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Abstract—This study proposes a novel way to improve 

investors’ total return rate of portfolio optimization by 

de-noising the data using Ensemble Empirical Mode 

Decomposition (EEMD). Firstly, the authors briefly introduce 

risk measure theory and EEMD methodology. Then, empirically 

demonstrating that the de-noising technique using EEMD surely 

has some efficient impact on the portfolio, and the cumulative 

return rate of the portfolio when the objective function is CVaR 

with the data de-noised 3 Intrinsic Mode Functions (IMFs) is the 

highest one. It indicates that the impact of de-noising the data 

using EEMD is much more significant on the portfolio when the 

objective functions have less powerful risk discrimination, and 

vice versa. 

 

Index Terms—portfolio optimization, risk measures, 

Ensemble Empirical Mode Decomposition (EEMD), hypothesis 

test 

 

I. INTRODUCTION 

ORTFOLIO optimization of the asset is a necessary way 

to maximize investors’ total return rate. As the most 

efficient method to quantify risk, the risk measure theory 

receives widespread attention. In order to improve the 

cumulative return rate of portfolio optimization, the 

traditional way is to improve the property of risk measures, 

while in this paper, we propose a novel methodology from the 

perspective of de-noising securities’ data series using 

Ensemble Empirical Mode Decomposition (EEMD). 

From the perspective of traditional way, the quantitative 

analysis of modern financial portfolio theory date from the 

Portfolio Theory of Markowitz [1], which means that the 

portfolio would minimize the risk under certain expected 

return, or realize the optimization under certain risk. This 

theory introduced quantitative analysis to the financial field, 

laid the foundation of modern finance. However, high 

standard deviation doesn’t truly mean a high level of risk, 

non-monotonicity is one of its defects. 

VaR (Value at risk) was proposed by Philippe Jorion at 

the end of 1980s [2] which contains both the uncertainty and 
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loss. While VaR only considers the quantile of the distribution 

without caring about what is happening to the left and to the 

right of the quantile, and it is concerned only with the 

probability of the loss, while does not care about the size of 

the loss [3]. 

In the late of 20th, Artzner et al. proposed the concept of 

coherent risk measure based on the axiomatic foundation, the 

coherent risk measure must satisfy monotonicity, translation 

invariance, positive homogeneous, and sub-additivity [4]. 

Then, Fӧllmer and Schied extended the coherent risk measure 

to convex risk measure [5-7], Frittelli and Gianin [8] defined 

the convex risk measure based on axioms, i.e. monotonicity, 

translation invariance and convexity.  

CVaR (Conditional VaR) is one of the best choices of 

coherent risk measure [9], Kusuoka proved that CVaR is the 

smallest law invariant coherent risk measure that dominates 

VaR [10]. Wang and Ma proved that VaR is consistent with 

the first-order stochastic dominance, CVaR is consistent with 

the second-order stochastic dominances [11]. However, 

CVaR takes into consideration only the tail of the distribution. 

Then, risk measures that pay more attention to the left tail 

of distribution were proposed. Krokhmal proposed HMCR 

(Higher Moment Coherent Risk measure) based on CVaR 

[12], Chen and Wang gave some proofs and derivations of the 

proprieties of P-norm (i.e. HMCR) [13]. Zheng and Yao 

proved that HMCR(p=n) is consistent with (n+1) th order 

stochastic dominance from the perspective of Kusuoka 

representation [14]. Zheng and Chen proposed iso-entropic 

risk measure based on relative entropy, which is obtained 

under the theoretical framework of the coherent risk measure, 

and proved that it is consistent with stochastic dominance of 

almost all the orders and it has the highest power of risk 

discrimination compared with VaR and CVaR [15-16]. 

However, noise can affect real information, which affects 

the efficiency of portfolio optimization. From the perspective 

way of the de-noising method, Huang et al. introduced EMD 

(Empirical Mode Decomposition) method, it is an empirical, 

intuitive, direct and self-adaptive data processing method 

which is proposed especially for nonlinear and non-stationary 

data [17]. The core of EMD is decomposing the target data 

into a small number of independent and nearly periodic 

Intrinsic Modes Functions (IMFs) and one residue. EEMD 

(Empirical EMD) was an improved version by Wu and Huang, 

which add a series of finite, not infinitesimal, amplitude white 

noise to overcome the mode mixing problem of EMD, and it 

is a truly noise-assisted data analysis method [18]. 

