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Abstract—With the rapid growth of data size, there are great 

challenges of clustering algorithms in terms of efficiency, 

reliability and scalability. Recently, many parallel algorithms 

using MapReduce framework have been proposed to address the 

scalability problem caused by the size of the data increases. 

When the massive data is clustered by KMeans algorithm in 

parallel, it will be read repeatedly in each iterative process, 

which increases both I/O and network costs significantly. In this 

paper, we propose a new sampling-based KMeans clustering 

algorithm, named SKMeans, which decreases the data size 

effectively, while improves the clustering accuracy by 

representative verification. Secondly, a parallelized SKMeans 

using MapReduce, named MR-SKMeans, is implemented on a 

Hadoop cluster and further explore the effect of MR-SKMeans. 

The empirical performance of MR-SKMeans is compared to 

parallel KMeans and other algorithms applying statistical 

sampling techniques. Our experimental results indicate that 

MR-SKMeans perform better in terms of efficiency, scalability 

and accuracy. 

 
Index Terms—sampling, representative verification, KMeans 

distributed computing 

 

I. INTRODUCTION 

LUSTERING is a fundamental problem and used in a 

variety of areas of computer science and related fields for 

data analysis [1], [2], such as pattern recognition, artificial 

intelligence, image segmentation, text analysis, etc. There is a 

growing tendency that clustering algorithm is expected to deal 

with large data. Google's MapReduce [3]–[5] or its 

open-source equivalent Hadoop [6] is a powerful tool for 

building such applications. MapReduce has become more and 

more popular for its simplicity, flexibility, fault-tolerance and 

scalability. It is appreciable that some researchers use 

MapReduce for large data clustering. 

KMeans algorithm is a typical clustering algorithm based 

on partition, which can cluster the large data sets efficiently. It 

specifies an initial number of groups, and reallocates objects 
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iteratively among groups to convergence. When the 

large-scale data is clustered by KMeans algorithm in parallel 

using MapReduce [7], [8], restarting jobs, inputting the initial 

data and shuffling between networks in the parallel 

framework have been caused by many iterations before 

convergence, which increase both I/O and network costs 

significantly and affect the clustering performance. In this 

paper, we initially present a new sampling-based KMeans 

clustering algorithm, named SKMeans, which can reduce the 

data size effectively, and improve the clustering accuracy 

with representative verification. Moreover, we develop 

MR-SKMeans, which is a parallelized SKMeans using 

MapReduce. This algorithm selected a sample set from the 

data set in parallel firstly. Then the sample set is used as input 

data for parallel KMeans. Representative verification 

algorithm has been put to use for each data point in order to 

assign the cluster center. The experimental results on various 

datasets show that MR-SKMeans is efficient and scalable. 

The traditional sampling algorithm has many shortcomings 

[9], [10], such as many points cannot be represented by 

sample set, and low-density clusters and noise points will be 

lost with high probability, etc. However, missing clusters can 

be avoided in the sampling by using MR-SKMeans, and the 

accuracy of clustering results can be improved when 

representative verification algorithm is utilized in the 

clustering process. 

The rest of this paper is organized as follows. Related work 

is discussed in Section II. Formal definitions of sampling 

algorithm and representative verification algorithm are 

described in Section III. Section IV describes the parallel 

version of SKMeans using MapReduce, named 

MR-SKMeans. The experiments are analyzed in Section V. 

And we summarize our paper in Section VI. 

II. RELATED WORK 

The traditional clustering algorithm performs efficiently 

and achieves satisfied results when the size of data is small. 

However, it performs poorly on large data due to some factors, 

such as data quantity, data dimensions, computing power and 

memory. 

In order to improve efficiency and accuracy of clustering 

results under the vast amounts of data environment, various 

methods have been proposed and divided into two categories. 

One aims to improve the execution of algorithm and optimize 

parameter setting, such as GCHL [11], ISB-DBSCAN [12], 

MCluStream [13], DisAP [14], DBCURE-MR [15], etc. The 

other is an attempt to apply statistical sampling techniques on 

clustering algorithms, such as Iterative-Sample-kMedian, 
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Iterative-Sample-kCenter [16], DMC, WMC [17], etc. 

