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Abstract—Radial basis function, one of the mesh-free meth-
ods, makes it convenient to interpolate and approximate high di-
mensional data points. Interpolation fits the data points exactly,
whereas approximation fits the data points approximately. The
approximation method is more appropriate for large and noisy
data points in comparison to the interpolation method. Com-
pactly supported radial basis function is extensively discussed in
the literature of approximation theory. It also becomes popular
as a result of its computational advantages. Hence, in this
study, Wendland’s compactly supported radial basis function is
chosen. The main contribution of this paper is integrating the
clustering procedures to determine the recommended number of
reference points, which is expected to provide as few reference
points as possible for surface approximation. Three bivariate
test functions are selected to generate a moderately large
amount of data points followed by the process of adding differ-
ent levels of noise in order to observe the effectiveness of the
proposed method. The results obtained are further confirmed
and analysed through error analysis. Finally, the experimental
results show that the surfaces are well approximated from
the recommended number of reference points gained from the
proposed method.

Index Terms—Compact support, Radial basis function, Clus-
tering, Reference points, Surface approximation.

I. INTRODUCTION

I NTERPOLATION and approximation are prominently
known as the most common approaches that can be

adopted to solve engineering problems. In relation to this,
one of the techniques that can be applied for data interpo-
lation and approximation is known as radial basis functions
(RBFs). RBF can be used to produce smoother curves or
surfaces from a large number of data points in comparison to
the other fitting methods. It also provides mesh-free method
which allows large scattered data points to be handled in
high dimensional space to overcome engineering problem
that is related to unorganised data points. In addition, this
method is able to be extended to high dimensional space due
to the unnecessary tessellation of the geometric domain. [1]
originally introduced the RBF method as a new analytical
method that can be used to fit and represent the irregular
surfaces using multiquadric function. Generally, RBFs are
widely applied in engineering problems such as environmen-
tal modelling [2], neural networks [3], [4], [5], geography

Manuscript received February 24, 2018; revised August 15, 2018. This
work was supported by Universiti Sains Malaysia under RUI grant no.
1001/PMATHS/8011014.

Khang Jie Liew is with the Centre for American Education, Sunway Uni-
versity and the School of Mathematical Sciences, Universiti Sains Malaysia
(e-mail: kenji liewkj@yahoo.com.my / khangjiel@sunway.edu.my).

Kah Heng Tee, Ahmad Ramli, and Wen Eng Ong are with
School of Mathematical Sciences, Universiti Sains Malaysia (email:
royal tee8127@hotmail.com,alaramli@usm.my, and weneng@usm.my).

and digitalterrain modelling [6], solving partial differential
equations [7], surface reconstruction [8], [9], and surface
denoising [10].

Furthermore, it should be observed that RBFs can be
divided into two main groups, namely global RBFs and
the compactly supported RBFs (CSRBFs). Gaussian, multi-
quadric, inversed multiquadric, and polyharmonic splines are
examples of global RBF [11]. On the other hand, the CSRBF
was introduced by [12]. Pertaining to this, global RBFs
possess non-compact support which indicates the presence of
infinite interval, whereas the CSRBFs contain the compact
and locally-supported with the function value being zero
outside a certain interval. In the aspect of approximation,
global RBFs are insensitive to the distribution of data points;
while the sensitivity of CSRBFs tends to be high towards the
distribution of data points. The solution to the approximation
and interpolation performed using global RBFs usually leads
to the solving of the system of linear equation. However, the
solution is unreliable when approximating a large amount
of data points due to the dense and ill-conditioned matrix.
Therefore, CSRBFs can be used as an alternative method to
solve this particular problem due to sparse matrix. Sparse
matrix is the matrix with a relatively large number of
zeroes present in the system. Hence, decreased complexity
and increased computational efficiency can be achieved by
reducing the number of coefficients that needs to be solved.
Moreover, the number of reference points has to be reduced,
but a good approximation for the purpose of decreasing
the computational time of CSRBFs must be maintained. It
is important to acknowledge that the method to determine
the recommended number of reference points for RBFs
remains as an open problem, but several other methods such
as randomly chosen, clustering methods, and furthest point
algorithm can be used as replacement [13], [14]. [15] used
the principal component analysis to cluster the data points
by defining the computed centroid of the clusters as the
reference points of CSRBFs. In another work of [14], the
furthest point algorithm was used to select the reference
points of CSRBFs before the surface is reconstructed from
the unorganised and noisy data points. On the other hand,
[16] tried placing the reference points in a uniform grid
during the process of RBF approximation , but it was not
the only possible method because the emphasis is on the
capability of the placement to reflect the terrain of the
surface.

