
 

  
Abstract—In many automated industrial environments, 

mobile robots have been widely used for performing exclusive 
tasks. Collision-free path planning is one of the most basic 
requirements for the application of mobile robots. In order to 
find a collision-free path in a known static environment for a 
mobile robot, a Teaching-Learning-Interactive Learning-Based 
Optimization (TLILBO) is proposed. The proposed method is a 
novel stochastic search algorithm modelled based on the process 
of natural selection. The proposed method is designed based on 
the three concepts of “teaching”, “learning”, and “interactive 
learning” to effectively search for a feasible and collision-free 
path. Two obstacle environmental maps retrieved from the 
literature were verified in this study. Simulation results showed 
that the proposed method was effective for path planning. 
 

Index Terms—mobile robot, collision-free, path planning, 
Teaching-Learning-Interactive Learning -Based Optimization 
(TLILBO) 
 

I. INTRODUCTION 
OBILE robot path planning technology is an important 
branch of intelligent mobile robot research. In the past, 

many methods have been developed to solve mobile robot 
path planning, such as the C-space method [1], cell 
decomposition [2], roadmap [3], and potential field method 
[4]. However, most of these methods are based on the concept 
of spatial configuration. In addition, these technologies show 
a lack of adaptability and unhealthy behavior. 

Path planning is the task of finding a feasible path from the 
beginning to the goal in a workspace according to some 
optimization criteria, such as lowest cost, shortest time, and 
shortest length. According to the robot’s understanding of the 
environment, path planning can be divided into global path 
planning, in which the environmental information is 

 
 

completely known, and local path planning, in which the 
environmental information is completely unknown or 
partially unknown. 

There are many algorithms available for various 
applications, such as the neural network method [5, 6], the 
GA method [7, 8], PSO method [9, 10], and ant colony 
optimization [11, 12]. Currently, path planning methods 
generally include neural network method [13], Differential 
Evolution (DE) [14], genetic algorithm (GA) [15], and the ant 
colony algorithm [11], artificial bee colony algorithm (ABC) 
[16], and particle swarm optimization (PSO) [17]. These 
methods each have advantages, but there are also some 
deficiencies, such as poor adaptability to the path diagram, 
high computational complexity, long search time, low 
convergence accuracy, and easy to fall into local optimization. 
Therefore, these methods may limit the ability of mobile 
robot path planning. 

In recent years, Rao et al. proposed a Teaching-Learning-
Based Optimization (TLBO) method [12, 13]. This algorithm 
has the advantages of high convergence speed and high 
precision, and is very suitable for solving path optimization 
problems. Therefore, this algorithm can provide a new 
solution for the global path planning of mobile robots. The 
TLBO is an algorithm with no specific parameters [14]. It 
only requires common control parameters such as the size of 
the population and the number of generations, without the 
burden of adjusting the control parameters. This makes the 
TLBO algorithm simpler, more efficient, and has a relatively 
low computational cost. Therefore, TLBO has been 
successfully applied in various optimization fields such as 
production job shop scheduling [18], heat pipe optimization 
design [19], automatic voltage regulation [20], and primer 
design of biotechnology [21]. Recently, various TLBO 
variants have been proposed in the literature to improve the 
performance of the TLBO. Rao et al. proposed the ETLBO 
algorithm [22] to solve the optimization of complex 
constraints. In addition, there have also been proposals for 
improved TLBO algorithms to solve global function 
optimization problems [23, 24] and multi-objective 
optimization problems [25, 26]. In this study, we propose a 
Teaching-Learning-Interactive Learning-Based Optimization 
(TLILBO) to solve the optimization problem of the global 
path planning of mobile robots. 
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II. METHODS 

A. Problem definition 
The definition of the mobile robot path planning problem 

for this study is described as follows: 
“Given a mobile robot and an environmental description, 

plan the paths between the two designated locations, one start 
position and one end position. The planned path cannot have 
collisions and must meet some optimization criteria.” 

Based on the above definition, the mobile robot path 
planning in this study is classified as an optimization 
problem. In mobile robot path planning, the method for 
solving the path planning problem can be differentiated 
according to the following two factors: 
(1) Static or dynamic environment type [27] 

A static environment is defined as an environment that 
does not contain any moving objects other than a navigation 
robot, and a dynamic environment has a dynamic moving 
object that includes people, moving machines, and moving 
robots. 
(2) Global or local path planning algorithm [28] 

Global path planning algorithms require complete 
knowledge of the search environment and all terrain should 
be static. On the other hand, local path planning means that 
path planning is being performed while the robot is moving. 
In other words, this type of algorithm can produce a new path 
that responds to environmental changes. 

B. Mobile Robot Path Planning 
In this study, we proposed a new, improved TLBO 

algorithm based on the interactive learning mechanism 
between learners, called the TLILBO algorithm. This 
algorithm exchanges information gathered by learners with 
each other to achieve information exchange between learners. 
This interactive learning mechanism was mainly added after 
the “learning phase”, and interactive learning was achieved 
through group discussions. The advantage of this approach is 
that, after the stages of “teaching” and “learning”, learners 
can exchange knowledge with each other through interactive 
discussion and discussion among group learners to achieve 
better learning. 

The steps of the TLILBO algorithm proposed in this study 
are described below, and in the flowchart in Fig. 1. 
 
Step 1. Learner coding 

Learner coding was first used for the path planning 
problem of mobile robots. The learner, L, expressed the 
solution of the path, and each variable, s, in the learner, L, 
represented the learned subject. Therefore, we defined the 
learner coding as shown in equation (1). 

𝐿𝐿 = {𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑚𝑚} (1) 

where L denote the learner, namely the solution of the path, s 
denoted the learning subject for L and contained the value of 
the moving direction of each node, and m was the number of 
learning subjects, and the dimension size of the 
environmental map. 
 