MR-SKMeans algorithm, which is proposed in this paper, 

applies the statistical sampling techniques on clustering 

algorithms, and belongs to the latter. 

In [7], [8], parallel KMeans algorithm using MapReduce 

could speed up the efficiency and enhance the processing 

capacity. However, multi-iterations must be operated before 

convergence. And the computing jobs will be restarted and 

the initial data will be read and shuffled for each iteration, 

which causes huge cost. 

In [16], a clustering algorithm based on Iterative-Sample 

was presented using MapReduce by Alina Ene, named 

Iterative-Sample-kMedian and Iterative-Sample-kCenter. 

These methods used sampling method to decrease the data 

size and ran a time consuming kCenter and kMedian 

algorithm. They also used the sampling ideas proposed by M 

Thorup as a subroutine for Iterative-Sample [18]. The role of 

Iterative-Sample performed that it added a small sample of 

points to the final sample in each iteration, and discarded most 

points which are close to the current sample. Once they got a 

good sample, kCenter and kMedian just ran on the sampled 

points. However, data points must be read repeatedly and 

eliminated continuously, which led to low sampling efficiency 

and non-uniform sample set. The points in unsampled set, 

which cannot be well represented by the sampled set, will be 

lost when kCenter and kMedian ran just on the sampled points, 

and the accuracy of clustering will be decreased. 

Distribution-based merge clustering (DMC)
 

and 

Weight-based merge clustering (WMC)
 
were proposed by 

Xiaoli Cui [17], et al. WMC and DMC were sampled on the 

original large-scale dataset for 2k times to get 2k sample sets 

with probability px = 1/ (ε
2 
N), where ε∈(0,1) and controls the 

size of the sample, N is the number of points and k is the 

number of clusters. 2k small-scale samples were merged into k 

cluster centers, and then all points were assigned to 

appropriate centers. It is effective to achieve preferable 

performance on accuracy of clustering. However, the 

distribution of sample set which is brought by random 

sampling is non-uniform, and may lead to miss the points with 

high probability which cannot be well represented by the 

sample. 

For the purpose of getting satisfied sample set, improving 

the efficiency of sampling, and ensuring the consistency of the 

sample, we propose a fast sampling-based KMeans clustering 

algorithm, named SKMeans, and then develop MR-SKMeans, 

which is a parallelized SKMeans using MapReduce. 

III. SKMEANS: KMEANS ALGORITHM BASED ON SAMPLING 

In this section, an improved version of the sampling 

algorithm and representative verification will be discussed. 

As the amount of data increases, the time cost of the algorithm 

will be enormous. Sampling algorithm aims to get a smaller 

subset of points substantially that represents all of the points 

well and decrease the data size. Once we get the sample set, 

KMeans with representative verification will be run on the 

sample points. Sampling algorithm can decrease the data size 

and speed up the clustering algorithm. Representative 

verification algorithm can achieve high performance in terms 

of accuracy. 

A. Definition 

Let D = {p1, …, pn} denote a set of n points. Each point pi

∈D is a d-dimensional vector <pi(1), pi(2),…, pi(d)> where 

pi(j) represents the j-th dimension of the point and n is the 

total number of points in D. 

Definition 1: (grid cell) Given a constant parameter ε. 

According to the ε, each dimension of the data space is 

divided into n’ spaces, then the whole data space will be 

partitioned into grids and the length of each grid isε . We 

denote the grid cell as Cell, which is defined as Cell = {c1, 

c2, …, cn’}, cj = {|ljj’, hjj’|}, 1≤ j ≤n’ and hjj’ – ljj’ =ε . 

Where j represents the index of dimension, j’ represents the 

spatial ordinal, c represents a vector and all elements are in [l, 

h) for each dimension, l and h are respectively the maximum 

and minimum values of c. 

Definition 2: (sampling domain) Let r denote the sampling 

radius and point p is referred to as a center. And then, the 

neighborhood is the sampling domain of p, denoted by N(p), 

where N(p)={q∈D | dist(p, q)≤r}, and dist(p, q) is the 

distance between p and q. 

Definition 3: (core sampling point) Let |N(p)| denote the 

number of points in N(p). We call p a core sampling point if 

|N(p)|≥Minpts, where Minpts is the minimum of sampling 

points. 

