

Abstract--Mobile robots, when navigating in diverse

environments, rely on solutions to trajectory generation

problems for achieving the best path. One of those solutions is a

heuristic method named Particle Swarm Optimization (PSO).

In a previous study, by using such method, the mobile robot

could find the best route towards the target without collision;

moreover, PSO offers the benefits of simplicity, ease of

implementation, and few parameters to regulate. However, the

original PSO algorithm cannot guarantee the optimal solution.

Local optima still occur, especially in complex and dynamic

environments, due to premature convergence. This causes

mobile robot collisions with obstacles and generates a long path

to the target. In the present study, in order to overcome the

problem of premature convergence, dynamic PSO (DPSO) was

developed by using a dynamic inertia function to set parameters

to accelerate convergence and re-initialize particles. The DPSO

was analytically compared with two other algorithms, namely

the original PSO (OPSO) and the Gaussian PSO (GPSO).

Finally, the proposed DPSO is combined with Fuzzy Logic for

obtaining the best control of leader-follower system. In the

results, the proposed DPSO algorithm produced the optimum

solution faster with convergence of less than 150 iterations for

static obstacles and 200 iterations for moving obstacles, 4%

shorter traveled lengths, 13% more smoothness, fast processing

and guaranteed avoidance of collisions, and stable movement in

reaching the target. When the proposed DPSO is combined with

Fuzzy Logic, it can improve leader-follower performance in

terms of trajectory control, time traveled to the target, and

times response in several environmental conditions.

Index Terms--Route Optimization, Non-holonomic,

Leader-Follower, Particle Swarm Optimization

I. INTRODUCTION

 A distributed robot’s coordination and control in a group

has attracted many researchers over the past few years. One

of many research topics is the problem of coordination

between robots in controlling their formation in some

applications such as unmanned ground robots, unmanned

aerial robots, unmanned underwater robots, flying robots,

and satellites [1][2][3][4][5][6]. Various strategies have been

proposed with a variety of approaches to control the

formation of a group of robots, including behavior-based,

virtual structure and leader-follower control [5][6][7][8].

Manuscript received April 21, 2018; revised July 31, 2018.

Bambang Tutuko is currently a researcher and doctoral student in

Engineering Faculty, Universitas Sriwijaya, Indonesia; Email

beng_tutuko@gmail.com.

Siti Nurmaini (corresponding Author) is currently a Professor and

researcher in Intelligent System Research Group, Universitas Sriwijaya,

Indonesia; Email sitinurmaini@gmail.com.

Saparudin is currently a researcher in Image Processing Research Group,

Universitas Sriwijaya, Indonesia; Email saparudin1204@yahoo.com.

Putri Sahayu is a graduate student in Informatics Engineering, at

Universitas Sriwijaya, Indonesia; Email: sahayuputri@gmail.com

In factory or industrial environments for example, the

leader-follower approach has become an important

application replacing human tasks and, thus, helping people

to live better lives. The following task is important to the

mobile robot, since the target can be either a static or dynamic

object. However, there are many problems that can occur

when designing a robot to perform a following task. These

problems include the accuracy of tracking the robot when the

leader is moving, the distance to avoid collisions between the

leader and follower, and the capability to avoid obstacles

[6][7][8]. Besides, there are also issues related to the response

time of the follower when the leader is moving and the

communication between them. In leader-follower

applications, one or more robots are appointed as the leaders,

and the others are the followers. The leader serves as the

reference to the follower robots, who need to position

themselves and maintain the desired relative position with

respect to the leader [8][9][10]. In such approach, to

determine formation maneuvers, it is necessary only to

determine the leader's path and the desired relative position

and orientation between the leaders and the followers. When

the direction of the leader's movement is known, the desired

position (distance and angle) of the followers relative to the

leader can be achieved by using the local control of each

follower. However, if a leader's robot fails, it can lead to the

failure of the entire controlling process.

Therefore, controlling the leader-follower robots in terms

of position and orientation for achieving targets within a short

convergence time and with high accuracy in dynamic

environments is desirable. Under such conditions, the

optimization route must be implemented for robotic control

in a simple algorithm. Several optimization methods have

been proposed [11][12], these have excellent convergence

characteristics but they face challenges in handling the

complex computation. In the leader-follower robotic system,

the computational resources are important, due to the swarm

characteristics utilize the on-board sensor and processing.

Therefore, minimization of computational resources is a very

important requirement. Several approaches, with good

performance results, have been proposed and reported

[8][13][14]. They implement leader-follower robots with

global information for sharing. However, due to their

complexity, the computational cost is high. When the

algorithm is implemented in a simple robot with onboard

sensors and processors, a major problem is incurred.

