



Abstract—With the rapid growth of data size, there are great

challenges of clustering algorithms in terms of efficiency,

reliability and scalability. Recently, many parallel algorithms

using MapReduce framework have been proposed to address the

scalability problem caused by the size of the data increases.

When the massive data is clustered by KMeans algorithm in

parallel, it will be read repeatedly in each iterative process,

which increases both I/O and network costs significantly. In this

paper, we propose a new sampling-based KMeans clustering

algorithm, named SKMeans, which decreases the data size

effectively, while improves the clustering accuracy by

representative verification. Secondly, a parallelized SKMeans

using MapReduce, named MR-SKMeans, is implemented on a

Hadoop cluster and further explore the effect of MR-SKMeans.

The empirical performance of MR-SKMeans is compared to

parallel KMeans and other algorithms applying statistical

sampling techniques. Our experimental results indicate that

MR-SKMeans perform better in terms of efficiency, scalability

and accuracy.

Index Terms—sampling, representative verification, KMeans

distributed computing

I. INTRODUCTION

LUSTERING is a fundamental problem and used in a

variety of areas of computer science and related fields for

data analysis [1], [2], such as pattern recognition, artificial

intelligence, image segmentation, text analysis, etc. There is a

growing tendency that clustering algorithm is expected to deal

with large data. Google's MapReduce [3]–[5] or its

open-source equivalent Hadoop [6] is a powerful tool for

building such applications. MapReduce has become more and

more popular for its simplicity, flexibility, fault-tolerance and

scalability. It is appreciable that some researchers use

MapReduce for large data clustering.

KMeans algorithm is a typical clustering algorithm based

on partition, which can cluster the large data sets efficiently. It

specifies an initial number of groups, and reallocates objects

Manuscript received April 04, 2018; revised August 15, 2018. This work

was supported by National Social Science Foundation of China under Grant

no. 16BJY028.

Hongbiao Li is with College of Information Engineering, Northeast

Electric Power University, Jilin, Jilin, China (e-mail: lihongbiao@126.com).

Ruiying Liu is with State Grid Hebei Electric Power Company Co., Ltd

Information & Telecommunication Branch, Shijiazhuang, Hebei, China

(e-mail: neduqlw@foxmail.com).

Jingdong Wang is with College of Information Engineering, Northeast

Electric Power University, Jilin, Jilin, China (e-mail: wjd_nedu@126.com).

Qilong Wu is with State Grid Hebei Electric Power Company Co., Ltd

Information & Telecommunication Branch, Shijiazhuang, Hebei, China

(e-mail: 863276967@qq.com).

iteratively among groups to convergence. When the

large-scale data is clustered by KMeans algorithm in parallel

using MapReduce [7], [8], restarting jobs, inputting the initial

data and shuffling between networks in the parallel

framework have been caused by many iterations before

convergence, which increase both I/O and network costs

significantly and affect the clustering performance. In this

paper, we initially present a new sampling-based KMeans

clustering algorithm, named SKMeans, which can reduce the

data size effectively, and improve the clustering accuracy

with representative verification. Moreover, we develop

MR-SKMeans, which is a parallelized SKMeans using

MapReduce. This algorithm selected a sample set from the

data set in parallel firstly. Then the sample set is used as input

data for parallel KMeans. Representative verification

algorithm has been put to use for each data point in order to

assign the cluster center. The experimental results on various

datasets show that MR-SKMeans is efficient and scalable.

The traditional sampling algorithm has many shortcomings

[9], [10], such as many points cannot be represented by

sample set, and low-density clusters and noise points will be

lost with high probability, etc. However, missing clusters can

be avoided in the sampling by using MR-SKMeans, and the

accuracy of clustering results can be improved when

representative verification algorithm is utilized in the

clustering process.

The rest of this paper is organized as follows. Related work

is discussed in Section II. Formal definitions of sampling

algorithm and representative verification algorithm are

described in Section III. Section IV describes the parallel

version of SKMeans using MapReduce, named

MR-SKMeans. The experiments are analyzed in Section V.

And we summarize our paper in Section VI.

II. RELATED WORK

The traditional clustering algorithm performs efficiently

and achieves satisfied results when the size of data is small.

However, it performs poorly on large data due to some factors,

such as data quantity, data dimensions, computing power and

memory.

In order to improve efficiency and accuracy of clustering

results under the vast amounts of data environment, various

methods have been proposed and divided into two categories.