Definition 4: (rectangular domain) Given Cell and r, the 2
d
 

vertices of the Cell form the sampling domains. And then the 

Cell are referred to as the center and extended K cells along 

the positive and opposite directions of each dimension, which 

could cover the 2
d
 vertex sampling domains. Then the area 

named rectangular domain formed by the grid set. In order to 

calculate the rectangular domain, the length of Cell, which is ε, 

is defined as ε = r/K. In experiment, we set K = 1 and ε = r. 

Example 1: Considering the 2-dimension data points in Fig. 

1. Suppose that we would find the rectangular domain of Cell 

with K = 1 and ε = r, where Cell is a grid and r is the sampling 

radius. Cell, which is considered as the center, has 4 vertices A, 

B, C, D which are utilized to discover the sampling domains. 

And then K cells are extended both vertically and horizontally. 

A new rectangular domain which could cover the 4 vertex 

sampling domains has been formed. 
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Fig. 1.  The overview of rectangular domain 

 

Definition 5: (sample point SP) Given M∈D, r and Minpts. 

Suppose that the number of points in the sampling domain of a 

data point M (i.e. |N(M)|) is greater than Minpts, so M is 

considered as the core sampling point. Next, we discover the 

sampling domain, in which M is referred to as the center and r 

is the radius. The center point of each quadrant of the 
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sampling domain boundary of M is considered as the 

boundary points (denoted by BP). Finding out the nearest 

points pi (i = 1, …, 2
d
) among all points in sampling domain of 

M and BPs. Then pi is the sample point if the distance dist1 

between pi and the nearest BP of pi is not more than the 

distance dist2 between pi and M. 

Example 2: Considering the 2-dimension data points in Fig. 

2. Suppose that we would find SPs of M with K = 1 and ε= r, 

where Cell is a grid and r is the sampling radius. The sampling 

domain is discovered with r, and BPs are the points of E, F, G, 

H. Then we will find out the nearest points e, f, g, h included 

in SPs. 
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Fig. 2.  The overview of rectangular sample points 

 

B. Sampling Algorithm 

When KMeans algorithm is performed, the number of 

iterations increased exponentially before the set of centers 

converges [19]. Restarting MapReduce jobs, inputting 

original data set and shuffling intermediate results will be 

executed repeatedly when the large-scale data is clustered by 

KMeans algorithm in parallel using MapReduce, which 

increases both I/O and network costs significantly. 

Accordingly, a new sampling algorithm is proposed in order 

to reduce the input data size. Simultaneously, the grid division 

method will be regarded as a complement to reduce the time 

cost of range query. The data set D is partitioned into grids, 

and the data points are mapped to the grid cells. The 

rectangular domain related to point p is computed by grid 

partition. If the number of points in the rectangular domain 

related to p is less than Minpts, then the number of points in 

sampling domain related to p must be less than Minpts (i.e. 

|N(p)|<Minpts), all the points in the rectangular domain are 

inserted into the sample set S. If the number of points in the 

rectangular domain related to p is more than Minpts, then we 

calculate the total number of points in sampling domain 

related to p (i.e. |N(p)|). If |N(p)|<Minpts, all the points in the 

sampling domain are added into the sample set S. If not, we 

call p the core sampling point, and find the SPs in the 

sampling domain related to p. Then p and its SPs are inserted 

into sample set S. Finally, SPs is regarded as the seed points to 

expand the sampling. The pseudo code of Algorithm 1 and 

Algorithm 2 (see Table I and Table II) explains how it works. 

Sample set obtained by the algorithm can keep the 

characteristic distribution of the original data very well. The 

loss of low density clusters and noise points can be prevented 

effectively. The sample points obtained by the method we 

proposed are highly representative, and the method 

guarantees the clustering quality in the subsequent clustering. 

