2, 1.5 2 

S2 -1.9, -1.2, -1.6, 0.1, 1.5, 1.2, 1.1 2 

S3 -1.4, -1, -1.7, 1.2, 1.9, 0.5, 1.5 1.89 

S4 -1.8, -0.5, -1.2, 0, 1.8, 1.4, 1.8 1.76 

S13 -1.3, -0.2, -0.6, 0.1, 1.7,1.1, 1.7 1.61 

S25 0.4, 0.6, 0.4, 0.8, 1.6, 0.2, 1.6 1.44 

S37 0.4, 0.7, 0.4, 0.8, 1.59,0.2, 1.59 1.42 

S45 0.4, 1, 0.4, 0.7, 1.58, 0.3, 1.58 1.4 

S47 0.4,0.8, 0.4, 0.5, 1.59, 0.8, 1.59 1.42 

S49 0.4, 0.9, 0.4, 0.9, 1.6, 0.3, 1.6 1.44 

S50 -1.3, -0.3, -1.2, 1.2, 1.4, 1.7,1.4 1.61 

 

According to the setting of the swarm population, the 

Fuzzy MFs also change, as shown in Fig. 8 and Table II. The 

control performances based on the selected parameters can be 

seen in the transient response (see Fig. 9). DPSO with a 

swarm population of about 50 results in the best 

performances in terms of the rise time, maximum overshot 

and settling time to a stable condition (see Table. III). By 

using Fuzzy-PSO, the values of the three parameters above 

are small compared with DPSO. It can be seen that the 

proposed DPSO effectively improves leader-follower 

performance. 

 
(a) Time response for       

 
(b)  Time response for       

 
(c)  Time response for       

Fig. 9.  Comparison of controller response using DPSO and Fuzzy-DPSO 

(left: DPSO; right: Fuzzy-DPSO) 

 

 
TABLE III 

CONTROLLER PERFORMANCES 

Controller 
Rise Time (sec) Max. overshoot (%) Settling time (sec) 

                                                      

No-Controller 0.37 0.37 0.37 18 10 28 Oscillation Oscillation Oscillation 

DPSO 0.27 0.27 0.27 2 2 4 0.4 0.4 0.6 

Fuzzy-DPSO 0.12 0.12 0.2 2 2 3 0.18 0.18 0.54 
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(a)  10 swarm population for input MFs                      

 
(b) 20 swarm population for input MFs                     

 

 
(c) 30 swarm population for input MFs                     

 
(d) 40 swarm population for input MFs                     

 
(e) 50 swarm population for input MFs                     

Fig. 8.  Fuzzy membership functions tuning with DPSO based on 10 to 50 swarm population                                                             

 

 

 
The implementation of the DPSO algorithm on fuzzy MFs 

for controlling the leader-follower robots produces better 

performance. Due to the fact that the DPSO algorithm cannot 

control the leader robot’s movement, that robot only moves 

to reach the target position. The leader robot will control the 

actuator only based on the sensor rule; therefore, it is unable 

to maintain distance from obstacles. But if the DPSO 

algorithm is combined with Fuzzy logic, the leader robot has 

the ability to control the actuator. Thereby, it can move more 

precisely to reach the target, with a smooth trajectory and the 

ability to maintain distance from obstacles (see Fig. 10). The 

result obtained in Fig. 10 (b) shows that the leader-follower 

robots with Fuzzy-DPSO are able to maintain distance from 

the oval obstacles and move more smoothly. As can be seen 

in Fig. 10 (a), the robots with only DPSO takes a longer route 

to search the target and incurs three collisions due to its 

inability to control its movement or maintain distance from 

obstacles. In Fig. 10 (c), it is clearly apparent that with 

Fuzzy-DPSO, the leader-follower robot can go directly to the 

target, move according to the rules to avoid obstacles, and 

reach the target in a shorter time and with a smoother 

trajectory. Whereas, if only the DPSO algorithm is used (see 

Fig 10 (d)), the robots move according to the sensor, and the 

travel time is longer, but they both reach the target. Fig. 10 (f) 

and (h) show better performance in a complex environment 

by use of Fuzzy-DPSO. The robots will follow the fuzzy rule 

and move directly to the target, faster and without collision. 

However, without the fuzzy algorithm, the robots crash and 

take a longer time to reach the target (see Fig. 10 (e) and (g)). 

V. CONCLUSION 

The PSO algorithm applies social adaptation to perform 

tasks, considering all individuals to be of the same generation. 

It has many advantages, such as simplicity, good 

convergence performance, and fewer control parameters. 

However, it does not provide a mechanism for escaping from 

local optima solutions, and local extremum values are easily 

fallen into. In the case of leader-follower control, by using 

original  PSO,  the leader always  moves  around to  find the  
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(a)     DPSO                    (b) Fuzzy-DPSO 

 
       (c) DPSO                (d) Fuzzy-DPSO 

 
      (e) DPSO                   (f) Fuzzy-DPSO 

 
(g) DPSO                  (h) Fuzzy-DPSO 

 
Fig. 10.  Leader-follower trajectories based on DPSO and Fuzzy-DPSO 

(with 50 swarm population) 

  

target thus generating a lot of data to complete the task. 

Therefore, the large search space for finding the possible 

solution space of the optimal solution by using inertial weight 

adjustment strategy into the original PSO. 

In this paper, a dynamic PSO is proposed in order to 

improve leader-follower performance when they move in 

several environments containing static and dynamic obstacles. 

Using DPSO, the leader-follower robots perform better, 

showing smoother movements, shorter travel times and 

producing less data. The comparison results show that the 

proposed DPSO algorithm is more capable of obtaining the 

global optimization solution and overcoming the problem of 

local minima when the leader-follower robots move in 

complex and dynamic environments. Moreover, to improve 

leader-follower control and performance, the proposed 

DPSO is combined with Fuzzy Logic, which enhances 

performance in terms of trajectory control, time traveled to 

the target, and response times for several environmental 

conditions. In the future work, leader-follower robot motion 

control in response to dynamic environmental changes will 

be further studied. 
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