The particle swarm optimization (PSO) algorithm is one of

the most efficient optimization strategies for continuous

nonlinear optimization problems based on global information

about the environment. It can be designed with simple

algorithms for derivation of smooth and efficient trajectories

[15][16][17]. Unfortunately, the original PSO algorithm is

difficult to balance between exploration and exploitation

Bambang Tutuko, Siti Nurmaini, Saparudin, Putri Sahayu

Route Optimization of Non-holonomic

Leader-follower Control Using Dynamic Particle

Swarm Optimization

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

mailto:beng_tutuko@gmail.com
mailto:sitinurmaini@gmail.com
mailto:sahayuputri@gmail.com

capabilities. To overcome this limitation, several authors

have proposed different methods to achieve better accuracy

and convergence [18][19][20]. Finding a proper balance

between such two processes is considered a challenging task

due to the stochastic nature of meta-heuristics; so, an

improved PSO original algorithm is desirable. PSO is used to

avoid obstacles in dynamic environments that include

navigation and real-time motion planning issues

[13][14][16][21][22]. Only a few researchers have proposed

methods for multi-robot control systems, especially in the

leader-follower configuration based on the kinematic model.

Hence, this research is important for the purposes of

developing motion control and route optimization for

leader-follower robots based on the non-holonomic

kinematic model in Cartesian representation.

The structure of this paper is as follows. In section 2, the

process of kinematic models using Cartesian coordinates for

controlling the formation of two non-holonomic mobile

robots is described. In section 3, the route optimization

design based on PSO method is explained. Some simulation

results are included in section 4 to verify the feasibility of the

model and the controller. Finally, conclusions and future

work are discussed in section 5.

II. LEADER-FOLLOWER KINEMATIC SYSTEM

In this section, the Cartesian coordinates for leader-based

formation controls explains the kinematics model. For

simplicity, the configuration of a three-wheeled robot team is

considered, with the left and right wheels controlled and one

free wheel for balancing. From the illustration of the

leader-follower robot movement in Fig. 1, the values of the

robot movement parameters are obtained, being world

coordinates, and the fixed Cartesian coordinates of the

leader robot. The parameters and are the

global positions of the leaders and followers, where the

subscript 'L' represents the leader and the subscript 'F'

represents the follower. Meanwhile, is the linear velocity

of the leader and is the linear velocity of the follower,

while is the angle orientation of the leader and is the

angle orientation of the follower. The kinematics model of

mobile robot representation can be described by Cartesian

representation (rather than polar coordinates. Due to the

representation by polar coordinates, only a single point on the

controller will be produced, which might degrade the

controller's performance [23].

We can assume that the leader and follower robot follow

the kinematics model of a unicycle robot in the inertial frame

(see Fig. 1(a)). The kinematics of each robot can be expressed

as

 (1)

where is the general variable of the initial position of the

robot T, is a non-holonomic

transformation matrix, and is a forward kinematic

matrix that is used to estimate position and speed.

The non-holonomic transformation of the mobile robot can

be seen through the change of the three initial robotic position

variables . By solving (1) for the change in the velocity

of the right and left wheels, the single robot kinematic

equation can be transformed into (2) below,

 (2)

To adjust the robot’s position and orientation from actual to

reference, the error position (3) is used as follows:

–

 (3)

(a) Single robot

(b) Leader-Follower robot

Fig.1. Leader-Follower Kinematic System

In the same way, the kinematic system of the

leader-follower robots is generated, but the parameters that

will be measured are the relative distance between the leader

and the follower robot. The modeling of the leader-follower

system has been derived directly by kinematic analysis of the

robot follower along the x and y coordinates relative to the

robot leader. The leader L has configuration vector

 while the follower F has a vector

 .

The control inputs of the leader and the follower are the linear

and angular velocities
 and

 , respectively.

The relative distance between the leader and the follower

must be determined so that they can move in the same

trajectory. To illustrate the relative position between the

robots in Cartesian coordinates, Fig. 1(b) is utilized to

projected the relative distance in the x and y directions. In x-y

Cartesian coordinates, the distance between the robot leader

and the follower robot is . By using the properties of

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

trigonometric functions i.e., a.b=|a| . |b| cos , the rotation

matrix equation for the robot follower is obtained as shown in

(4) below,

 (4)

Based on Fig. 1, and assuming that the relative distance

equation can be derived using the matrix rotation in (3), the

robot leader's distance relative to the follower robot is defined

in (5),

 (5)

where the relative position of the follower robot in the x

direction is and in the y direction , with relative

orientation .

If the position of the leader robot is determined

and (,) are known and fixed to achieve and maintain the

desired formation, parameter (,) must be controlled, and

then the position with respect to the robot leader can be

determined by controlling →
 (where

 is the desired

relative position in the x direction) and →
 (where

 is

the desired relative position in the y direction). Under normal

conditions, the relative distance between the leader robot and

the follower robot is , which needs to be simultaneously

projected to control the movement of the follower robot

against the leader robot by using (6) to (9), as follows:

 or, (6)

 (7)

 or, (8)

 (9)

The desired relative distance between the robot leader

and the follower robot is required to be constant or = ,

whereas the relative angle is varied with time. Therefore,

(7) and (8) become (10) and (11), as follows:

 (10)

 (11) (11)

From (5) the model of is as follows:

 sin +

 (12)

where represents the linear velocity of the leader robot.