 
TABLE I 

PROCEDURE OF ALGORITHM 1 

Algorithm1: Sampling Algorithm(D, r, Minpts) 

1: Set S←φ, H←φ, Queue←φ 

2: divide data spatial into grids which size is ε, map all the points in D into 

the grid cells 

3: mark all pi∈D as “UNVISITED” 

4: While pi is marked as “UNVISITED” do 

5:  mark pi as “VISITED”, calculate the number of points in rectangular 

domain of pi as |N1(pi)| 

6:   if |N1(pi)|< Minpts, then 

7:    for each p∈N1(pi) do 

8:      S.add(p), mark p as “VISITED” 

9:    else 

10:    calculate the number of points in sampling domain of pi as |N2(pi)| 

11:      if |N2(pi)|< Minpts, then 

12:       for each p∈N2(pi) do 

13:        S.add(p), mark p as “VISITED” 

14:       else 

15:        Finding SPs(pi, N2(pi)) 

16:        while Queue≠φ do 

17:         select the head point p1，and pi ←p1 

18:        end while 

19: end while 

20: calculate η =|S|∕|D| 

21: Output S, H,η  

 
TABLE II 

PROCEDURE OF ALGORITHM 2 

Algorithm2: Finding SPs(pi, N2(pi)) 

1: identify boundary data object BPs of pi 

2:  calculate the distance dist(pi, BP) between BPs and all the points in 

sampling domain of pi, and select the closest points p from BPs 

3: for each p do 

4:   if p is “UNVISITED” then 

5:     if dist(p, BP) < dist(p, pi) then 

6:       S.add(p), Queue.add(p) 

7:       mark each pm∈N2(pi) as “VISITED” 

8:       for each pm∈N2(pi) and pm ≠ p do 

9:         pm add tags of its core sampling point pi 

10:         H.add(pm) 

11:     end if 

12:   end if 

13: return S, H, Queue 

 

C. Representative Verification 

In order to improve the quality of clustering and avoid 

losing data points that cannot be represented by S, 

Representative verification is proposed in KMeans. In this 

paper, the distance of a point pi to a set Cluster means the 

shortest distance between pi and any point in Cluster. If 

dist(p*, C) ≤ dist(p, C), then point p is satisfied by S with 

respect to C, where C is the set of cluster centers and p* is the 

core sampling point of p. If p is unsatisfied by S, then it cannot 

be well represented by S and needs to be inserted into S. 

Suppose that itr is the convergent boundary, k is the number 

of clusters, t is the total number of iterations and b is the b-th 

cluster where b ∈ [1, k]. The loop of KMeans will be 

continued until there are no differences of the centers between 

(t-1)-th iteration and t-th iteration. In the following 

experiments, itr is equal to 10
-6

. The pseudo code of 

Algorithm 3 (see Table III) and Algorithm 4 (see Table IV) is 

described as below. 
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TABLE III 

PROCEDURE OF ALGORITHM 3 

Algorithm3: KMeans algorithm with representative verification(S, H, k) 

1: Let a = Float.MAXVALUE; t = 1 

2: Choose k centers from S, let C(0)=C1
(t),C2

(t),…,Ck
(t) 

3: while a> itr do 

4:   form k clusters by assigning pi∈S to its nearest center and get the nearest 

distance distmin 

5:   Representative Verification(S, H) 

6:   find new centers of the k clusters C1
(++t), C2

(++t),…, Ck
(++t) 

7:   



k

m

t

m

t

m cca
0

2
1  

8: Output C(t) 

 
TABLE IV 

PROCEDURE OF ALGORITHM 4 

Algorithm4: Representative Verification(S, H) 

1: for each pm∈H do 

2:   get pm* which is added as tags of core sampling point 

3:   if distmin(pm, C) < dist(pm*, C) then 

4:     pi is unsatisfied by S with respect to C 

5:     S.add(pm), H.delete(pm) 

6: return S, H 

 

IV. PARALLEL SKMEANS ALGORITHM USING MAPREDUCE 

In this section, a distributed algorithm MR-SKMeans using 

MapReduce is proposed on the basis of SKMeans algorithm. 

MR-SKmeans algorithm is divided into two chief phases as 

shown in Fig. 3. The sampling algorithm runs in parallel by 

Mapper1 and Reducer1 in the first phase. KMeans with 

representative verification algorithm is carried out in parallel 

by Mapper2 and Reducer2 in the second phase. 
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A. Sampling Algorithm in MapReduce 

According to the size of processed file size in the 

distributed file system, data block is stored in different nodes 

whose storage capacity is 64M, and each data block is 

allocated to a Map task to complete the calculation. In 

Mapper1, k1 denotes the processed file id and v1 indicates the 

data records, each Map task output Sj and Hj, where j is the 

j-th Map task. In Reducer1, the inputs are (1, Sj) and (2, Hj). 