EEMD have been applied in many areas, such as 

biomedical engineering, structured health monitoring, 

earthquake engineering, etc. In social science area, Zhang et 
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al. extended EEMD to crude oil price analysis, and proved 

that it is a vital technique [19]. Li et al. demonstrated that 

EEMD can be statistically proved to be much stronger and 

more robust than other popular prediction models when 

forecasting country risk [20]. Xu et al. applied EMD and 

EEMD to the cross-correlation analysis of stock markets, and 

proved that the EEMD method performs better on the 

orthogonality of IMFs than EMD for the stock data [21]. Tang 

et al. demonstrated that the EEMD-based multi-scale fuzzy 

entropy approach can provide a new analysis tool to 

understand the complexity of clean energy markets [22]. 

The objective of this study is to analyze the impact of 

de-noising data using EEMD on portfolio optimization based 

on six risk measures in the Chinese stock market. Firstly, the 

closing price series of stocks with different time ranges and 

frequencies are decomposed into several IMFs, from high to 

low frequencies. Then, after the IMFs were de-noised from 

the original data gradually, we calculate the daily logarithmic 

return rate of these de-noising data series. Finally, build the 

portfolio optimization based on these return rate matrixes 

when the objective functions are standard deviation, VaR, 

CVaR, convex entropy risk measure, iso-entropic risk 

measure, and HMCR, and analyze the difference of 

de-noising effect from one to four IMFs of different risk 

measures. 

The rest of the paper is organized as follows: Section II 

gives a brief introduction of risk measure theory and 

compares the difference of five risk measures. Section III 

introduces the basic theory and algorithm of EMD and EEMD. 

Section IV is the portfolio optimization based on six risk 

measures and EEMD. Section V concludes. 

II. RISK MEASURE THEORY 

A. Acceptance set and coherent risk measure 

Here we introduce some concepts related to coherent risk 

measures. More details see Artzner [4], Fӧllmer and Shied [7], 

Fӧllmer and Knispel [23]. 

In financial theory, the uncertainty of value for a position (a 

set or a portfolio) in the future is usually described by a 

random variable :X R  on a probability space  , ,P F . 

The goal of risk measure is to determine a number  X  that 

quantifies the risk and can serve as a capital requirement, i.e. 

as the minimal amount of capital which, if added to the 

position and invested in a risk-free manner, makes the 

position acceptable. For an unacceptable risk, one remedy 

may be to alter the position, another remedy is to look for 

some commonly accepted instruments, which added to the 

current position, make its future value become acceptable to 

the investor/supervisor. The current cost of getting enough of 

this or these instruments is a good candidate for a measure of 

risk of the initially unacceptable position. Based on this, a 

series of definitions are given as follows. In the sequel, G  

denotes a given linear space of function :X R containing 

the constants. Let G  be the set of all risks, that is the set of all 

real valued functions on  . 

Definition 2.1. A measure of risk   is a mapping from G  

into R . 

Definition 2.2. An acceptance set: We call A  a set of final 

values, expressed in currency, are accepted by one 

investor/supervisor. 

It must be pointed out that there are different acceptance 

sets for different investors/superiors because they are 

heterogeneous when faced with risk assets. There is a 

correspondence between acceptance sets and measures of 

risk. 

Definition 2.3. Risk measure associated to an acceptance set: 

the risk measure associated to the acceptance set A  is the 

mapping from G  to R  denoted by A
 and defined by: 

   infX m R m X    A A               (1) 

The risk measure is the smallest amount of units of date 0 

money which invested in the admissible asset, must be added 

at date 0 to the planned future net worth X  to make it 

acceptable. Note that we work with discounted quantities. 