Clustering is a technique that can be used to group objects
based on their similarities or dissimilarities [17]. The most
commonly used clustering methods are hierarchical and non-
hierarchical. Hence, both clustering methods are proposed
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in this study to determine the number of reference points
for CSRBFs approximation. Furthermore, the hierarchical
method is performed to obtain the optimal number of clusters
based on the elbow rule, where theK-means method (a type
of non–hierarchical method) is used to compute the cluster
centroids which is defined as the reference points of CSRBFs
once the optimal number of clusters is established. Therefore,
it can be concluded that the reference points of CSRBFs are
not the subset of the given data points. The mathematical
background of CSRBFs approximation and cluster analysis
with elbow rule are briefly provided. On top of that, the
proposed algorithm that applies cluster analysis is described
in Section 2, while Section 3 aims to present the related
numerical results from the elbow rule with different noise
levels, graphical results for CSRBFs approximation based on
the recommended number of reference points, and the error
analysis that validates the experimental results. A discussion
will also be presented based on the results obtained from
Section 3. Finally, a detailed conclusion will be provided in
Section 4.

II. M ATERIALS AND METHODS

A. Compactlysupported radial basis function

Compactly supported radial basis function (CSRBF) was
initially introduced by [18], but the lowest degree of CSRS-
BFs remains as an open problem. In relation to this matter,
[12] managed to solve the open problem by constructing the
lowest degree of CSRBF. The main idea of CSRBF is to
use a polynomial as a function of Euclidean norm|| ∙ || on
d-dimensional,Rd which aredenoted asr with the support
on [0, 1]. However, it can be scaled to[0, ε] by replacing
the r with r

ε for somepositive ε apart from CSRBFs with
support on[0, 1]. Theε is known as the scale factor or shape
parameter. It set to one in this study. CSRBF is a strictly
positive definite inRd for all d less than or equal to some
fixed value ofd0. Hence,the property of positive definite is
crucial to allow the system of linear equation to be solved
easily and successfully [19]. The general form of cut-off
polynomial of CSRBF is presented in (1).

φd, k(r) =

{
pd, k(r), 0 ≤ r ≤ 1

0, r > 1
(1)

where d refers to the dimension number, 2k represents
the continuity (smoothness) of the function for some non-
negative integerk, andpd, k(r) is describedas a univariate
polynomial of degree

⌊
d
2

⌋
+3k+1. The Wendland’s recursive

formula for the functionφd, k for all d andk = 0, 1, 2, and 3
was formulated as an explicit formula in (2) [20].

φd,0(r) = (1 − r)l
+,

φd,1(r)
.
= (1 − r)l+1

+ [(l + 1)r + 1],

φd,2(r)
.
= (1 − r)l+2

+ [(l2 + 4l + 3)r2 + (3l + 6)r + 3],

φd,3(r)
.
= (1 − r)l+3

+ [(l3 + 9l2 + 23l + 15)r3

+ (6l2 + 36l + 45)r2 + (15l + 45)r + 15]

(2)

where l =
⌊

d
2

⌋
+ k + 1, while the symbol

.
= is referred as

equality that is up to a multiplicative positive constant.

For example, let us assumed = 3. In this case, the
Wendland’s CSRBFs with the continuity ofC0, C2, C4, and
C6, respectively are given in (3).

φ3,0(r) = (1 − r)2+,

φ3,1(r)
.
= (1 − r)4+(4r + 1),

φ3,2(r)
.
= (1 − r)6+(35r2 + 18r + 3),

φ3,3(r)
.
= (1 − r)8+(32r3 + 25r2 + 8r + 1).

(3)

Therefore, Wendland’s basis function,φ3,1(r) with C2 con-
tinuity is selected for this study due itsC2 continuity.

B. Compactly supported radial basis function approximation

Generally, the available data points of 2D or 3D are
normally assumed to be scattered and contaminated with
noise. Hence, the approximation method is considered as a
more suitable mean compared to the interpolation method
in order to fit these data points. The scattered data points
can be described as the given set ofN distinct data points,
X = {xi}

N
i=1 ⊆ Rd, whered refers to the d-dimensional

space. Furthermore, every pointxi is associatedwith a set
of function value{fi}N

i=1 ⊆ R, whereas,the approximation
function, s is denoted ass : Rd → R, wherebys(xi) ≈
f(xi).