Each Reduce task outputs are S and H. The pseudo code of 

Algorithm 5 (see Table V) is detailed as below. 

Algorithm 5 shows the sampling process using MapReduce. 

Each mapper does sampling and then shuffle these samples Sj 

and Hj to the corresponding reducers. In the end, samples S 

and H can be obtained, where 1≤ j ≤ Mp and Mp is the number 

of Map tasks. 

TABLE V 

PROCEDURE OF ALGORITHM 5 

Algorithm5: MapReduce-Sampling Algorithm(D, r, Minpts) 

1: Mapper1(k1, v1) 5: Reducer1((1, Sj),(2, Hj)) 

2: for each mapper do 6: for each pi∈Sj, pm∈Hj do 

3: do sampling by Sampling 

Algorithm(D, r, Minpts) 
7:   S.add(pi), H.add(pm) 

4: Output((1, Sj), (2, Hj)) 8: Output(S, H); 

 

B. Representative Verification in MapReduce 

In the distributed file system, KMeans with representative 

verification algorithm is carried out with S and H which is the 

input data set. In Mapper2, the inputs for each Map task are S, 

H and the cluster centers of the last round of iteration (or the 

initial cluster centers). And the outputs are cluster ID denoted 

by Cluster and points denoted by pb where b∈[1, k]. In 

Reducer2, each Reduce task is to calculate the new cluster 

centers with b and Cb as the input, and output final centers. 

The pseudo code of Algorithm 6 (see Table VI) is shown as 

below. 
TABLE VI 

PROCEDURE OF ALGORITHM 6 

Algorithm6: MapReduce-KMeans with Representative Verification(S,H, k) 

1: Mapper2(k1, v1) 5: Reducer2(b, Cb) 

2: form k clusters by assigning each 

pi∈S to its nearest center 

6: calculate new centers of the k 

clusters 

3: Representative Verification(S, H) 
7: repeat 1,2,3,4,5,6 until satisfied 

the convergence condition 

4: Output((1,C1), (2,C2),…, (k,Ck)) 8: Output final centers 

 

C. Complexity Analysis 

Algorithm 1 and Algorithm 2 consist of three steps. Firstly, 

the data spatial is divided into grids. The maximum and 

minimum of each dimensionality in space need to be 

calculated, thus the time complexity is O(n*d), where d is the 

total dimensionality of data space. Secondly, all the points are 

mapped to the grid cells. Suppose that n is the number of 

points in D which must be traversed when all the points are 

mapped to the grid cells, so the time complexity is O(n). At 

last, the sample points SPs are selected and extended as the 

seed points, so the time complexity is O(n*d+2
d
). In summary, 

the time complexity of Algorithm 1 and Algorithm 2 is 

O(n*d+2
d
). 

According to the Algorithm 3 and Algorithm 4, some 

points in H cannot be well represented by S and need to be 

inserted into S in each iteration. Suppose that nm is the number 

of points which need to be inserted into S in the m-th iteration, 

where m∈[1, t], and t is the total number of iterations. Thus, 

the time complexity of Algorithm 3 and Algorithm 4 is 

)*)n*((
t

1m

m ktsO 


 , where s is the total number of points in 

S, k is the total number of clustering centers. 

When MR-SKMeans is executed, Mp1 means the average 

number of map tasks of Mapper1 on one node. N1 is the total 

number of nodes in the Hadoop cluster used to perform the 

tasks, then the time complexity of Algorithm 5 is O((n*d+ 

2
d
)/(Mp1*N1)). Meanwhile, the time complexity of algorithm 

6 is ))*/(*)n*(( 22

t

1m

m NMpktsO 


 , where Mp2 is the 

average number of map tasks of Mapper2 on one node, N2 is 
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the number of nodes in the Hadoop cluster to perform the 

tasks. 

In conclusion, the total time complexity of MR-SKMeans 

is ))*/(*)n*()*/()2*(( 22

t

1m

m11 NMpktsNMpdnO d 


 . 