Definition 2.4. Acceptance set associated to a risk measure: 

the acceptance set associated to a risk measure   is the set 

denoted by A  and defined by 

  inf 0X X   A G                    (2) 

Definition 2.5. A measure of risk   is called a monetary risk 

measure if  0  is finite and if   satisfies the following 

conditions for all ,X Y G , 

Monotonicity: If X Y , then    X Y  . 

Translation invariance: If cR , then    X c X c    . 

The financial meaning of monotonicity is clear: the 

downside risk of a position is reduced if the payoff profile is 

increased. Translation invariance is also called cash 

invariance. This is motivated by the interpretation of  X  

as a capital requirement, i.e,  X  is the amount which 

should be raised in order to make X  acceptable from the 

point of view of an investor/supervisor, as Definition 2.3. 

Thus, if the risk-free amount c  is appropriately added to the 

position or to the economic capital, then the capital 

requirement is reduced by the same amount. 

Definition 2.6. A monetary risk measure   is called a convex 

risk measure if   satisfies the following conditions, 

Convexity:         1 1X Y X Y          , for 

0 1  . 

The axiom of convexity give a precise meaning to the idea 

that diversification should not increase the risk, convex 

duality shows that a convex risk measure typically takes the 

following form, 

      sup Q
Q

X E X Q


 


  
Q

                (3) 

Where, Q  is some class of plausible probability measures 

on the underlying set of possible scenarios, and  Q  is some 

penalty function on Q . The capital requirement is thus 

determined as follows: the expected loss of a position is 

calculated for the probability measures in Q , but these 

models are taken seriously to a different degree as prescribed 

by the penalty function. 

Definition 2.7. A convex risk measure   is called a coherent 

risk measure if   satisfies the following conditions 
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Positive homogeneity: if 0  , then    X X   . 

Under the assumption of positive homogeneity, the 

convexity of a monetary risk measure is equivalent to 

Subadditivity:      X Y X Y     . 

Based on the convex risk measure, if investors take the 

worst penalized expected loss over the class Q , the penalty 

will vanish, i.e.   0Q  , thus we get the special coherent 

case 

   sup Q
Q

X E X





 
Q

                       (4) 

So, a monetary risk measure must satisfy two axioms: 

monotonicity, translation invariance; a convex risk measure 

must add the axioms of convexity, a coherent risk measure 

must add the axioms of positive homogeneity and convexity 

or subadditivity. 

B. Definition of risk measure 

Here we introduce VaR, CVaR, convex entropic risk 

measure, iso-entropic risk measure and HMCR. 

The first one is VaR at level  0,1  , VaR defined for X  

on a probability space  , ,P F  is 

    inf 0VaR X m R P X m                (5) 

From the Eq. 5, it is seen that the VaR is quantile-based, 

because    VaR X q X   , where  q X  is the 

  quantile of X . VaR satisfies monotonicity, translation 

invariance and positive homogeneity but not subadditivity, it 

is not convex. 

The second one is CVaR, at level  0,1  , CVaR is 

defined as, 

     
0 0

1 1
u uCVaR X VaR X du q X du

 


 

         (6) 

CVaR is also called Expected Shortfall (ES), Average 

Value at Risk (AVaR). CVaR satisfies monotonicity, 

translation invariance, positive homogeneity and 

subadditivity. It is a coherent risk measure. 

The third one is convex entropic risk measure based on 

relative entropy. Firstly, the relative entropy is defined by 

 
log    

| :

                  

Q

dQ
E if Q P

H Q P dP

otherwise

  
    


=
         (7) 

Relative entropy is also called Kullback-Leibler distance or 

information divergence. The penalty function of convex risk 

measure is noted by    
1

: | , 0Q H Q P m
m

   , m  is a 

parameter, it can be calculated by relative entropy, then, 

     
1

1
: sup |m Q

Q

e X E X H Q P
m

 
   

 M

， 0m       (8) 

Using the well-known variational principle, 

 
 

  
, ,

| sup log X

Q P
X L P

H Q P E X E e




 

     
F

    (9) 

for the relative entropy, it follows that 
me  takes the explicit 

form, 

 
1

log mX

m Pe X E e
m

                     (10) 

Convex entropic risk measure satisfies monotonicity, 

translation invariance, convexity, it is a convex risk measure. 