The generalformula for RBFs approximation function is
given in (4).

s(X) = q(X) +
K∑

j=1

λjφ(||X − ξj ||) (4)

where q(X) refers tothe low degree polynomial function,
λj represents theweight value that corresponds toξj which
is known as the reference point, andK is the number of
reference points. Commonly, the polynomial functionq(X)
is in linear form; hence, it is able to ensure the stability and
solvability of RBFs approximation function [21].

In this study, the CSRBFs approximation function for
data of two variables with corresponding function values is
denoted ass : R2 → R; hence:

s(xi, yi) = a1 + a2xi + a3yi

+
K∑

j=1

λjφ
(√

(xi − ξxj )2 + (yi − ξyj )2)
)

= a1 + a2xi + a3yi +
K∑

j=1

λjφ(ri,j)

(5)

for i = 1, 2, 3, . . . , N and thex-coordinate andy-coordinate
of the reference points are denoted asξxj and ξyj , respec-
tively. Hence, the linear system of equations of (5) can be
written in the matrix form as shown in (6).
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1 x1 y1 φ(r1,1) φ(r1,2) ∙ ∙ ∙ φ(r1,K)
1 x2 y2 φ(r2,1) φ(r2,2) ∙ ∙ ∙ φ(r2,K)
1 x3 y3 φ(r3,1) φ(r3,2) ∙ ∙ ∙ φ(r3,K)
...

...
...

...
...

...
1 xN yN φ(rN,1) φ(rN,2) ∙ ∙ ∙ φ(rN,K)










∙














a1

a2

a3

λ1

λ2

...
λK














=










f(x1, y1)
f(x2, y2)
f(x3, y3)

...
f(xN , yN )










.

(6)
The system in (6) is overdetermined as a result of

(K + 3) < N . Hence, there are(K + 3) unknown weight
values(a1, a2, a3, λ1, λ1, . . . , λK)T need tobe determined.
In regards to this, the system can be solved using QR
decomposition instead of applying the normal equations of
the least square method due to the possibility of sparse matrix
in the system of CSRBFs. Let the system in (6) is represented
as Ax̂ = f and the QR decompositionA = QR, then the
system has a unique least square solution given in (7).

x̂ = R−1QT f (7)

C. Clusteranalysis

Cluster analysis is a method which involves grouping a
set of objects. This set of objects is characterised based on
certain measurements. Moreover, it possesses a wide range of
applications in several domains such as artificial intelligence,
life sciences, medical sciences, social sciences, and others
[22]. However, no assumptions can be made regarding the
number of groups that allows a set of subjects to be grouped
based on the measurement of distance. An example of this
measurement of distance is the Euclidean distance which is
normally preferred for clustering [17]. As mentioned, the
two types of clustering method are known as hierarchical
and non-hierarchical. One of the examples of hierarchical
method is agglomerative method, whereby each object is
defined as a cluster in with the most similar clusters being
combined as new cluster. Additonally, the initial clusters
will be further merged according to their similarities. The
process of merging is repeated until a single cluster managed
to be obtained. A few types of approaches can be used to
combine the most similar clusters into a new cluster. In the
context of this study, centroid approach is chosen as the most
appropriate method because the clusters are merged based on
the shortest distance between cluster centroids defined by the
squared Euclidean distance [23].

One of the examples of non-hierarchical method isK-
means method. In this case, the number of clusters,K
needs to be specified at the initial stage, which means that
the unknownK is the limitation of K-means. Thus, in
hierarchical method, the elbow rule is a rule that will be used
to determine the optimal value ofK in this study, and will
be further discussed in the following section. Random seed
points are required to start the algorithm. It is considered
as a faster method that can be applied to a large number
of datasets compared to the hierarchical method. According

to [24], the K-means process consists of three steps. The
first step of the process begins with the partitioning of
objects intoK initial clusters together with the specifiedK
centroids (random seed points). Next, each of the objects
is assigned to the cluster with the closet centroid based
on the Euclidean distance. Finally, the recalculation ofK
centroids is performed for the cluster receiving new objects
and the cluster losing its objects. This step is repeated until
no allocation of the objects is needed.