V. EXPERIMENTAL SETUP 

A. Datasets 

In our experiments, five datasets are used to evaluate the 

performance of MR-SKMeans. The type of all data sets is 

numerical. And the clustering results of the data sets must be 

convex shape. In other words, the clusters must be convex. 

The first dataset, S-2 Data Set [20], [21], consists of 5,000 

points in 2 dimensions and has 15 clusters. To evaluate 

MR-SKMeans with large data sets, S-2 Data Set is extended, 

and has been named S-2*, by duplicating its original records 

500 times and the number of data points is 2,500,000. In order 

to generate data points which are different from data points 

included in S-2 Data Set, a small random noise with a 

variation of +/- 5 is adapted for each coordinate value of the 

data points. 

The other three datasets are from real-world settings and 

can be publicly available from the UC Irvine Machine 

Learning repository [22]. The 3D Road Network Data Set 

consists of 434,874 points in 4 dimensions. And 3D Road 

Network Data Set is also increased by duplicating its records 

10 times, named Road*, and the number of data points is 

4,348,740. And a small random noise with a variation of +/- 1 

is also adapted. The Individual Household Electric Power 

Consumption Data Set, named House, consists of 2,075,260 

points in 9 dimensions. Bag of Words Data Set, named BoW, 

consists of 483,450,157 points in 3 dimensions. S-2 dataset is 

tested in a single machine and the other four datasets are 

verified with the parallel implementation in the Hadoop 

framework. 

In our experiments, there are five datasets (S-2, S-2*, 

Road*, House and BoW) used in parallel KMeans [7] based 

on MapReduce, Iterative-Sampling-KMeans (IS-KMeans) 

[16], WMC, DMC [17] and MR-SKMeans. Moreover, 

Euclidean distance was used as similarity measure. In this 

paper, the Davies-Bouldins index [23] (DBI) used in our 

proposed clustering algorithm for examining the soundness of 

our clusters will be discussed. Davies-Bouldins index is a 

function of the ratio of the sum of within-cluster distribution 

to between-cluster separation. 

B. Parameter Setting Comparison 

For the MR-SKMeans algorithm, the sampling results and 

clustering accuracy are determined by the sampling radius r 

and minimum of sampling points Minpts. In this subsection, 

the effects bought by r and Minpts on sampling results and 

clustering accuracy are explored for different parameter 

settings. MR-SKMeans algorithm and KMeans algorithm are 

carried out with S-2 dataset. When Minpts=50, the sampling 

rate and DBI index of different r are shown in Fig. 4. When r

∈[1750, 2250], we can get a lower DBI index which is close 

to 2.27. When r=2000, the sampling rate and DBI index of 

different Minpts are shown in Fig. 5. When Minpts∈[45, 50], 

we can get a lower DBI index which is close to 2.48. 
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Fig. 4.  Effects of varying r on DBI index and sampling rate 
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Fig. 5.  Effects of varying Minpts on DBI index and sampling rate 

 

DBI index is close to 4.07 when KMeans is executed with 

S-2 dataset. In Fig. 4 and Fig. 5, the sampling rate decreases 

with the increasement of r, moreover, increases with the 

increment of Minpts. However, when r ∈ [1750, 2250], 

Minpts∈[45, 50], DBI index of MR-SKMeans is less than 

4.07. Therefore, MR-SKMeans can get a lower DBI index 

and achieve better clustering results than KMeans by means 

of r and Minpts. 

C. Performance Evaluation 

S-2*, Road*, House and BoW datasets were used in 

parallel KMeans, MR-SKMeans, IS-KMeans, WMC, and 

DMC in this subsection. Fig. 6 shows the performance of 

these algorithms when k=15 for S-2* and Road*, k=50 for 

House and BoW. For S-2*, Road*, House and BoW is 

utilized, Table VII indicates the DBI index of these 

algorithms. And KMeans is carried out in parallel based on 

MapReduce. The same cluster validity index is used to select 

the clustering. These algorithms are executed repeatedly for 

20 times, the average of execution time is described in Fig. 6 

and the average DBI indexes are showed in Table VII. 