The fourth one is iso-entropic risk measure, it was 

proposed by Zheng and Chen [15] based on the representation 

theorem of coherent risk measure, 

       
1

*

0
,u uX E Z X q X z X du            (11) 

where,  * ,
mXe

Z z X
c




  ，  
 

,
umq X

u

e
z X

c




 ， mXc E e   
. 

And 0m  , it satisfies the following equation, 

 logmXe mX c
H E

c


  
  

 
              (12) 

Here  ,m m X   is determined by X  and  , H  is the 

given relative entropy. Iso-entropic risk measure satisfies 

monotonicity, translation invariance, positive homogeneity 

and sub-additivity, is coherent risk measure. 

The fifth risk measure is higher moment coherent risk 

measure base on higher moment norm, which is defined by 

    

   

,

1/

inf

1
inf

c p pR

p
p

R

X c X

E X





  

 






  

        

(13) 

where，  1, 1, 0,1p c    . 

When 1p  , CVaR a special case of HMCR 

   
1

inf
R

CVaR X E X


 
 

 
     

 
      (14) 

When 1p   

     
1

0
,t tHMCR X q X X dt                    (15) 

Where,  
    

    

1

1

1
,

1

t

t

p

t q X

t p

t q X

q X
X

E q X






 











 


  
  

. 

HMCR satisfies the coherent four axioms, it is also a 

coherent risk measure.  

C. Comparisons of these risk measures 

The properties of coherence are introduced in section B. 

Now, we compare these five risk measures in perspective of 

convexity, the volume of information which is used to 

measure risk and stochastic dominance. 

Firstly, we consider the convexity of these risk measures. 

According to the four axioms, VaR is not convex on the whole 

space, while convex entropic risk measure is convex 

obviously, since convexity is a necessary condition of 

coherence, so CVaR, iso-entropy risk measure, and HMCR 

are coherent risk measures, also convex. 

Secondly, we consider the volume of information which is 

used to measure the risk. For the quantile-based risk measures, 

a unified expression can be given as follows 

     
1

0
,t tR X q X X dt                          (16) 

According to the Section B, VaR only reflects information 

of one point of distribution, CVaR and HMCR reflect 

information of quantiles where t  , convex entropic risk 

measure, iso-entropic risk measure reflects information of the 

whole distribution of risk asset. These differences of the 

volume of information used by these risk measures might be 

one of the reasons for the difference of risk discrimination. 

Lastly, we consider the relationship between these risk 

measures and stochastic dominance in this section. According 

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_09

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



 

to Wong and Ma[11], Zheng and Chen[16], Zheng and 

Yao[14], under certain conditions, VaR is only consistent 

with the first-order stochastic dominance, it means that VaR 

can recognize two kinds of risk assets with first-order 

stochastic dominance; CVaR is consistent with the 

second-order stochastic dominances, it means that CVaR can 

recognize two kinds of risk assets with second or lower order 

stochastic dominances; iso-entropic risk measure is consistent 

with the nth-order stochastic dominances, and according to 

formula (16), convex entropic risk measure is the integral of 

iso-entropic risk measure, so we can deduce that entropy is 

consistent with the nth-order stochastic dominances, 

HMCR(p=n) is consistent with (n+1)th order stochastic 

dominances, these three kinds of risk measures can recognize 

two kinds of risk assets with high or lower order stochastic 

dominances. i.e. convex entropic risk measure, iso-entropic 

risk measure, and HMCR(p>3) have higher power risk 

discrimination. 

III. ENSEMBLE EMPIRICAL MODE DECOMPOSITION (EEMD) 

Ensemble Empirical Mode Decomposition (EEMD) 

proposed by Wu and Huang [18] is an improved version of 

Empirical Mode Decomposition (EMD) proposed by Huang 

et al.[17]. Therefore, this subsection firstly introduces the 

EMD technique, and then presents the EEMD technique in 

brief. 