D. Clustering method in compactly supported radial basis
function for surface approximation

In this study, the elbow rule is applied to determine the
optimal number ofK clusters from a set of noisy data points.
This K value will be served as the recommended numbers
of reference point. As a result, theK-means method will
calculate theK centroids of the clusters once theK is
specified. It is important to note that these centroids are
not the subset of the data points, but they serve as the
reference points of CSRBFs for surface approximation. [25]
mentions elbow rule is performed to find an optimalK
clusters, while the process of clustering is carried out byK-
means. Furthermore, the process to determine the optimalK
clusters is initiated by the agglomerative hierarchical method
using the centroid approach, while the distance is measured
based on the squared Euclidean distance. On top of that, the
process to combine the objects at every stage is based on the
agglomeration schedule produced using Predictive Analytics
Software (PASW). Consequently, the distance between two
clusters for each stage number is produced from the ag-
glomeration schedule. The agglomeration schedule is a table
that presents the objects or clusters combined at each stage
based on distance and clustering method [26]. In addition,
the indices or stage numbers in the agglomeration schedule
is one less than the number of data points. Next, the distance
for each stage number is observed until a stage number that
corresponds to the large jumps in the distance value. In this
context, the particular stage number is known as the elbow
point, while the large jump can be explained as two clusters
with different similarities that start to merge together. The
optimal K can be calculated as shown in (8).

K = number of data points− elbow point (8)

The noise with different noise levels is added to the noise-
free 3D data points in order to resemble the data points to real
life data and to test the approximation scheme of CSRBFs.
The noise is described as the variation in a set of data
points. The proposed method, which involves the integration
of clustering method in CSRBFs for surface approximation
is computed using Mathematica and PASW and described in
Algorithm 1.

III. R ESULTS AND DISCUSSION

In this section, the noise-free data points are randomly
generated by the test functions. In the case of generating data
points, only three bivariate test functions are selected in this
study out of all test functions that can be used to verify the
effectiveness of the proposed method. The three bivariate test
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Algorithm 1 Integrating clustering method in CSRBFs for
surfaceapproximation

1: Input: A sampleof noise-free 3D data points
2: Output: Approximated CSRBFsurface
3: Add noisewith different noise levels on noise-free data

points.
4: Perform agglomerative hierarchical method using cen-

troid approach and squared Euclidean distance.
5: Determine theoptimal number ofK clusters from the

agglomeration schedule using elbow rule and (8).
6: Calculate thecentroid of each clusters usingK-means

non-hierarchical method.
7: Use thecalculated centroids as the reference pointsξj

of CSRBF.
8: Set up the linear system of equations based on the

equation shown in (6) using Wendland’s basis function
φ3,1(r).

9: Solve the overdetermined linear system using QR de-
composition.

10: Substitute theobtained value in (5).
11: Perform erroranalysis and plot the approximated CSRBF

surface.

functions areknown asF1, F7, andF10 [27]. The formula
for the three test functions are presented as follows:

F1(x, y) = 0.75exp

(

−
(9x − 2)2 + (9y − 2)2

4

)

+ 0.75exp

(

−
(9x + 1)2

49
−

(9y + 1)

10

)

+ 0.50exp

(

−
(9x − 7)2 + (9y − 3)2

4

)

− 0.20exp
(
−(9x − 4)2 − (9y − 7)2

)

F7(x, y) = 2 cos(10x) sin(10y) + sin(10xy)

F10(x, y) = exp
(
−0.04

√
(80x − 40)2 + (90y − 45)2

)

× cos
(
0.15

√
(80x − 40)2 + (90y − 45)2

)
.

The threetest functions have the domain of[0, 1] × [0, 1]
and their surface can be visualised as in Figure 1.

A total of 4000 2D points are randomly generated using
the Mathematica software from the domain[0, 1] × [0, 1]
in order to sample the 3D data points from the three test
function. The similar set of 2D data points is substituted in
the three test functions to find its function value in order to
generate a set of 3D data points. In this case, the set of 3D
data points which is sampled from the three test functions
are assumed to be noise-free. The distribution of the 4000
randomly generated 2D data points are shown in Figure 2.