One aims to improve the execution of algorithm and optimize

parameter setting, such as GCHL [11], ISB-DBSCAN [12],

MCluStream [13], DisAP [14], DBCURE-MR [15], etc. The

other is an attempt to apply statistical sampling techniques on

clustering algorithms, such as Iterative-Sample-kMedian,

An Enhanced and Efficient Clustering Algorithm

for Large Data Using MapReduce

Hongbiao Li, Ruiying Liu, Jingdong Wang and Qilong Wu

C

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_07

(Advance online publication: 1 February 2019)

__

Iterative-Sample-kCenter [16], DMC, WMC [17], etc.

MR-SKMeans algorithm, which is proposed in this paper,

applies the statistical sampling techniques on clustering

algorithms, and belongs to the latter.

In [7], [8], parallel KMeans algorithm using MapReduce

could speed up the efficiency and enhance the processing

capacity. However, multi-iterations must be operated before

convergence. And the computing jobs will be restarted and

the initial data will be read and shuffled for each iteration,

which causes huge cost.

In [16], a clustering algorithm based on Iterative-Sample

was presented using MapReduce by Alina Ene, named

Iterative-Sample-kMedian and Iterative-Sample-kCenter.

These methods used sampling method to decrease the data

size and ran a time consuming kCenter and kMedian

algorithm. They also used the sampling ideas proposed by M

Thorup as a subroutine for Iterative-Sample [18]. The role of

Iterative-Sample performed that it added a small sample of

points to the final sample in each iteration, and discarded most

points which are close to the current sample. Once they got a

good sample, kCenter and kMedian just ran on the sampled

points. However, data points must be read repeatedly and

eliminated continuously, which led to low sampling efficiency

and non-uniform sample set. The points in unsampled set,

which cannot be well represented by the sampled set, will be

lost when kCenter and kMedian ran just on the sampled points,

and the accuracy of clustering will be decreased.

Distribution-based merge clustering (DMC)

and

Weight-based merge clustering (WMC)

were proposed by

Xiaoli Cui [17], et al. WMC and DMC were sampled on the

original large-scale dataset for 2k times to get 2k sample sets

with probability px = 1/ (ε
2
N), where ε∈(0,1) and controls the

size of the sample, N is the number of points and k is the

number of clusters. 2k small-scale samples were merged into k

cluster centers, and then all points were assigned to

appropriate centers. It is effective to achieve preferable

performance on accuracy of clustering. However, the

distribution of sample set which is brought by random

sampling is non-uniform, and may lead to miss the points with

high probability which cannot be well represented by the

sample.

For the purpose of getting satisfied sample set, improving

the efficiency of sampling, and ensuring the consistency of the

sample, we propose a fast sampling-based KMeans clustering

algorithm, named SKMeans, and then develop MR-SKMeans,

which is a parallelized SKMeans using MapReduce.

III. SKMEANS: KMEANS ALGORITHM BASED ON SAMPLING

In this section, an improved version of the sampling

algorithm and representative verification will be discussed.

As the amount of data increases, the time cost of the algorithm

will be enormous. Sampling algorithm aims to get a smaller

subset of points substantially that represents all of the points

well and decrease the data size. Once we get the sample set,

KMeans with representative verification will be run on the

sample points. Sampling algorithm can decrease the data size

and speed up the clustering algorithm. Representative

verification algorithm can achieve high performance in terms

of accuracy.

A. Definition

Let D = {p1, …, pn} denote a set of n points. Each point pi

∈D is a d-dimensional vector <pi(1), pi(2),…, pi(d)> where

pi(j) represents the j-th dimension of the point and n is the

total number of points in D.

Definition 1: (grid cell) Given a constant parameter ε.

According to the ε, each dimension of the data space is

divided into n’ spaces, then the whole data space will be

partitioned into grids and the length of each grid isε . We

denote the grid cell as Cell, which is defined as Cell = {c1,

c2, …, cn’}, cj = {|ljj’, hjj’|}, 1≤ j ≤n’ and hjj’ – ljj’ =ε .

Where j represents the index of dimension, j’ represents the

spatial ordinal, c represents a vector and all elements are in [l,

h) for each dimension, l and h are respectively the maximum

and minimum values of c.

Definition 2: (sampling domain) Let r denote the sampling

radius and point p is referred to as a center. And then, the

neighborhood is the sampling domain of p, denoted by N(p),

where N(p)={q∈D | dist(p, q)≤r}, and dist(p, q) is the

distance between p and q.

Definition 3: (core sampling point) Let |N(p)| denote the

number of points in N(p). We call p a core sampling point if

|N(p)|≥Minpts, where Minpts is the minimum of sampling

points.