A. Empirical Mode Decomposition (EMD) 

Empirical Mode Decomposition (EMD) technique is an 

adaptive time series decomposition technique for nonlinear 

and non-stationary data [17, 25]. It assumes that the data, 

depending on its complexity, may have many different modes 

of oscillations coexisting at the same time. The main purpose 

of EMD is to decompose the original data into a series of 

Intrinsic Mode Functions (IMFs), which must satisfy the 

following two conditions. ○1  In the whole data set, the 

number of extrema and the number of zero crossings must 

either equal or differ at most by one. ○2  At any point, the 

mean value of the envelope defined by the local maxima and 

the envelope defined by the local minima is zero. 

With these two conditions, meaningful IMFs can be well 

defined. Usually, an IMF represents a single oscillatory mode, 

in contrast to simple harmonic function. Using the definition, 

any complicated data series  1,2, ,tx t T L  can be 

decomposed, according to the following sifting process 

1) Identify the local extrema of 
tx , including both maxima 

and minima; 

2) Generate its upper and lower envelopes, ,up tx  and ,low tx , 

with cubic spline interpolation; 

3) Calculate the point-by-point mean im  from upper and 

lower envelopes:  , , / 2t up t low tm x x  ; 

4) Extract the mean from the time series and define the 

difference between 
tx and 

tm as 
tc , 

t t tc x m  ; 

5) Check the properties of 
tc : 

i) If 
tc  meets the above two conditions, and IMF is 

extracted and replace 
tx with the residue 

t t tr x c  ; 

ii) If 
tc is not an IMF, replace 

tx with 
tc ; 

6) Repeat steps 1-5 until the stop criterion is satisfied, i.e., 

when the residue 
tr  becomes a monotonic function from 

which no more IMFs can be extracted. 

The total number of IMFs of a data set is close to 
2log N  

with N , the length of total data points. Using this sifting 

procedure, the original data series 
tx  can finally be expressed 

as a sum of IMFs and a residue, 

, ,

1

n

t j t n t

j

x c r


                                (17) 

Where n  is the number of IMFs, ,n tr  is the final residue, 

and  , 1,2, ,j tc j n L  is the j th IMF. All IMFs are nearly 

orthogonal to each other, and all have nearly zero means. 

Thus, the data series can be decomposed into n  IMFs and 

one residue. The IMF components contained in each 

frequency band are different and they change with variation of 

time series 
tx , while ,n tr  represents the central tendency of 

data series 
tx . 

B. Ensemble EMD(EEMD) 

An obvious drawback of the original EMD is the frequent 

appearance of mode mixing, which is defined as either a 

single IMF consisting of signals of widely disparate scales, or 

a signal of a similar scale residing in different IMF 

components. To overcome this drawback, Wu and Huang [18] 

proposed Ensemble EMD (EEMD) technique. The basic 

principle of EEMD is that the added white noise would 

populate the whole time-frequency space uniformly with the 

constituting components of different scales separated by the 

filter bank. Substantially, an additional step of adding white 

noise is taken to help extract the true signal in the data. The 

process of EEMD is developed as follows, 

    1) Add a white noise series to the original data; 

    2) Decompose the data with added white noise into IMFs 

using the EMD procedure; 

    3) Repeat step1 and step 2 iteratively, but use different 

white noise series each time and obtain ensemble means of 

corresponding IMFs as the final results. 

The added white noise series can help extract the true IMFs, 

and can offset themselves via ensemble averaging after 

serving their purpose. Therefore, this can substantially reduce 

the chance of mode mixing and represents a significant 

improvement over the original EMD. The effect of the added 

white noise can be controlled according to the 

well-established statistical rule proved by Wu and Huang 

[18].
 

/ne NE                                (18) 

Where NE  is the number of ensemble members,   is the 

amplitude of the added noise, and 
ne  is the final standard 

deviation of error, defined as the difference between the input 

signal and the corresponding IMFs. The example was 

provided by Wu and Huang [18], and they demonstrated that 

this noise-assisted data analysis using EEMD significantly 

improved the capability of extracting signals from the data 

compared with the decomposition method using EMD. In 

practice, the number of ensemble members is often set to 100 

and the standard deviation of white noise series is set to 0.1 or 

0.2. 