The new state variable is defined to represent the orientation

angle difference between the robot leader and the follower

robot, as

 or (13)

If (13) is substituted into (12), it becomes (14):

 (14)

Due to the holonomic constraint of the mobile robot in

(15), (14) is transformed to become (16),

 (15)

 (16)

where represents the angular velocity of the leader's

robot, and represents the linear velocity of follower’s

robot. In the same way, from (11), the model of will be

obtained as follows:

 (17)

The overall equation of the leader-follower kinematic

model can be summarized as

 (18)

where is the angular velocity of the follower robot, is

the linear velocity of the follower robot, is angular

velocity of the leader robot, and is the linear velocity the

leader robot. By using the leader-follower approach, and

 are time functions that vary with input controls and .

III. DYNAMIC PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is based on the

behavior of a swarm of insects (e.g., ants, termites, bees) or

birds [18][20]. The algorithm mimics the social behavior of

such organisms. Social behavior consists of individual

actions and the influence of other individuals in the group.

The word "particle" denotes the individual. Each individual

or particle behaves interconnected by using its own

intelligence and also by being influenced by the behavior of

its collective group [18]. Thus, if one particle finds the right

or a short way to the target, the rest of the other group will

also be able to follow the path immediately, even though they

are located far away in the group. There are two kinds of PSO

algorithm: the original PSO and the improved PSO

[16][17][18][19]. In the original PSO (OPSO) algorithm, the

inertial weight) is set at 1; thus, the convergence speed of

particles is fast, and the adjustments of cognition and social

components make particles search around one point. This can

produce a local minimum condition, and the whole swarm

will converge to this position. However, if the inertial weight

value as selected is about , the whole swarm has

difficulty jumping out of the local optimum. This

characteristic produces a fatal weakness, because no global

optimum (is achieved. Hence, the dynamic inertial

weight is desirable to regulate.

In this paper, the PSO algorithm optimizes the

leader-follower robots’ path to the target without collision.

Therefore, it works not only for the optimization process, but

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

also to control the leader’s movement. The dynamic inertial

weight is needed, due to the fact that the leader-follower

robots move in an unstructured and dynamic environment.

The dynamic PSO (DPSO) is created by using (19) and (20)

below,

 (19)

 (20)

Vector is the best previous

position of the ith particle that gives the best fitness value,

named the personal best position . Vector

 is the best particle among all particles

in the population, named the global best (. The inertial

weight is used to balance the global exploration as well as

the local exploitation. and are random numbers

uniformly distributed between [0,1]. The velocity is

restricted to the range in order to prevent the

particles from flying out of the solution space. The

acceleration coefficients and provide for a better

balance of search space between the local exploitation and

the global exploration.

In the leader-follower case, the PSO must ensure that the

leader reaches the target and that the follower robot can

follow the leader and maintain its formation without

collision. In this paper, the dynamic inertial weight and the

learning factors and are improved in (21) and (22).

 (21)

The DPSO algorithm serves to control the PSO capabilities

in local searches efficiently and to achieve convergence to

global optimum solutions. The inertial weight is updated to

obtain an adaptive value for each iteration; therefore, the

value can be dynamic and capable of improving the expected

optimization result. The greater the value of iteration, the

value will be smaller, and preferably, if the iteration is still

early, the value will tend to be larger. If the value gets

larger, the particle is more focused towards exploration, but

as it gets smaller, it is more focused towards exploitation

[16]. 1 and 2 are the acceleration coefficients or learning

rates of a single current particle for obtainment of a better

balance between global exploration by all particles in

neighboring topology and local exploitation to achieve the

best fitness. In this paper, 1 and 2 are used to find the target

and to avoid obstacles, due to the necessity of changing the

vector of velocity and vector position. When obstacles move,

the robot environment changes dynamically. However,

targets need to be found in a short period of time. In this

paper, a dynamic linear adjustment strategy for learning

factors is proposed. The expression is given as in (18),

 and

 (22)

where and = final value,

and = c initial value

If the number of iterations is increased, the cognitive ability

of the individual is gradually reduced by improvement of the

learning factors and improvement of the global searching

ability of the particles. This strategy can improve particles’

global search ability in the whole search space at early times,

thus helping them to converge to the global optimum in the

end.

IV. RESULTS AND DISCUSSION

In this work, the OPSO and the Gaussian PSO (GPSO) are

compared with the proposed DPSO for the above-noted

function minimization problems of leader-follower kinematic

control. For such purpose, about 50 particles and 1000

maximum iterations are taken. However, the number of

particles is not very influential to the optimum solution

generated PSO, but it affects the speed of the process. If the

number of particles is too small, the process can get stuck on

the local optimum even though the processing time is very

fast. In contrast, large numbers of particles are rarely trapped

in a local optimum, but the process takes longer. Respective

inertial weights and acceleration coefficients are selected for

balancing between exploration and exploitation capabilities.

A. Static Obstacles

To verify the proposed algorithm, a new leader-follower

model based on a non-holonomic system for target seeking is

simulated. Static and dynamic obstacles are utilized in the

testing environment. In Fig. 2(a) and (b), the leader-follower

robots move in relation to a static obstacle to reach the target.