Definition 4: (rectangular domain) Given Cell and r, the 2
d

vertices of the Cell form the sampling domains. And then the

Cell are referred to as the center and extended K cells along

the positive and opposite directions of each dimension, which

could cover the 2
d
 vertex sampling domains. Then the area

named rectangular domain formed by the grid set. In order to

calculate the rectangular domain, the length of Cell, which is ε,

is defined as ε = r/K. In experiment, we set K = 1 and ε = r.

Example 1: Considering the 2-dimension data points in Fig.

1. Suppose that we would find the rectangular domain of Cell

with K = 1 and ε = r, where Cell is a grid and r is the sampling

radius. Cell, which is considered as the center, has 4 vertices A,

B, C, D which are utilized to discover the sampling domains.

And then K cells are extended both vertically and horizontally.

A new rectangular domain which could cover the 4 vertex

sampling domains has been formed.

Cell

.
.
.

.
.

.

.
..

..

.

.

.

.
.

..

..
..

.

.

.

.

.

.

.

.
.

.
.

.

.
.

.

.

.

.

.

.
...
.

.

A

B C

D

Lpg

.
. .

.

.

.

Rectangular
domainSampling

domain

r

Fig. 1. The overview of rectangular domain

Definition 5: (sample point SP) Given M∈D, r and Minpts.

Suppose that the number of points in the sampling domain of a

data point M (i.e. |N(M)|) is greater than Minpts, so M is

considered as the core sampling point. Next, we discover the

sampling domain, in which M is referred to as the center and r

is the radius. The center point of each quadrant of the

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_07

(Advance online publication: 1 February 2019)

__

sampling domain boundary of M is considered as the

boundary points (denoted by BP). Finding out the nearest

points pi (i = 1, …, 2
d
) among all points in sampling domain of

M and BPs. Then pi is the sample point if the distance dist1

between pi and the nearest BP of pi is not more than the

distance dist2 between pi and M.

Example 2: Considering the 2-dimension data points in Fig.

2. Suppose that we would find SPs of M with K = 1 and ε= r,

where Cell is a grid and r is the sampling radius. The sampling

domain is discovered with r, and BPs are the points of E, F, G,

H. Then we will find out the nearest points e, f, g, h included

in SPs.

Cell

.
.
.

.
.

.

..
..

..

.

.

.

.
.

..

..
..

..

.

.

.
..

. ..

.

.
.

.
.

.

.

.

.

.

.

.

.

.
...
.

E

G H

F

Lpg

.
. .

M

. .

..

.

h

f

g

Rectangular

domain

e

Sampling
domain

r

dist1

dist2

Fig. 2. The overview of rectangular sample points

B. Sampling Algorithm

When KMeans algorithm is performed, the number of

iterations increased exponentially before the set of centers

converges [19]. Restarting MapReduce jobs, inputting

original data set and shuffling intermediate results will be

executed repeatedly when the large-scale data is clustered by

KMeans algorithm in parallel using MapReduce, which

increases both I/O and network costs significantly.

Accordingly, a new sampling algorithm is proposed in order

to reduce the input data size. Simultaneously, the grid division

method will be regarded as a complement to reduce the time

cost of range query. The data set D is partitioned into grids,

and the data points are mapped to the grid cells. The

rectangular domain related to point p is computed by grid

partition. If the number of points in the rectangular domain

related to p is less than Minpts, then the number of points in

sampling domain related to p must be less than Minpts (i.e.

|N(p)|<Minpts), all the points in the rectangular domain are

inserted into the sample set S. If the number of points in the

rectangular domain related to p is more than Minpts, then we

calculate the total number of points in sampling domain

related to p (i.e. |N(p)|). If |N(p)|<Minpts, all the points in the

sampling domain are added into the sample set S. If not, we

call p the core sampling point, and find the SPs in the

sampling domain related to p. Then p and its SPs are inserted

into sample set S. Finally, SPs is regarded as the seed points to

expand the sampling. The pseudo code of Algorithm 1 and

Algorithm 2 (see Table I and Table II) explains how it works.

Sample set obtained by the algorithm can keep the

characteristic distribution of the original data very well. The

loss of low density clusters and noise points can be prevented

effectively. The sample points obtained by the method we

proposed are highly representative, and the method

guarantees the clustering quality in the subsequent clustering.