IAENG International Journal of Computer Science, 46:1, IJCS_46_1_09

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



 

IV. EMPIRICAL ANALYSIS OF PORTFOLIO OPTIMIZATION  

A. Portfolio optimization 

Suppose there are N  stocks, and each return rate is 

denoted by ir , we structure a combination P , the weight of 

each stock is , 1,2, ,i i N  L , so the return rate of the 

combination is 
p i ir r , under the given expected return 

rate 
pE r     , we don’t consider short selling, the portfolio 

selection problems at a given level   is as follows: 

 min

. .  ,  1, 0

p

p i i

r

s t E r



        
           (19) 

Where the optimization objective functions are standard 

deviation, VaR, CVaR, convex entropic risk measure and 

iso-entropic risk measure based on modified relative entropy, 

and HMCR(p=1,2,3). We use the historical data to estimate 

these risk measures, calculated by the frequency of data. Then 

we get the in-sample coefficients of the portfolio, and 

calculate the cumulative return rate of the period 

out-of-sample. 

B. Hypothesis test 

In this paper, we use the hypothesis testing method to verify 

the result, and this method has ever been used in Chen et al. 

[26]. Let 
0  and 

1  denote two series of average cumulative 

return rate of the portfolio, in order to compare the value of 

these two series. we give the null hypotheses, i.e., 

0 0 1 1 0 1: 0,   : 0H H        

Then, we use paired z-test to compare the means of the two 

samples, the test statistic is calculated as 

/d

d
z

s n
                               (20) 

Where, 
1

/
n

i

i

d d n


 is the mean difference between two 

paired samples, id  is the value difference of i the paired 

samples, 1,2, ,i n L ；    2

1

/ 1
n

d i

i

s d d n


    is the sample 

variance, n  is the sample size and z  is a paired sample z-test 

with 1n   degrees of freedom. 

C. Data Description 

In order to reflect the impact of the data de-noising using 

EEMD to the portfolio in the stock market, we choose the 

constituent stocks of SSE 50 index from 2009.08.03 to 

2014.03.21, which is much smoother, totally 1122 trading 

days, eliminating 15 stocks of missing data or halting more 

than 12 days, remaining 35 stocks. The data is separated into 

two periods, in-sample period (from 2009.08.03 to 

2012.01.18, totally 800 trading days) as the historical sample 

to calculate optimization coefficient and out-of-sample period 

(from 2012.01.19 to 2014.03.21, totally 321 trading days) as 

the test data to investigate the performance. 

Firstly, we use the daily logarithmic return rate of original 

data to build the portfolio, and investigate the performance of 

six risk measures. Then, de-noising the original data using 

EEMD technique from 1 to 4 IMFs, and using the logarithmic 

return rate of the data to build the portfolio based on risk 

measures, respectively, to investigate the impact of de-noising 

using EEMD to the performance in the portfolio of each risk 

measure during the out-of-sample period. We get the data 

form Wind, and use Matlab 8.2 to complete the calculation. 

D. Portfolio optimization of original data 

Now we get the results of portfolio optimization under 

different expected return rate. Firstly, taking equidistant 100 

points between the minimum and maximum of average return 

rate of 35 stocks, so we get 101 points of 
pE r     , the level 

0.03  . Then we optimize the calculation of the portfolio 

whose objective functions are standard deviation, VaR, CVaR, 

convex entropic risk measure, iso-entropic risk measure, 

HMCR(p=3), and get the efficient frontier of these six risk 

measures like traditional Markowitz portfolio frontier, since 

HMCR(p=1) is equal to CVaR, HMCR(p=2) is quietly close 

to HMCR(p=3) theoretically, and the research on HMCR(p>3) 

is not included in this paper [14]. 