The leader robot is a blue line and the follower robot is a red

line. The two types of PSO are used to view the movement

performance. Obstacle avoidance in passing near and

reaching the goal on a short trajectory is performed while

avoiding the obstacle coming from the right and deviating

from the straight line. The leader-follower robot using the

OPSO is able to reach the target, but the resulting trajectory is

not smooth; thus, a long processing time is taken and large

amounts of data are generated in reaching the target. Using

the proposed DPSO approach, the leader-follower robot

movement performs better, using smoother movements,

shorter travel times, and generating less data.

The movement of the leader robot by OPSO requires a

fairly long route in reaching the target; therefore, the

execution time is longer by about 29.14 sec. Conversely, if

the movement of the robot leader by DPSO is optimized for a

shorter route, the execution time is faster by about 13.55 sec

while the follower robot follows the movement of the robot

leader in a relatively equal time. Moreover, if DPSO is used,

the movement of the leader robot is smooth, and the robots

can choose the simplest route to the target. In addition to the

other test environments, a rectangular environment also is

created. The robot must move from the initial position to the

target position, as seen in Fig. 2 (c) and (d). The robot moves

not smoothly and with a long trajectory using the original

PSO. The performance is not satisfactory using OPSO: the

processing times necessary to finish the route are about 29.15

sec for the leader and about 29.18 sec for the follower, and at

some points of the trajectory, the leader-follower robots crash

into a wall. Meanwhile, by using DPSO, the processing time

is about 13.50 sec for the leader and about 13.65 sec for the

follower, with a short and smooth trajectory. Furthermore,

the leader and the follower robots have the ability to maintain

their positions relative to the wall without collision.

From the robots’ trajectories in Fig. 2 (c) and (d), it is seen

that from the initial position, the robot leader moves in search

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

of the target and manages to find it, and the success of

reaching the target is seen from the result of the route leading

to a point. However, the route taken by the leader-follower

robot using the DPSO algorithm in achieving the target is

more efficient than using the OPSO algorithm. This is due to

the DPSO algorithm’s use of parameter control of inertial

function and coefficient acceleration to accelerate

convergence and produce a global solution.

(a) OPSO (b) DPSO

(c) OPSO (d) DPSO

Fig. 2. Trajectory control in simple environment

Using the OPSO algorithm, premature convergence

always happens; this condition occurs when particles

converge and particle velocity is close to zero, but no global

solution has been found. The time taken by each robot from

the starting point to the target using the OPSO algorithm is

about 66 seconds, while that taken using the DPSO algorithm

is only 31 seconds. DPSO algorithm uses inertial parameters

that are adaptable to the environmental dynamics that are

encountered in the course of the target search.

In complex environments (see Fig. 3 (a) – (f)), the

proposed DPSO produces small processing times compared

with the OPSO and GPSO, due to its ability to change the

positions and orientations of the leader-follower robots in an

adaptive manner. The leader-follower robots have the ability

to achieve the target, but especially with OPSO, they cannot

finish the task; rather, they stop at one point and stack in the

local minima (see Fig. 3 (a) and 3 (d)). However, when the

GPSO and DPSO algorithms are applied in the robot, the task

can be completed. Unfortunately, with GPSO, the

leader-follower robots crash into the wall (see Fig. 3 (e) and 3

(b)), but they still move to the target. But when the leader

movement is controlled based on DPSO, the robot is able to

reach the target without a collision, via a short route and

within a short processing time. Such also is the case with the

follower robot.

The leader-follower performance in X and Y coordinates

when moving in a complex environment can be depicted as in

Fig. 4 (a) – (c). By OPSO, the robots can reach the target, but

they stop moving after 40 sec. When GPSO is applied, they

finish the task in about 47 secs, which is a poor response, due

to their having moved in gradual steps. Their performance is

improved when they use DPSO: the task is accomplished in

about 22 secs, with smooth movement and shortest route.

B. Moving Obstacles

In this section, the moving obstacle is considered to be

another robot that crosses the path of leader robot. Such

obstacles are used to test the robot leader's ability in a

dynamic environment. The presence of a moving obstacle

causes the issue of path search to be a matter of dynamic

optimization. Path search with the dynamic optimization

approach has a higher difficulty level, because it demands an

optimization algorithm to have adaptability to changing

search-space conditions.

For testing of the proposed DPSO algorithm with moving

obstacles, the simulations are performed by creating two

environmental scenarios to ensure the leader's performance.

The first scenario consists of static square obstacles in the

form of walls that cut the path on which the mobile robot

passes. The second scenario considers only moving obstacles.

The performance of the robot’s movement as it passes

through a moving obstacle can be seen in Fig. 5. From Fig. 5

(a) to (i), it appears that the leader-follower robots by OPSO

and GPSO are able to reach the target, but when they

encounter a moving obstacle, they crash. Especially in Fig. 5

(j), the robots by OPSO cannot finish the task, as the U-Shape

condition produces a local optima condition. By GPSO and

DPSO, this does not happen: the robots have the ability to get

out of the U-shape situation and move to the target.