TABLE I

PROCEDURE OF ALGORITHM 1

Algorithm1: Sampling Algorithm(D, r, Minpts)

1: Set S←φ, H←φ, Queue←φ

2: divide data spatial into grids which size is ε, map all the points in D into

the grid cells

3: mark all pi∈D as “UNVISITED”

4: While pi is marked as “UNVISITED” do

5: mark pi as “VISITED”, calculate the number of points in rectangular

domain of pi as |N1(pi)|

6: if |N1(pi)|< Minpts, then

7: for each p∈N1(pi) do

8: S.add(p), mark p as “VISITED”

9: else

10: calculate the number of points in sampling domain of pi as |N2(pi)|

11: if |N2(pi)|< Minpts, then

12: for each p∈N2(pi) do

13: S.add(p), mark p as “VISITED”

14: else

15: Finding SPs(pi, N2(pi))

16: while Queue≠φ do

17: select the head point p1，and pi ←p1

18: end while

19: end while

20: calculate η =|S|∕|D|

21: Output S, H,η

TABLE II

PROCEDURE OF ALGORITHM 2

Algorithm2: Finding SPs(pi, N2(pi))

1: identify boundary data object BPs of pi

2: calculate the distance dist(pi, BP) between BPs and all the points in

sampling domain of pi, and select the closest points p from BPs

3: for each p do

4: if p is “UNVISITED” then

5: if dist(p, BP) < dist(p, pi) then

6: S.add(p), Queue.add(p)

7: mark each pm∈N2(pi) as “VISITED”

8: for each pm∈N2(pi) and pm ≠ p do

9: pm add tags of its core sampling point pi

10: H.add(pm)

11: end if

12: end if

13: return S, H, Queue

C. Representative Verification

In order to improve the quality of clustering and avoid

losing data points that cannot be represented by S,

Representative verification is proposed in KMeans. In this

paper, the distance of a point pi to a set Cluster means the

shortest distance between pi and any point in Cluster. If

dist(p*, C) ≤ dist(p, C), then point p is satisfied by S with

respect to C, where C is the set of cluster centers and p* is the

core sampling point of p. If p is unsatisfied by S, then it cannot

be well represented by S and needs to be inserted into S.

Suppose that itr is the convergent boundary, k is the number

of clusters, t is the total number of iterations and b is the b-th

cluster where b ∈ [1, k]. The loop of KMeans will be

continued until there are no differences of the centers between

(t-1)-th iteration and t-th iteration. In the following

experiments, itr is equal to 10
-6

. The pseudo code of

Algorithm 3 (see Table III) and Algorithm 4 (see Table IV) is

described as below.

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_07

(Advance online publication: 1 February 2019)

__

TABLE III

PROCEDURE OF ALGORITHM 3

Algorithm3: KMeans algorithm with representative verification(S, H, k)

1: Let a = Float.MAXVALUE; t = 1

2: Choose k centers from S, let C(0)=C1
(t),C2

(t),…,Ck
(t)

3: while a> itr do

4: form k clusters by assigning pi∈S to its nearest center and get the nearest

distance distmin

5: Representative Verification(S, H)

6: find new centers of the k clusters C1
(++t), C2

(++t),…, Ck
(++t)

7: 



k

m

t

m

t

m cca
0

2
1

8: Output C(t)

TABLE IV

PROCEDURE OF ALGORITHM 4

Algorithm4: Representative Verification(S, H)

1: for each pm∈H do

2: get pm* which is added as tags of core sampling point

3: if distmin(pm, C) < dist(pm*, C) then

4: pi is unsatisfied by S with respect to C

5: S.add(pm), H.delete(pm)

6: return S, H

IV. PARALLEL SKMEANS ALGORITHM USING MAPREDUCE

In this section, a distributed algorithm MR-SKMeans using

MapReduce is proposed on the basis of SKMeans algorithm.

MR-SKmeans algorithm is divided into two chief phases as

shown in Fig. 3. The sampling algorithm runs in parallel by

Mapper1 and Reducer1 in the first phase. KMeans with

representative verification algorithm is carried out in parallel

by Mapper2 and Reducer2 in the second phase.

ID
Record

Attribute1 …

0001 11 11 …

…

0100 111 … 111

0101 22 … 22

…

0200 222 … 222

0201 33 … 33

…

0300 333 … 333

Map()

Map()

Map()

Reduce()

Reduce()

.

.

. .

.

.

a11 a12 … a1n

a21 a22 … a2n

… … … …

ai1 ai2 … ain

… … … …

am1 am2 … amn

Reduce()

Reduce()

Reduce()

.

.

.

b11 b12 … b1n

b21 b22 … b2n

… … … …

bi1 bi2 … bin

… … … …

bm1 bm2 … bmn

Cluster

Cluster

Cluste

r

HDFS Mapper1 Reduce1 HDFS

Mapper2Reduce2

Map()

Map()

Map()

.

.

.