The noise with different noise levels is added to each set
of noise-free 3D data points that were sampled from the
three test functions. In this case, the noise levels that need
to be considered are 0.25, 0.50, 0.75, and 1.00. Thed̂-noise
level implies a simulated noise which is added by normal
distribution with the variance of̂d ∙ h, whereash is the
average distance between the two nearest points from a set
of points. Theh values for the set of noise-free data points
from F1, F7, and F10 are 0.01042,0.02801, and 0.01297,
respectively. A total of 3999 stage numbers is generated in
the agglomeration schedule using PASW; nevertheless, only

(a) F1

(b) F7

(c) F10

Fig. 1: The test functions.

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
y

Fig. 2: The randomly generated 2D data points with size
4000 using Mathematica. This set of points is substituted in
the test functions in order to generate sets of 3D data point.

the important part is shown and the elbow point is bold
together with the optimalK as presented in Tables I–III.
The set of data points is presented in green colour whereas
the set of reference points is represented in red colour. The
following results are based on Algorithm 1.
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TABLE I: (a)–(d):Numerical results of elbow rule and the
K cluster forF1 data pointswith 0.25, 0.50, 0.75, and 1.00
noise level, respectively.

Stagenumber Distance
3966 0.027
3967 0.027
3968 0.027
3969 0.028
3970 0.023
3971 0.030
3972 0.031
3973 0.032
3974 0.032
3975 0.036

K = 4000 − 3970 = 30

Stagenumber Distance
3964 0.024
3965 0.026
3966 0.026
3967 0.027
3968 0.027
3969 0.031
3970 0.031
3971 0.032
3972 0.032
3973 0.033

K = 4000 − 3968 = 32
(a) (b)

Stagenumber Distance
3974 0.031
3975 0.032
3976 0.033
3977 0.033
3978 0.035
3979 0.039
3980 0.040
3981 0.042
3982 0.042
3983 0.050

K = 4000 − 3978 = 22

Stagenumber Distance
3974 0.034
3975 0.036
3976 0.036
3977 0.037
3978 0.037
3979 0.046
3980 0.047
3981 0.051
3982 0.052
3983 0.052

K = 4000 − 3978 = 22
(c) (d)

TABLE II: (a)–(d):Numerical results of elbow rule and the
K cluster forF7 data pointswith 0.25, 0.50, 0.75, and 1.00
noise level, respectively.

Stagenumber Distance
3955 0.117
3956 0.119
3957 0.129
3958 0.131
3959 0.135
3960 0.150
3961 0.138
3962 0.150
3963 0.153
3964 0.169

K = 4000 − 3959 = 41

Stagenumber Distance
3947 0.096
3948 0.107
3949 0.108
3950 0.108
3951 0.110
3952 0.124
3953 0.133
3954 0.134
3955 0.135
3956 0.140

K = 4000 − 3951 = 49
(a) (b)

Stagenumber Distance
3943 0.100
3944 0.101
3945 0.104
3946 0.102
3947 0.105
3948 0.116
3949 0.117
3950 0.120
3951 0.121
3952 0.125

K = 4000 − 3947 = 53

Stagenumber Distance
3948 0.105
3949 0.106
3950 0.110
3951 0.110
3952 0.111
3953 0.124
3954 0.130
3955 0.134
3956 0.139
3957 0.142

K = 4000 − 3952 = 48
(c) (d)

The approximatedsurfaces of 4000F1 data pointswith
noise and theK reference points from Table I using CSRBF
are shown in Figure 3.

(a)With 0.25 noise level and 30 reference points

(b) With 0.50 noise level and 32 reference points

(c) With 0.75 noise level and 22 reference points

(d) With 1.00 noise level and 22 reference points

Fig. 3: Surface approximation of 4000F1 data pointswith
noise and the required reference points using CSRBF.
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TABLE III: (a)–(d):Numerical results of elbow rule and the
K cluster forF10 data pointswith 0.25, 0.50, 0.75, and 1.00
noise level, respectively.