(a) OPSO (b) GPSO (c) DPSO

 (d) OPSO (e) GPSO (f) DPSO

Fig. 3. Trajectory control with static obstacle in cluttered environment

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

(a) OPSO

(b) GPSO

(c) DPSO

Fig. 4. The Respon of Robot in X-Y Coordinate on Complex Environment

(Fig. 3 (d), (e), (f))

(a) OPSO (b) GPSO (c) DPSO

(d) OPSO (e) GPSO (f) DPSO

 (g) OPSO (h) GPSO (i) DPSO

 (j) OPSO (k) GPSO (l) DPSO

Fig. 5. Trajectory control with moving obstacles with 4 environments

Using the OPSO algorithm, the robots cannot quickly

change direction or velocity when they encounter a moving

obstacle. Therefore, movement is processed only in

accordance with the parameter value that was determined in

the initial condition, which situation produces collisions and

system instability. The inertial functions are able to adjust the

cognition and social components by using the GPSO

algorithm, making the particles search around in several

points. Even though the leader-follower robots still would

crash, they are more stable in their movement. Also, due to

shorter time to reach the target, the GPSO algorithm is able to

change the values of the particles’ position and velocity to

appropriate ones.

However, when DPSO is applied for moving obstacles, the

problems can be overcome. The leader-follower robots move

quickly to the target via a short route, are able to avoid

collisions with moving obstacles and walls, and show stable

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

movement. This is due to the dynamic inertial weight and the

learning factor, which can improve robot performance and

enable the global search ability of particles in the whole

search space. The leader-follower robots can find the

particles’ position and velocity for the safest value in the

shortest time. This allows the leader to move on a safe route

with a smooth trajectory without collision. Improvement of

learning factors and inertial weights can reduce the individual

particles’ cognitive ability and improve their global search

ability when the number of iterations is increased. All robot

performances using the three algorithms’ optimizations can

be seen in Table I.
TABLE I

PERFORMANCE OF LEADER-FOLLOWER ROBOT

Moving

obstacles

Algorithm

PSO GPSO DPSO
Leader Follower Leader Follower Leader Follower

Resource

(kb)

28.6 28.8 21.7 21.8 16.8 17

Time (sec) 23.32 23.32 16.84 16.84 14.94 14.94

Data

(iteration)

1032 1032 771 771 599 599

Static and

moving

Obstacle

Algorithm

PSO GPSO DPSO
Leader Follower Leader Follower Leader Follower

Resource

(kb)

28.7 28.6 22 21.2 20.1 21.1

Time (sec) 81.42 81.42 74 74 20.6 20.6

Data

(iteration)

1035 1035 760 771 718 718

In all of the experiments performed using OPSO and

GPSO, the robot leader managed to reach the target only via a

very long route and after colliding with obstacles. This

happens because the robots cannot adapt to environmental

changes. At time t the robots are able to move towards the

target, but in the period (t + 1), there is a moving obstacle that

necessitates difficult changes of robot position and direction

of movement, which changes result in a collision. With the

PSO algorithm, convergent characteristics incur difficulty for

the leader-follower robots in adapting to a dynamic

environment; or, in other words, the particles tend to go to a

certain point. Basically, the PSO algorithm was not

developed to handle environmental changes, but this does not

imply impossibility. By means of DPSO, divergence

properties are enhanced to overcome the natural convergence

characteristics of the PSO by moving the positions of

particles randomly. This particle transfer is expected to

enable change of robot position and orientation quickly for

avoidance of collisions with obstacles.

C. PSO Performances

In the PSO algorithm, population size correlates with

convergence. Increasing the population size can decrease the

number of iterations required to find the optimum. However,

the convergence rate and the optimal solution depend not

only on the number of swarm but also on the objective

function to be minimized/maximized. In this paper, the

swarm population is selected to be about 40, without regard

to dimensionality. A small population size will cause

premature convergence; a large population size will allow for

accurate results, but an extremely large population size will

increase the computational time and memory requirement.

Therefore, the number of iterations and swarm size should be

selected for optimal convergence results for certain

conditions. In this paper, the swarm population is changed

from 10 to 30 to determine the PSO performance. In all of the

experiments with the OPSO, GPSO and DPSO algorithms

using swarm populations of 10 and 30, there was a long travel

time to the target (see. Fig. 6(a) to (f)), with large iteration

numbers up to 7000 and, in some environments, robot failure

to reach the target (see Fig. 6 (a), 6(b), and 6(d)).

 (a) 10 (295 sec) (b) 30 (346 sec) (c) 40 (250 sec)

 (d) 10 (313 sec) (e) 30 (180 sec) (f) 40 (86 sec)

 (g) 10 (119 sec) (h) 30 (64 sec) (i) 40 (30 sec)

Fig. 6. Swarm population and leader-follower performance

When the number of swarm population is increased to 40, it

produces a short route, a faster processing time (64 secs from

30 secs, and 180 secs from 86 secs), and a smaller iteration

number (see Fig. 6 (i) and (f)). Even under the condition of

leader-follower failure, performance was improved and the

task could be achieved (see Fig. 6 (c), (e), and (f)).