The efficient frontiers of MV, VaR, CVaR, entropy, 

iso-entropy and HMCR(p=3) was obtained by applying 

Formula (19). It indicates that VaR is not satisfied with 

convexity, and the size of five risk measure is mostly 

consistent with Formula (2.23) when the value of expected 

return rate covering 0.5 3e    and 1.5 3e   , i.e. the 

value of HMCR(p=3) is larger than CVaR, iso-entropy, 

entropy, VaR, MV, which proved that HMCR(p=3), CVaR, 

iso-entropy, entropy are much more prudent that VaR and 

MV. 

For rational investors, they would utilize the portfolio 

coefficients during the efficient level in the efficient frontier 

to build their portfolio, which might maximize their profit and 

reduce risk. Therefore, we build our portfolio based on the 

portfolio coefficients under the expected return rate between 

0.8 3e    and 1.2 3e   , the average cumulative return 

rate of the 15 portfolios with the objective function of these 

risk measures is shown in Table 1.  

 

TABLE 1 

CUMULATIVE RETURN RATE OF PORTFOLIO WITH 

ORIGINAL DATA 

risk measures cum return risk measures cum return 

MV 0.0392 VaR -0.007 

CVaR -0.0468 Entropy 0.1604 

Iso-entropy 0.1153 HMCR(p=3) 0.1671 

NOTE: cum. return represents the cumulative return rate 

 

From Table 1, We find that the cumulative return rates of 

portfolios with the objective functions of HMCR(p=3), 

entropy and iso-entropy are larger than that of standard 

deviation, VaR and CVaR, which represents that risk measure 

that equipped with powerful risk discrimination also have 

strong power of portfolio optimization. While, the result of 

the portfolio with the objective functions are standard 

deviation, VaR, CVaR is contracted to the theoretical analysis, 

it might be related to the properties of the Chinese stock 

market. 

E. Portfolio optimization of de-noising data 

In this subsection, we use the daily closing price of 

Shanghai Pudong Development Bank as an example to 

illustrate the result of the decomposition using EEMD. The 
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number of ensemble members is set to 100, and the standard 

deviation of white noise series is set to 0.1. As shown in 

Figure 1, S1 to S8 represents the component of the original 

data in different average frequencies respectively, and the 

residue (S0) represents the trend of the original data (S) by 

filtering out the high-frequency components, 34 other stocks 

are also decomposed in this way. Then, we use the logarithmic 

return rate of de-noising data that remove 1 IMF to 4 IMFs to 

build portfolios. 
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Fig. 1. Daily Pudong Development Bank closing price data 

decomposed into its IMFs and residue using EEMD 

 

According to the same procedure as the portfolio using 

original data, we get the average cumulative return rate of 

portfolios with the objective of six risk measures using 

de-noising data. The hypothesis test results of the average 

cumulative return rate under six risk measures are shown in 

Table 2. where, _3  _ 4MV MVf  represents that the null 

hypothesis is the cumulative return rate out-of-sample of the 

portfolio’s objective function is MV with the data de-noised 3 

IMFs is larger than that of MV with the data de-noised 4 IMFs, 

the result is “1” means that we would reject the null 

hypothesis under the 95% confidence level, the latter is the 

larger one, while the “0” means that we would not reject the 

null hypothesis, the latter is not significant the larger one. 

 

TABLE 2 

SINGLE HYPOTHESIS TEST RESULT 

       H0               result        H0            result 

MV VaR 

  _3  _ 4MV MVf  1   _ 4  _3VaR VaRf  1 

  _ 2  _3MV MVf  1   _1  _ 4VaR VaRf  1 

  _1  _ 2MV MVf  1   _ 2  _1VaR VaRf  1 

    _1MV MVf  1     _ 2VaR VaRf  1 

CVaR  entropy  

  _ 4  _3 CVaR CVaRf  1     _3e ef  1 

  _ 2  _ 4 CVaR CVaRf  1   _ 4  e ef  1 

  _1  _ 2CVaR CVaRf  1   _1  _ 4e ef  1 

    _1 CVaR CVaRf  1   _ 2  _1e ef  1 

Iso-entropy  HMCR(p=3)  

  _ 4  _3is isf  1     _1n nf  1 

  _ 2  _ 4is isf  1   _3  n nf  1 

    _ 2is isf  1   _ 4  _3n nf  1 

  _1  is isf  1   _ 2  _ 4n nf  1 

NOTE: MV_3 represents the average return rate of the portfolio 

when the objective function is MV with the data de-noised 3 IMFs. 