Stagenumber Distance
3966 0.035
3967 0.038
3968 0.041
3969 0.041
3970 0.043
3971 0.048
3972 0.049
3973 0.050
3974 0.051
3975 0.052

K = 4000 − 3970 = 30

Stagenumber Distance
3965 0.037
3966 0.038
3967 0.038
3968 0.038
3969 0.039
3970 0.044
3971 0.044
3972 0.046
3973 0.047
3974 0.050

K = 4000 − 3969 = 31
(a) (b)

Stagenumber Distance
3967 0.035
3968 0.036
3969 0.039
3970 0.040
3971 0.041
3972 0.047
3973 0.050
3974 0.050
3975 0.058
3976 0.058

K = 4000 − 3971 = 29

Stagenumber Distance
3972 0.042
3973 0.045
3974 0.046
3975 0.048
3976 0.050
3977 0.056
3978 0.061
3979 0.063
3980 0.064
3981 0.065

K = 4000 − 3976 = 24
(c) (d)

The approximatedsurfaces of 4000F7 data pointswith
noise and theK reference points from Table II using CSRBF
are shown in Figure 4. Meanwhile, the approximated surfaces
of 4000 F10 data pointswith noise and theK reference
points from Table III using CSRBF are shown in Figure 5.

In this context, the optimal number of clusters,K is mainly
affected by the distance measurement of agglomerative hier-
archical method. Therefore, it is safe to say that it is highly
dependent on the density and distribution of 3D data points.
The presence of different levels of noise is also able to
alter the topological distribution. Furthermore, the required
number ofK reference points for CSRBF approximation was
found to be small despite the 4000 data points that were
sampled from three test functions. Hence, this scenario leads
to the decrease of computational time. The approximated
CSRBF surfaces shown in Figures 3–5 are similar to the
original noise-free surfaces presented in Figure 1. In relation
to this matter, error analysis has to be performed to assess
the obtained graphical results. Thus, the mean absolute error
(MAE) and root mean square error (RMSE) are unitised to
validate the accuracy of the proposed method in this study.

The general formula for MAE and RMSE are given in (9)
and (10), respectively.

MAE =
1
N

N∑

i=1

|vi − ṽi| (9)

RMSE=

√√
√
√ 1

N

N∑

i=1

(vi − ṽi)2 (10)

where vi is the actual observation,̃vi represents theap-
proximated observation, andN refers to the number of
observations.

The error analysis performed for CSRBF surface approxi-
mation from a set of data points is generated byF1, F7, and

(a)With 0.25 noise level and 41 reference points

(b) With 0.50 noise level and 49 reference points

(c) With 0.75 noise level and 53 reference points

(d) With 1.00 noise level and 48 reference points

Fig. 4: Surface approximation of 4000F7 data pointswith
noise and the required reference points using CSRBF.

F10 functions inthe presence of noise are presented in Table
IV.

TABLE IV: The MAE and RMSE of the CSRBF surface
approximation forF1, F7, andF10 functions withdifferent
noise levels.

Noise level Error
CSRBF surface approximation for:

F1 F7 F10

0.25
MAE 0.007911 0.144920 0.034877
RMSE 0.010063 0.214644 0.042705

0.50
MAE 0.009011 0.140880 0.033608
RMSE 0.010672 0.175983 0.042268

0.75
MAE 0.012925 0.154955 0.035601
RMSE 0.016995 0.161280 0.043450

1.00
MAE 0.014360 0.180871 0.044854
RMSE 0.017439 0.184489 0.057994
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(a)With 0.25 noise level and 30 reference points

(b) With 0.50 noise level and 31 reference points

(c) With 0.75 noise level and 29 reference points

(d) With 1.00 noise level and 24 reference points

Fig. 5: Surface approximation of 4000F10 data pointswith
noise and the required reference points using CSRBF.

From Table IV, the recommendedK obtained from Al-
gorithm 1 contributes to the small MAE and RMSE values.
Furthermore, it is possible to explain that small MAE value
indicates that the approximated data points for the three test
functions using CSRBF are closer to the noise-free original
data points though there is an increment of the noise levels.
For the purpose of approximating the surface from a set of
noisy data points with different noise levels, the small value
of RMSE represents high accuracy of CSRBF approximation
model. On top of that, it has been noted the approximation
of the complicated surface, such as from a set ofF7 data
pointsrequireslarger number ofK compared to theF1 and
F10 data points. Apart from that, the increase of number
of K will lead to the decrease of RMSE values, which

means the increment in accuracy. However, this leads to the
increment of computational time when solving the system in
(6). In addition, the MAE values will decrease as well. But,
the noise pollution is still the main contribution for these
MAE values. Nonetheless, the computational times tend to
decrease when the number ofK is decreased, which allows
both MAE and RMSE values to increase. Therefore, the
recommended number of reference points is important in
the CSRBF approximation due to the trade-off between the
accuracy and the computational time.