D. Proposed DPSO with Fuzzy Logic control

In this section, the proposed DPSO algorithm is combined

with Fuzzy Logic to improve the leader-follower

performance in terms of trajectory control and time traveled

to the target. In this experiment, the selected DPSO

parameters are used for tuning the fuzzy membership

functions (MFs). This is an important stage of the fuzzy logic

algorithm. The fuzzy MFs will produce the rule base and use

the fuzzy inference mechanism. If the MFs can be

dynamically changed for every environmental condition, the

output of the fuzzy logic control can be adapted every time. It

is necessary for the leader robot to control its movement so as

to reach the target with good performance. The

leader-follower control process using Fuzzy-DPSO can be

seen in the block diagram of the control system in the

following Fig. 7.

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

Fig. 7. The block diagram of Fuzzy-DPSO algorithm to improve the

leader-follower movement in route optimization

The four stages are fuzzification, rule base, inference, and

defuzzification. Fuzzification is a process that can change the

input crisply, which includes numbers or crisp values. It is

converted to a fuzzy system in the form of linguistic values

based on certain MFs. The fuzzy membership function

consists of 9 parameters and 3 linguistic values that are

Negative, Zero, and Positive. The fuzzy rule base identifies

the values of position and orientation error

 as the fuzzy inputs and the linear

velocity and angular velocity as the fuzzy

outputs. The inference method used is Mamdani (Min-Max).

Defuzzification, the final stage in a fuzzy logic system, is the

process of mapping a quantity of the fuzzy set in the form of a

crisp value.

In this section, DPSO is used to set a more optimal route by

dynamically changing the fuzzy input MFs and to better

control the movement of the leader robot to reach the target.

Without fuzzy logic, the leader route to be taken would not be

optimal, and the resulting movement would be unsmooth.

The results would be different if the proposed DPSO were

utilized to dynamically adjust the fuzzy MFs and, thereby,

produce some rule bases corresponding to the environmental

situation. By using such rules, the leader robot produces good

position and orientation to achieve the target, and the

follower moves in the same direction with good orientation.

Fig. 8 shows the plot of fuzzy MFs after tuning, with 10, 20,

30, 40 and 50 swarm populations respectively.

 TABLE II

INITIALIZATION INPUT ERROR MFS

 Particles Fitness

S1 -1.5, -1, -1, 1.1, 1.3, 1.2, 1.5 2

S2 -1.9, -1.2, -1.6, 0.1, 1.5, 1.2, 1.1 2

S3 -1.4, -1, -1.7, 1.2, 1.9, 0.5, 1.5 1.89

S4 -1.8, -0.5, -1.2, 0, 1.8, 1.4, 1.8 1.76

S13 -1.3, -0.2, -0.6, 0.1, 1.7,1.1, 1.7 1.61

S25 0.4, 0.6, 0.4, 0.8, 1.6, 0.2, 1.6 1.44

S37 0.4, 0.7, 0.4, 0.8, 1.59,0.2, 1.59 1.42

S45 0.4, 1, 0.4, 0.7, 1.58, 0.3, 1.58 1.4

S47 0.4,0.8, 0.4, 0.5, 1.59, 0.8, 1.59 1.42

S49 0.4, 0.9, 0.4, 0.9, 1.6, 0.3, 1.6 1.44

S50 -1.3, -0.3, -1.2, 1.2, 1.4, 1.7,1.4 1.61

According to the setting of the swarm population, the

Fuzzy MFs also change, as shown in Fig. 8 and Table II. The

control performances based on the selected parameters can be

seen in the transient response (see Fig. 9). DPSO with a

swarm population of about 50 results in the best

performances in terms of the rise time, maximum overshot

and settling time to a stable condition (see Table. III). By

using Fuzzy-PSO, the values of the three parameters above

are small compared with DPSO. It can be seen that the

proposed DPSO effectively improves leader-follower

performance.

(a) Time response for

(b) Time response for

(c) Time response for

Fig. 9. Comparison of controller response using DPSO and Fuzzy-DPSO

(left: DPSO; right: Fuzzy-DPSO)

TABLE III

CONTROLLER PERFORMANCES

Controller
Rise Time (sec) Max. overshoot (%) Settling time (sec)

No-Controller 0.37 0.37 0.37 18 10 28 Oscillation Oscillation Oscillation

DPSO 0.27 0.27 0.27 2 2 4 0.4 0.4 0.6

Fuzzy-DPSO 0.12 0.12 0.2 2 2 3 0.18 0.18 0.54

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

(a) 10 swarm population for input MFs

(b) 20 swarm population for input MFs

(c) 30 swarm population for input MFs

(d) 40 swarm population for input MFs

(e) 50 swarm population for input MFs

Fig. 8. Fuzzy membership functions tuning with DPSO based on 10 to 50 swarm population