Attribute2

Fig. 3. MR-SKMeans algorithm in MapReduce

A. Sampling Algorithm in MapReduce

According to the size of processed file size in the

distributed file system, data block is stored in different nodes

whose storage capacity is 64M, and each data block is

allocated to a Map task to complete the calculation. In

Mapper1, k1 denotes the processed file id and v1 indicates the

data records, each Map task output Sj and Hj, where j is the

j-th Map task. In Reducer1, the inputs are (1, Sj) and (2, Hj).

Each Reduce task outputs are S and H. The pseudo code of

Algorithm 5 (see Table V) is detailed as below.

Algorithm 5 shows the sampling process using MapReduce.

Each mapper does sampling and then shuffle these samples Sj

and Hj to the corresponding reducers. In the end, samples S

and H can be obtained, where 1≤ j ≤ Mp and Mp is the number

of Map tasks.

TABLE V

PROCEDURE OF ALGORITHM 5

Algorithm5: MapReduce-Sampling Algorithm(D, r, Minpts)

1: Mapper1(k1, v1) 5: Reducer1((1, Sj),(2, Hj))

2: for each mapper do 6: for each pi∈Sj, pm∈Hj do

3: do sampling by Sampling

Algorithm(D, r, Minpts)
7: S.add(pi), H.add(pm)

4: Output((1, Sj), (2, Hj)) 8: Output(S, H);

B. Representative Verification in MapReduce

In the distributed file system, KMeans with representative

verification algorithm is carried out with S and H which is the

input data set. In Mapper2, the inputs for each Map task are S,

H and the cluster centers of the last round of iteration (or the

initial cluster centers). And the outputs are cluster ID denoted

by Cluster and points denoted by pb where b∈[1, k]. In

Reducer2, each Reduce task is to calculate the new cluster

centers with b and Cb as the input, and output final centers.

The pseudo code of Algorithm 6 (see Table VI) is shown as

below.
TABLE VI

PROCEDURE OF ALGORITHM 6

Algorithm6: MapReduce-KMeans with Representative Verification(S,H, k)

1: Mapper2(k1, v1) 5: Reducer2(b, Cb)

2: form k clusters by assigning each

pi∈S to its nearest center

6: calculate new centers of the k

clusters

3: Representative Verification(S, H)
7: repeat 1,2,3,4,5,6 until satisfied

the convergence condition

4: Output((1,C1), (2,C2),…, (k,Ck)) 8: Output final centers

C. Complexity Analysis

Algorithm 1 and Algorithm 2 consist of three steps. Firstly,

the data spatial is divided into grids. The maximum and

minimum of each dimensionality in space need to be

calculated, thus the time complexity is O(n*d), where d is the

total dimensionality of data space. Secondly, all the points are

mapped to the grid cells. Suppose that n is the number of

points in D which must be traversed when all the points are

mapped to the grid cells, so the time complexity is O(n). At

last, the sample points SPs are selected and extended as the

seed points, so the time complexity is O(n*d+2
d
). In summary,

the time complexity of Algorithm 1 and Algorithm 2 is

O(n*d+2
d
).

According to the Algorithm 3 and Algorithm 4, some

points in H cannot be well represented by S and need to be

inserted into S in each iteration. Suppose that nm is the number

of points which need to be inserted into S in the m-th iteration,

where m∈[1, t], and t is the total number of iterations. Thus,

the time complexity of Algorithm 3 and Algorithm 4 is

)*)n*((
t

1m

m ktsO 


 , where s is the total number of points in

S, k is the total number of clustering centers.

When MR-SKMeans is executed, Mp1 means the average

number of map tasks of Mapper1 on one node. N1 is the total

number of nodes in the Hadoop cluster used to perform the

tasks, then the time complexity of Algorithm 5 is O((n*d+

2
d
)/(Mp1*N1)). Meanwhile, the time complexity of algorithm

6 is))*/(*)n*((22

t

1m

m NMpktsO 


 , where Mp2 is the

average number of map tasks of Mapper2 on one node, N2 is

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_07

(Advance online publication: 1 February 2019)

__

the number of nodes in the Hadoop cluster to perform the

tasks.

In conclusion, the total time complexity of MR-SKMeans

is))*/(*)n*()*/()2*((22

t

1m

m11 NMpktsNMpdnO d 


 .

V. EXPERIMENTAL SETUP

A. Datasets

In our experiments, five datasets are used to evaluate the

performance of MR-SKMeans. The type of all data sets is

numerical. And the clustering results of the data sets must be

convex shape. In other words, the clusters must be convex.

The first dataset, S-2 Data Set [20], [21], consists of 5,000

points in 2 dimensions and has 15 clusters. To evaluate

MR-SKMeans with large data sets, S-2 Data Set is extended,

and has been named S-2*, by duplicating its original records

500 times and the number of data points is 2,500,000. In order

to generate data points which are different from data points

included in S-2 Data Set, a small random noise with a

variation of +/- 5 is adapted for each coordinate value of the

data points.