As shown in Fig. 6, MR-SKMeans is far better than the 

parallel KMeans. Moreover, it is better than that of 

IS-KMeans, DMC and WMC algorithms. As shown in Table 

VII, DBI index of MR-SKMeans is slightly larger than 

KMeans, WMC and DMC in terms of Road* dataset, 

however, it is inferior to IS-KMeans. In terms of S-2*, House 

and BoW datasets, DBI index of MR-SKMeans is 

significantly lower than that of other algorithms. 

Experimental results indicate that the average clustering time 

has been significantly reduced. 
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TABLE VII 

COMPARISON OF DBI INDEX BY VARIOUS DATASETS 

Data Set K KMeans IS-KMeans WMC DMC MR-SKMeans 

S-2* 50 3.7594 2.7613 3.5106 3.2907 2.4597 

Road* 50 0.5901 0.6720 0.5847 0.5879 0.6257 

House 50 2.0664 2.0789 2.2056 2.2081 1.7516 

BoW 50 3.0449 2.0892 2.2789 1.9461 1.2451 
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Fig. 6.  Comparison of time measured by various methods 

 

Meanwhile, the efficiency of MR-SKMeans is explored on 

varying numbers of machines from 3 to 9. Fig. 7 illustrates the 

results of clustering on S-2*, Road*, House and BoW datasets, 

when k=15 for S-2* and Road*, k=50 for House and BoW. 

The result shows that MR-SKMeans is scalable. 
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Fig. 7.  Running time with varying number of machines 

 

D. Discussions 

The efficiency and accuracy of the proposed algorithms are 

evaluated by varying in parameters, sizes of datasets and 

numbers of machines respectively. Fig. 4 and Fig. 5 show that 

the parameters of r and Minpts have great influence on 

sampling results and clustering accuracy, which can be 

inferred from the sampling rate and DBI index. When r∈

[1750, 2250], Minpts∈[45, 50], the sampling rate is about 

45%, DBI index of our algorithms is lower than that of 

KMeans. Conclusions can be made that the appropriate r and 

Minpts can be used to reduce the amount of data effectively, 

and get better clustering results. 

Fig. 6 and Table VII indicate the efficiency and accuracy of 

various algorithms on different sizes of datasets. As shown in 

Fig. 6, MR-SKMeans spends less time than the other four 

algorithms. The reason for this phenomenon is that Algorithm 

1 in Section III is used to obtain the points which can 

represent the unsampled points well. Moreover, the sample 

set, which is used for clustering, is far smaller than the initial  

 

data set. Thus, both I/O and network costs are decreased 

significantly. The method of grid division in Algorithm 1 is 

used to execute query in a limited extent related to each point, 

and it reduces the total computation cost greatly and saves a 

lot time. We can conclude from Table VII that MR-SKMeans 

gets lower DBI index than the other algorithms for S-2*, 

House and BoW datasets. The reason for the conclusion is 

that the distribution of sample set and the initial data set is 

consistent, and representative verification algorithm avoids 

missing data points which cannot be represented by the 

sample set. However, DBI index of MR-SKMeans is larger 

than the other algorithms for Road* set. The reason lies in the 

fact that there is a great difference between the shapes of 

clusters. Meanwhile in the Road* set, there exists a great deal 

of outliers included in the sampling set, which is sensitive to 

KMeans. Therefore, it exerts an influence on clustering 

results. Fig. 7 indicates that our proposed algorithm is 

scalable. 

VI. CONCLUSIONS AND FUTURE WORKS 

In order to overcome the shortcomings of traditional 

sampling algorithms when big data is dealt with the parallel 

KMeans. A new sampling algorithm is first proposed to 

obtain the sample set by making full advantages of the 

definitions of rectangular domain, sampling domain and 

sample point. And then, representative verification algorithm 

is proposed to avoid missing the points which cannot be well 

represented by the points in sample set. Based on the above, 

the parallel MR-SKMeans is proposed using MapReduce. 

Experimental results demonstrate that MR-SKMeans can find 

the appropriate parameters to get better clustering results. 

Compared to Iterative-Sampling-KMeans, WMC and DMC, 

MR-SKMeans performs better and could achieve higher 

accuracy when various large data sets are utilized. 

Furthermore, our proposed algorithm scales up well with 

MapReduce framework. Future work will be devoted to 

automatically identify the parameters, instead of specified by 

users. 
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