The implementation of the DPSO algorithm on fuzzy MFs

for controlling the leader-follower robots produces better

performance. Due to the fact that the DPSO algorithm cannot

control the leader robot’s movement, that robot only moves

to reach the target position. The leader robot will control the

actuator only based on the sensor rule; therefore, it is unable

to maintain distance from obstacles. But if the DPSO

algorithm is combined with Fuzzy logic, the leader robot has

the ability to control the actuator. Thereby, it can move more

precisely to reach the target, with a smooth trajectory and the

ability to maintain distance from obstacles (see Fig. 10). The

result obtained in Fig. 10 (b) shows that the leader-follower

robots with Fuzzy-DPSO are able to maintain distance from

the oval obstacles and move more smoothly. As can be seen

in Fig. 10 (a), the robots with only DPSO takes a longer route

to search the target and incurs three collisions due to its

inability to control its movement or maintain distance from

obstacles. In Fig. 10 (c), it is clearly apparent that with

Fuzzy-DPSO, the leader-follower robot can go directly to the

target, move according to the rules to avoid obstacles, and

reach the target in a shorter time and with a smoother

trajectory. Whereas, if only the DPSO algorithm is used (see

Fig 10 (d)), the robots move according to the sensor, and the

travel time is longer, but they both reach the target. Fig. 10 (f)

and (h) show better performance in a complex environment

by use of Fuzzy-DPSO. The robots will follow the fuzzy rule

and move directly to the target, faster and without collision.

However, without the fuzzy algorithm, the robots crash and

take a longer time to reach the target (see Fig. 10 (e) and (g)).

V. CONCLUSION

The PSO algorithm applies social adaptation to perform

tasks, considering all individuals to be of the same generation.

It has many advantages, such as simplicity, good

convergence performance, and fewer control parameters.

However, it does not provide a mechanism for escaping from

local optima solutions, and local extremum values are easily

fallen into. In the case of leader-follower control, by using

original PSO, the leader always moves around to find the

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

(a) DPSO (b) Fuzzy-DPSO

 (c) DPSO (d) Fuzzy-DPSO

 (e) DPSO (f) Fuzzy-DPSO

(g) DPSO (h) Fuzzy-DPSO

Fig. 10. Leader-follower trajectories based on DPSO and Fuzzy-DPSO

(with 50 swarm population)

target thus generating a lot of data to complete the task.

Therefore, the large search space for finding the possible

solution space of the optimal solution by using inertial weight

adjustment strategy into the original PSO.

In this paper, a dynamic PSO is proposed in order to

improve leader-follower performance when they move in

several environments containing static and dynamic obstacles.

Using DPSO, the leader-follower robots perform better,

showing smoother movements, shorter travel times and

producing less data. The comparison results show that the

proposed DPSO algorithm is more capable of obtaining the

global optimization solution and overcoming the problem of

local minima when the leader-follower robots move in

complex and dynamic environments. Moreover, to improve

leader-follower control and performance, the proposed

DPSO is combined with Fuzzy Logic, which enhances

performance in terms of trajectory control, time traveled to

the target, and response times for several environmental

conditions. In the future work, leader-follower robot motion

control in response to dynamic environmental changes will

be further studied.

ACKNOWLEDGMENT

The authors would like to thank the editors and the

reviewers for their constructive comments and suggestions.

This work is supported by Universitas Sriwijaya and the

Ministry of Research Technology and Higher Education of

Indonesia under Grant Penelitian Unggulan Perguruan Tinggi

2018 and Hibah Bersaing 2018.

REFERENCES

[1] G. Lee and D. Chwa, “Decentralized behavior-based formation control

of multiple robots considering obstacle avoidance,” Intell. Serv.

Robot., vol. 11, no. 1, pp. 127–138, 2018.

[2] L. He, P. Bai, X. Liang, J. Zhang, and W. Wang, “Feedback formation

control of UAV swarm with multiple implicit leaders,” Aerosp. Sci.

Technol., vol. 72, pp. 327–334, 2018.

[3] F. Berlinger, J. Dusek, M. Gauci, and R. Nagpal, “Robust

Maneuverability of a Miniature, Low-Cost Underwater Robot Using

Multiple Fin Actuation,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp.

140–147, 2018.

[4] M. A. Lewis and K.-H. Tan, “High precision formation control of

mobile robots using virtual structures,” Auton. Robots, vol. 4, no. 4, pp.

387–403, 1997.

[5] W. Ren and R. Beard, “Decentralized scheme for spacecraft formation

flying via the virtual structure approach,” J. Guid. Control. Dyn., vol.

27, no. 1, pp. 73–82, 2004.

[6] Y. Abbasi, S. A. A. Moosavian, and A. B. Novinzadeh, “Formation

control of aerial robots using virtual structure and new fuzzy-based

self-tuning synchronization,” Trans. Inst. Meas. Control, vol. 39, no.

12, pp. 1906–1919, 2017.

[7] T. Balch and M. Hybinette, “Behavior-based coordination of

large-scale robot formations,” in MultiAgent Systems, 2000.

Proceedings. Fourth International Conference on, 2000, pp. 363–364.

[8] A. Loria, J. Dasdemir, and N. A. Jarquin, “Leader--follower formation

and tracking control of mobile robots along straight paths,” IEEE

Trans. Control Syst. Technol., vol. 24, no. 2, pp. 727–732, 2016.

[9] S. Nurmaini and B. Tutuko, “Intelligent Robotics Navigation System:

Problems, Methods, and Algorithm,” Int. J. Electr. Comput. Eng., vol.