 

As shown in Table 2, the cumulative return rate of the 

portfolio increases with the IMF de-noised from 1 to 4 from 

the data gradually when the objective function is the standard 

deviation. It is significantly improved when the data 

de-noised 1 IMF and 2 IMFs. The cumulative return rate of 

portfolio increases with the IMF de-noised from 1 to 2 when 

the objective function is VaR, while change to decrease with 

the data de-noised 4 IMFs. It is significantly improved when 

the data de-noised 1 IMF and 3 IMFs. In addition, the result is 

much more significant when the objective function of the 

portfolio is CVaR, which has the same change trend in VaR. 

However, when the objective function of the portfolio is 

convex entropic risk measure, iso-entropic risk measure and 

HMCR(p=3), which have a higher power of risk 

discrimination, is not very significant with the IMFs 

de-noised from the original data. Similarly, the cumulative 

return rates are also improved with the IMF removed, 

especially for iso-entropy risk measure. 

In order to compare the value of the average cumulative 

return rate of the portfolio when the objective functions are 

these six risk measures with the de-noising data. We give a 

rank of total hypothesis test in Table 3. 

 

TABLE 3 

TOTAL HYPOTHESIS TEST RESULT 

Rank         H0            result Rank         H0            result 

1    _3  _3is CVaRf  1 16      _3is MVf  0 

2    _3  _3e isf  1 17    _1  is isf  1 

3    _1  _3n ef  0 18    _ 2  _1e isf  0 

4      _1n nf  1 19    _ 2  _ 2n ef  1 

5       e nf  1 20    _ 2  _ 2CVaR nf  1 

6    _3   n ef  1 21    _ 2  _ 2MV CVaRf  1 

7    _ 4  _3is nf  1 22    _ 4  _ 2VaR MVf  0 

8    _ 4  _ 4CVaR isf  0 23    _1  _ 4MV VaRf  1 

9    _ 4  _ 4e CVaRf  0 24    _1  _1VaR MVf  1 

10  _ 4  _ 4n ef  1 25      _1MV VaRf  1 

11  _ 4  _ 4MV nf  1 26    _1  CVaR MVf  0 

12  _3  _ 4VaR MVf  1 27    _ 2  _1VaR CVaRf  1 

13  _ 2  _3is VaRf  0 28      _ 2VaR VaRf  1 

14  _1  _ 2e isf  1 29      CVaR VaRf  1 

15  _3  _1MV ef  0   

 

As shown in Table 3, the ability of the optimization when 

the objective functions are CVaR, iso-entropy and entropy 

with the data de-noising 3 IMF are capable to obtain higher 

cumulative return rate, while less capable when the objective 

functions are CVaR, VaR and CVaR with the data de-noising 

2 IMFs. 
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V. CONCLUSION 

Firstly, the de-noising technique using EEMD surely have 

some impact to the portfolio, and it is much more significant 

when the portfolio’ objective function is MV, VaR and CVaR 

compared with that of entropy, iso-entropy and HMCR(p=3), 

which have much more powerful risk discrimination 

theoretically. Therefore, it reflects that the impact of 

de-noising using EEMD is much more significant to the 

portfolio when the objective functions have less powerful risk 

discrimination. Then, compared with the highest cumulative 

return rate out-of-sample of the portfolio with the original 

data when the objective function is HCMR (p=3), the 

optimization is much more efficient when the portfolios’ 

objective functions are CVaR, iso-entropy, entropy with the 

data de-noised with 3 IMFs, i.e. de-noised the high frequency 

IMFs in general. And the cumulative return rate of the 

portfolio when the objective function is CVaR with the data 

de-noised 3 IMFs is the highest one. 

Therefore, using the de-noising technique to the data must 

be an efficient way to improve the profit of the portfolio, 

especially when the portfolios’ objective functions have less 

powerful risk discrimination. 
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