The other three datasets are from real-world settings and

can be publicly available from the UC Irvine Machine

Learning repository [22]. The 3D Road Network Data Set

consists of 434,874 points in 4 dimensions. And 3D Road

Network Data Set is also increased by duplicating its records

10 times, named Road*, and the number of data points is

4,348,740. And a small random noise with a variation of +/- 1

is also adapted. The Individual Household Electric Power

Consumption Data Set, named House, consists of 2,075,260

points in 9 dimensions. Bag of Words Data Set, named BoW,

consists of 483,450,157 points in 3 dimensions. S-2 dataset is

tested in a single machine and the other four datasets are

verified with the parallel implementation in the Hadoop

framework.

In our experiments, there are five datasets (S-2, S-2*,

Road*, House and BoW) used in parallel KMeans [7] based

on MapReduce, Iterative-Sampling-KMeans (IS-KMeans)

[16], WMC, DMC [17] and MR-SKMeans. Moreover,

Euclidean distance was used as similarity measure. In this

paper, the Davies-Bouldins index [23] (DBI) used in our

proposed clustering algorithm for examining the soundness of

our clusters will be discussed. Davies-Bouldins index is a

function of the ratio of the sum of within-cluster distribution

to between-cluster separation.

B. Parameter Setting Comparison

For the MR-SKMeans algorithm, the sampling results and

clustering accuracy are determined by the sampling radius r

and minimum of sampling points Minpts. In this subsection,

the effects bought by r and Minpts on sampling results and

clustering accuracy are explored for different parameter

settings. MR-SKMeans algorithm and KMeans algorithm are

carried out with S-2 dataset. When Minpts=50, the sampling

rate and DBI index of different r are shown in Fig. 4. When r

∈[1750, 2250], we can get a lower DBI index which is close

to 2.27. When r=2000, the sampling rate and DBI index of

different Minpts are shown in Fig. 5. When Minpts∈[45, 50],

we can get a lower DBI index which is close to 2.48.

1000 1500 2000 2500 3000

1

2

3

4

5

6

D
B

I
in

d
e
x

r

 DBI index

 sampling rate

20

30

40

50

60

70

sa
m

p
li

n
g

 r
a
te

(%
)

Fig. 4. Effects of varying r on DBI index and sampling rate

35 40 45 50 55 60

1

2

3

4

5

6

7

D
B

I
in

d
e
x

Minpts

 DBI index

 sampling rate

20

30

40

50

60

70

sa
m

p
li

n
g

 r
a
te

(%
)

Fig. 5. Effects of varying Minpts on DBI index and sampling rate

DBI index is close to 4.07 when KMeans is executed with

S-2 dataset. In Fig. 4 and Fig. 5, the sampling rate decreases

with the increasement of r, moreover, increases with the

increment of Minpts. However, when r ∈ [1750, 2250],

Minpts∈[45, 50], DBI index of MR-SKMeans is less than

4.07. Therefore, MR-SKMeans can get a lower DBI index

and achieve better clustering results than KMeans by means

of r and Minpts.

C. Performance Evaluation

S-2*, Road*, House and BoW datasets were used in

parallel KMeans, MR-SKMeans, IS-KMeans, WMC, and

DMC in this subsection. Fig. 6 shows the performance of

these algorithms when k=15 for S-2* and Road*, k=50 for

House and BoW. For S-2*, Road*, House and BoW is

utilized, Table VII indicates the DBI index of these

algorithms. And KMeans is carried out in parallel based on

MapReduce. The same cluster validity index is used to select

the clustering. These algorithms are executed repeatedly for

20 times, the average of execution time is described in Fig. 6

and the average DBI indexes are showed in Table VII.

As shown in Fig. 6, MR-SKMeans is far better than the

parallel KMeans. Moreover, it is better than that of

IS-KMeans, DMC and WMC algorithms. As shown in Table

VII, DBI index of MR-SKMeans is slightly larger than

KMeans, WMC and DMC in terms of Road* dataset,

however, it is inferior to IS-KMeans. In terms of S-2*, House

and BoW datasets, DBI index of MR-SKMeans is

significantly lower than that of other algorithms.

Experimental results indicate that the average clustering time

has been significantly reduced.