IV. CONCLUSION

In this paper, an integration of clustering method was
proposed to determine the optimal number of reference
points in the surface approximation. It is also considered as a
simple approach because it requires less memory, high speed
computation, and stability. Overall, it can be concluded that
this process can be accomplished using CSRBF, clustering
method, and elbow rule. Meanwhile, the function of QR
decomposition is to ensure that the linear system is solvable.
The experiment which involves large numbers of points will
be the future research due to the limitation in computation
capacity. Finally, the proposed method is hoped to contribute
to the growing body of literature on CSRBF surface approx-
imation.

ACKNOWLEDGMENT

The authorslike to extend their gratitude to the School
of Mathematical Sciences, Universiti Sains Malaysia. Fi-
nally, the first and the second authors of this manuscript
also gratefully acknowledge the generous financial support
contributed by the Ministry of Higher Education Malaysia
under postdoctoral fellowship and MyMaster scholarship,
respectively.

REFERENCES

[1] R. L. Hardy, “Multiquadric equations of topography and other irregular
surfaces,”Journal of Geophysical Research, vol. 76, no. 8, pp. 1905–
1915, March 1971.

[2] S. M. Wong, Y. C. Hon, and T. S. Li, “Radial basis functions with
compactly supported and multizone decomposition: applications to
environmental modelling,”Boundary Element Technology, vol. 13, pp.
355–364, 1999.

[3] T. Hacib, M. Mekideche, and N. Ferkha, “Computational investigation
on the use of fem and rbf neural network in the inverse electromagnetic
problem of parameter identification,”IAENG International Journal of
Computer Science, vol. 33, no. 2, pp. 18–24, 2007.

[4] A. Rubio-Solis and G. Panoutsos, “Interval type-2 radial basis function
neural network: a modeling framework,”IEEE Transactions on Fuzzy
Systems, vol. 23, no. 2, pp. 457–473, April 2015.

[5] O. Haddadi, Z. Abbasi, and H. TooToonchy, “The hamming code
performance analysis using rbf neural network,” inProceedings of the
World Congress on Engineering and Computer Science, vol. 2, 2014.

[6] Y. Yang, Z. Wang, X. Li, and M. Fu, “Real-time terrain estimation
based on multi-scale radial basis function for unmanned ground
vehicle,” in 2016 IEEE International Conference on Information and
Automation (ICIA), August 2016, pp. 659–664.

[7] S. E. Hubera and M. R. Trummerb, “Radial basis functions for
solving differential equations: Ill-conditioned matrices and numerical
stability,” Computers & Mathematics with Applications, vol. 71, no. 1,
pp. 319–327, January 2016.

[8] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and representation
of 3d objects with radial basis functions,” inProceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques.
ACM, 2001, pp. 67–76.

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_04

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



[9] L. Wang, B. Yuan, and X. Tang, “Implicit surface reconstruction from
noisy 3d scattered data,” in2006 8th International Conference on
Signal Processing, vol. 2, 2006.

[10] K. J. Liew, A. Ramli, and A. Abd Majid, “Point set denoising using
bootstrap-based radial basis function,”PLOS ONE, vol. 11, no. 6, pp.
1–18, 2016.

[11] J. Duchon,Constructive Theory of Functions of Several Variables.
Springer Berlin Heidelberg, 1977, ch. Splines Minimizing Rotation-
invariant Semi-norms in Sobolev Spaces, pp. 85–100.

[12] H. Wendland, “Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree,”Advances in Computa-
tional Mathematics, vol. 4, no. 1, pp. 389–396, 1995.

[13] L. Ling, “An adaptive-hybrid meshfree approximation method,”In-
ternational Journal for Numerical Methods in Engineering, vol. 89,
no. 5, pp. 637–657, 2012.

[14] A. Gelas, Y. Ohtake, T. Kanai, and R. Prost, “Approximation of
unorganized point set with composite implicit surface,” in2006
International Conference on Image Processing, Oct 2006, pp. 1217–
1220.

[15] A. Gelas and R. Prost, “Multi-resolution reconstruction of irregularly
sampled signals with compactly supported radial basis functions,” in
2006 IEEE International Conference on Acoustics Speech and Signal
Processing Proceedings, vol. 3, May 2006, pp. 388–391.

[16] Z. Majdisova and V. Skala, “A radial basis function approximation for
large datasets,” inProceedings of SIGRAD 2016, Visby, Sweden, no.
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