7, no. 6, pp. 3711–3726, 2017.

[10] S. Nurmaini, and A. Zarkasi, "Simple Pyramid RAM-Based Network

Architecture for Localization of Swarm Robots, " Journal of

Information Processing Systems, vol. 11, no. 3, pp. 370-388, 2015.
[11] W. Chunfeng, W. Song, and L. Liu, "An Adaptive Bat Algorithm with

Memory for Global Optimization," IAENG International Journal of

Computer Science, vol. 45, no. 2, pp. 320-327, 2018.

[12] G. Chen, Z. Lu, Z. Zhang, and Z. Sun, "Research on Hybrid Modified

Cuckoo Search Algorithm for Optimal Reactive Power Dispatch

Problem," IAENG International Journal of Computer Science, vol. 45,

no. 2, pp. 328-339, 2018.

[13] H. Wang, D. Guo, X. Liang, W. Chen, G. Hu, and K. K. Leang,

“Adaptive vision-based leader--follower formation control of mobile

robots,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2893–2902,

2017.

[14] A. N. Asl, M. B. Menhaj, and A. Sajedin, “Control of leader--follower

formation and path planning of mobile robots using Asexual

Reproduction Optimization (ARO),” Appl. Soft Comput., vol. 14, pp.

563–576, 2014.

[15] C.-J. Lin, T.-H. S. Li, P.-H. Kuo, and Y.-H. Wang, “Integrated particle

swarm optimization algorithm based obstacle avoidance control design

for home service robot,” Comput. Electr. Eng., vol. 56, pp. 748–762,

2016.

[16] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle

swarm optimization algorithm with adaptive inertia weight,” Appl. Soft

Comput., vol. 11, no. 4, pp. 3658–3670, 2011.

[17] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing

hierarchical particle swarm optimizer with time-varying acceleration

coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255,

2004.

[18] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in

Evolutionary Computation Proceedings, 1998. IEEE World Congress

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

on Computational Intelligence., The 1998 IEEE International

Conference on, 1998, pp. 69–73.

[19] B. Tang, Z. Zhu, and J. Luo, “Hybridizing particle swarm optimization

and differential evolution for the mobile robot global path planning,”

Int. J. Adv. Robot. Syst., vol. 13, no. 3, p. 86, 2016.

[20] F. den Bergh and A. P. Engelbrecht, “A convergence proof for the

particle swarm optimiser,” Fundam. Informaticae, vol. 105, no. 4, pp.

341–374, 2010.

[21] H. Mo and L. Xu, “Research of biogeography particle swarm

optimization for robot path planning,” Neurocomputing, vol. 148, pp.

91–99, 2015.

[22] M. Senanayake, I. Senthooran, J. C. Barca, H. Chung, J.

Kamruzzaman, and M. Murshed, “Search and tracking algorithms for

swarms of robots: A survey,” Rob. Auton. Syst., vol. 75, pp. 422–434,

2016.

[23] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J.

Taylor, “A vision-based formation control framework,” IEEE Trans.

Robot. Autom., vol. 18, no. 5, pp. 813–825, 2002.

Bambang Tutuko was born in Pekalongan, Indonesia, in 1960. He received

the bachelor degree in Electrical Engineering from Universitas Sriwijaya,

Indonesia in 1987, and master degree in Control System from Institut

Teknologi Bandung, Indonesia, in 1998. Currently, he is a Ph.D student in

Informatic Engineering, Universitas Sriwijaya. In 1995, he joined the

Department of Computer Engineering, Faculty of Computer Science,

Universitas Sriwijaya as a Lecture. His current research interest includes;

robotic, control system, and artificial intelligence.

Siti Nurmaini was born in Palembang, Indonesia, in 1969. This author

became a Member (M) of IAENG in 2011. He received the bachelor degree

in Electrical Engineering from Universitas Sriwijaya 1992, and master

degree in Control System from Institut Teknologi Bandung, Indonesia, in

1998 and Ph.D. degree in Computer Science from Universiti Teknologi

Malaysia in 2011. In 1995, he joined the Department of Informatics, Faculty

of Computer Science, Universitas Sriwijaya as an Associate Professor. Her

current research interest includes; deep learning, machine learning, robotic,

and medical.

Saparudin was born in Pangkalpinang, Indonesia, in 1969. He received the

bachelor degree in Mathematics Education from Universitas Sriwijaya,

Indonesia in 1993, and master degree in Informatics Engineering from

Institut Teknologi Bandung, Indonesia, in 2000 and Ph.D. degree in

Computer Science from Universiti Teknologi Malaysia in 2012. In 1995, he

joined the Department of Informatics, Faculty of Computer Science,

Universitas Sriwijaya as an Associate Professor. His current research interest

includes; image processing, computer vision, and pattern recognition.

Putri Sahayu was graduate student in Informatic Engineering from

Universitas Sriwijaya, Indonesia in 2017. He received the bachelor degree

from Informatic Engineering from Universitas Sriwijaya, Indonesia in 2014.

Her current research interest includes; pattern recognition and machine

learning.

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_01

(Advance online publication: 1 February 2019)

__