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_07

(Advance online publication: 1 February 2019)

__

TABLE VII

COMPARISON OF DBI INDEX BY VARIOUS DATASETS

Data Set K KMeans IS-KMeans WMC DMC MR-SKMeans

S-2* 50 3.7594 2.7613 3.5106 3.2907 2.4597

Road* 50 0.5901 0.6720 0.5847 0.5879 0.6257

House 50 2.0664 2.0789 2.2056 2.2081 1.7516

BoW 50 3.0449 2.0892 2.2789 1.9461 1.2451

KMeans IS-KMeans WMC DMC MR-SKMeans

0

500

1000

1500

2000

2500

3000

3500

E
x

e
c
u

ti
o

n
 t

im
e
(s

e
c
)

 S-2*

 House

 Road*

 Bag of Words

Fig. 6. Comparison of time measured by various methods

Meanwhile, the efficiency of MR-SKMeans is explored on

varying numbers of machines from 3 to 9. Fig. 7 illustrates the

results of clustering on S-2*, Road*, House and BoW datasets,

when k=15 for S-2* and Road*, k=50 for House and BoW.

The result shows that MR-SKMeans is scalable.

3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

T
im

e
(m

in
s)

Number of Machines

 S-2*

 Road*

 Bag of Words

 House

Fig. 7. Running time with varying number of machines

D. Discussions

The efficiency and accuracy of the proposed algorithms are

evaluated by varying in parameters, sizes of datasets and

numbers of machines respectively. Fig. 4 and Fig. 5 show that

the parameters of r and Minpts have great influence on

sampling results and clustering accuracy, which can be

inferred from the sampling rate and DBI index. When r∈

[1750, 2250], Minpts∈[45, 50], the sampling rate is about

45%, DBI index of our algorithms is lower than that of

KMeans. Conclusions can be made that the appropriate r and

Minpts can be used to reduce the amount of data effectively,

and get better clustering results.

Fig. 6 and Table VII indicate the efficiency and accuracy of

various algorithms on different sizes of datasets. As shown in

Fig. 6, MR-SKMeans spends less time than the other four

algorithms. The reason for this phenomenon is that Algorithm

1 in Section III is used to obtain the points which can

represent the unsampled points well. Moreover, the sample

set, which is used for clustering, is far smaller than the initial

data set. Thus, both I/O and network costs are decreased

significantly. The method of grid division in Algorithm 1 is

used to execute query in a limited extent related to each point,

and it reduces the total computation cost greatly and saves a

lot time. We can conclude from Table VII that MR-SKMeans

gets lower DBI index than the other algorithms for S-2*,

House and BoW datasets. The reason for the conclusion is

that the distribution of sample set and the initial data set is

consistent, and representative verification algorithm avoids

missing data points which cannot be represented by the

sample set. However, DBI index of MR-SKMeans is larger

than the other algorithms for Road* set. The reason lies in the

fact that there is a great difference between the shapes of

clusters. Meanwhile in the Road* set, there exists a great deal

of outliers included in the sampling set, which is sensitive to

KMeans. Therefore, it exerts an influence on clustering

results. Fig. 7 indicates that our proposed algorithm is

scalable.

VI. CONCLUSIONS AND FUTURE WORKS

In order to overcome the shortcomings of traditional

sampling algorithms when big data is dealt with the parallel

KMeans. A new sampling algorithm is first proposed to

obtain the sample set by making full advantages of the

definitions of rectangular domain, sampling domain and

sample point. And then, representative verification algorithm

is proposed to avoid missing the points which cannot be well

represented by the points in sample set. Based on the above,

the parallel MR-SKMeans is proposed using MapReduce.

Experimental results demonstrate that MR-SKMeans can find

the appropriate parameters to get better clustering results.

Compared to Iterative-Sampling-KMeans, WMC and DMC,

MR-SKMeans performs better and could achieve higher

accuracy when various large data sets are utilized.

Furthermore, our proposed algorithm scales up well with

MapReduce framework. Future work will be devoted to

automatically identify the parameters, instead of specified by

users.

ACKNOWLEDGMENT

The authors would like to thank the Intelligent Information

Processing Group for supporting the implementation of

proposed algorithms and tools.

REFERENCES

[1] A. K. Jain and P. J. Flynn, “Image segmentation using clustering,”

Journal of Global Optimization, pp. 65–83, 1996.

[2] I. Cadez, P. Smyth and H. Mannila, “Probabilistic modeling of

transaction data with applications to profiling, visualization, and

prediction,” in Proc. 7th ACM SIGKDD Conf. Knowledge Discovery

and Data Mining, San Francisco, 2001, pp. 37–46.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” in Proc. 6th conference on Symposium on Operating

Systems Design and Implementation (OSDI), San Francisco, 2004, pp.

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_07

(Advance online publication: 1 February 2019)

__

10–10.

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski and C. K,

“Evaluating MapReduce for multi-core and multiprocessor systems,”

in Proc. 13th IEEE International Symposium on High Performance

Computer Architecture, DC, 2007, pp. 10–14.

[5] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing

tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[6] Apache hadoop is available at http://hadoop.apache.org/.

[7] W. Zhao, H. Ma and Q. He, “Parallel k-means clustering based on

mapreduce,” Springer, Berlin Heidelberg.

[8] C. T. Chu, K. K. Sang, Y. A. Lin, Y. Y. Yu and G. Bradski,

“Map-Reduce for Machine Learning on Multicore,” Advances in

Neural Information Processing Systems, vol. 19, pp. 281–288, 2006.

[9] Y. A. Cui, X. Li, Z. X. Wang and D. Y. Zhang, “A comparison on

methodologies of sampling online social media,” Chinese Journal of

Computers, vol. 37, no. 8, pp. 1859–1876, Aug. 2014.

[10] M. K. Pakhira, “Fast Image Segmentation Using Modified CLARA

Algorithm,” in Proc. International Conference on Information

Technology, Bhubaneswar, 2008, pp. 14–18.

[11] A. H. Pilevar and M. Sukumar, “GCHL: A grid-clustering algorithm

for high-dimensional very large spatial data bases,” Pattern

Recognition Letters, vol. 26, no. 7, pp. 999–1010, May. 2005.

[12] H. Lu, T. H. Ma, L. M. Tang, J. Cao, Y. Tian, A. D. Abdullah and A. R.

Mznah, “An efficient and scalable density-based clustering algorithm

for datasets with complex structures,” Neurocomputing, vol. 171, no.

C, pp. 9–22, Jan. 2015.

[13] Y. W. Yu, H. Wang, Q. Wang and J. D. Zhao, “Density-based cluster

structure mining algorithm for high-volume data streams,” Journal of

Software, vol. 26, no. 5, pp. 1113–1128, May. 2015.

[14] W. M. Lu, C. Y. Du, B. G. Wei, C. H. Shen and Z. C. Ye, “Distributed

Affinity Propagation Clustering Based on MapReduce,” Journal of

Computer Research and Development, vol. 49, no. 8, pp. 1762–1772,

Aug. 2012.

[15] Y. Kim, K. Shim, M. S. Kim and J. S. Lee, “DBCURE-MR: An

efficient density-based clustering algorithm for large data using

MapReduce,” Information Systems, vol. 42, no. 2, pp. 15–35, Jun.

2014.

[16] A. Ene, S. Im and B. Moseley, “Fast clustering using MapReduce,” in

Proc. the 17th ACM SIGKDD international conference on Knowledge

discovery and data mining, SanDiego, 2011, pp. 681–689.

[17] X. L. Cui. P. Zhu, X. Yang, K. Li and C. Ji, “Optimized Big Data

K-means Clustering Using MapRedece,” Journal of Supercomputing,

vol. 70, no. 3, pp. 1249–1259, Dec. 2014.

[18] M. Thorup, P. Zhu, X. Yang, K. Li and C. Ji, “Quick k-Median,

k-Center, and Facility Location for Sparse Graphs,” Siam Journal on

Computing, vol. 34, no. 2, pp. 249–260, Jul. 2000.

[19] A. Vattan, “K-means Requires Exponentially Many Iterations Even in

the Plane,” Discrete & Computational Geometry, vol. 45, no. 4, pp.

596–616, Jan. 2006.

[20] P. Franti and O. Virmajoki, “Iterative shrinking method for clustering

problems,” Pattern Recognition, vol. 39, no. 5, pp. 761–775, May.

2006.

[21] Clustering datasets is available at http://cs.joensuu.fi/sipu/datasets/.

[22] UCI Machine Learning Repository is available at

http://archive.ics.uci.edu/ml/.

[23] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

1, no. 2, pp. 224–227, Apr. 1979

Hongbiao Li received his MSc degree in

computer applied technology from Northeast

Electric Power University, China in 2007. His

research interests are in artificial intelligence and

data mining.

Ruiying Liu received her MSc degree in computer

applied technology from Northeast Electric Power

University, China in 2017. Her research interests

are in artificial intelligence and data mining.

Jingdong Wang received his MSc and PhD

degree in computer science from Northeast

Electric Power University, China in 2008 and

University of Chinese Academy of Sciences,

China in 2017, respectively. His research interests

are in artificial intelligence and assessment of

energy efficiency.

Qilong Wu received his MSc degree in computer

applied technology from Northeast Electric Power

University, China in 2017. His research interests

are in data mining and pattern recognition.

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_07

(Advance online publication: 1 February 2019)

__