Step 2. Import environmental map 

Next, the environmental map was imported for use in 
mobile path planning. The imported environmental map was 

dominated by a 2-dimensional matrix, where each position in 
the matrix represented a path node. Therefore, when the robot 
appears in the real environment, the robot should have moved 
step-by-step on the proposed path nodes. 
Step 3. Initialize the learners 

At the beginning of the algorithm, a random number of 
learners, were generated as the initial learning population. 
Each learner was a solution to the planned path. Therefore, 
the initial learning population of size n could be expressed as: 

𝑃𝑃 = {𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3, … , 𝐿𝐿𝑛𝑛} (2) 

where P was a learning population, L was a learner, and n was 
a learning population size. 
 
Step 4. Evaluate learning achievements of learning 
population 

Each learner was evaluated in turn for their learning 
achievements. The evaluation of this learning achievement 
was calculated through the learning achievement function. 
The preferred planned path for the mobile robots of this study 
was the shortest path between the start position and the end 
position. Therefore, the learning achievement function had to 
be responsible for finding this moving path. The shortest path 
allowed us to calculate the total number of steps required for 
the mobile robot to reach the end. Thus, the learning 
achievement function was designed as shown in equation (3) 
below. 

 
Fig. 1.  Flowchart of TLILBO algorithm for mobile robot path planning. 
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Archievement(𝐿𝐿) =
1

𝑑𝑑1 + 𝑑𝑑2 + ⋯+ 𝑑𝑑𝑡𝑡
 (3) 

where t represented the total number of steps required to 
move from the start point to the end point. 𝑑𝑑1, 𝑑𝑑2, …, 𝑑𝑑𝑡𝑡 were 
the distances between one node and next node, respectively. 
The calculation was based on the Euclidean distance formula, 
as shown in following equation (4). 

𝑑𝑑(𝐴𝐴,𝐵𝐵) = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 (4) 

where A was (𝑥𝑥1, 𝑦𝑦1) and B was (𝑥𝑥2, 𝑦𝑦2). 
 
Step 5. Teaching stage 

Under normal circumstances, the teacher is usually 
considered to be a person with a high degree of learning 
ability to train learners so they can have better learning 
achievement. Therefore, at this stage, we first looked for the 
best learner from the learning population as the teacher. In 
accordance with the teacher’s abilities, the teacher tried to 
increase the average learning achievements of learners in the 
subjects they taught. 

At any iteration i, we assumed there were “m” number of 
subjects (i.e. design variables), “n” number of learners (i.e. 
learning population size, k = 1, 2, ..., n), and 𝑀𝑀𝑗𝑗,𝑖𝑖 were the 
learner’s average learning achievement for a particular 
subject “j” (j = 1, 2, ..., m). The best overall learning 
achievement 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑖𝑖  considered the best learning 
achievement for all subjects, with kbest being the best learner. 
The difference between the existing average learning result 
and the corresponding learning result for each subject was 
given as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗,𝑘𝑘,𝑖𝑖 = 𝑟𝑟𝑖𝑖 × (𝑋𝑋𝑗𝑗,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑖𝑖 − 𝑇𝑇𝐹𝐹𝑀𝑀𝑗𝑗,𝑖𝑖) (5) 

where 𝑋𝑋𝑗𝑗,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑖𝑖 was the learning result of the best learner (i.e. 
teacher) in subject j. 
𝑇𝑇𝐹𝐹 was a teaching factor that determined the change in the 
mean; 𝑟𝑟𝑖𝑖 was a random number in [0,1]. The value of 𝑇𝑇𝐹𝐹 was 
either 1 or 2 and was randomly determined with the same 
probability as follows: 

𝑇𝑇𝐹𝐹 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1){2 − 1}] (6) 

 
Here, the 𝑇𝑇𝐹𝐹 value was not an input to the algorithm, and 

its value was determined by equation (6) randomly. It was 
pointed out in the literature that the TLBO performed well 
when the 𝑇𝑇𝐹𝐹  value was between 1 and 2 after performing 
many benchmark function simulation experiments. However, 
the algorithm also showed that the 𝑇𝑇𝐹𝐹  value of 1 or 2 was 
more suitable for solving problems based on simulation 
experiments. Therefore, in order to simplify the algorithm, 
the teaching factor was suggested as 1 or 2. 
 
Step 6. Update learning achievement 

Based on 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗,𝑘𝑘,𝑖𝑖 , the existing solution 
was updated at the teaching stage according to the following 
formula: 

𝑋𝑋′𝑗𝑗,𝑘𝑘,𝑖𝑖 = 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑖𝑖 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗,𝑘𝑘,𝑖𝑖 (7) 

where 𝑋𝑋′𝑗𝑗,𝑘𝑘,𝑖𝑖  was the updated value of 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑖𝑖 . The algorithm 

would accept 𝑋𝑋′𝑗𝑗,𝑘𝑘,𝑖𝑖 if it provided a better function value. All 
accepted function values were retained at the end of the 
teaching period and these values were input into the learner 
interactive learning phase, which depended on the teaching 
phase. 
 
Step 7. Learning stage 

After a certain amount of iterations, learners could interact 
with other learners in the learning population at random. If 
other learners had more knowledge than themselves, the 
learner will learn new things to improve the learner’s own 
knowledge. We expressed the learning phenomenon at that 
stage as follows: 

Two learners P and Q, were randomly selected so that 
𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑃𝑃,𝑖𝑖 ≠ 𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑄𝑄,𝑖𝑖 , where 𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑃𝑃,𝑖𝑖  and 𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑄𝑄,𝑖𝑖 
was the updated value of 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑃𝑃,𝑖𝑖 and 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑄𝑄,𝑖𝑖 at the end 
of the teacher’s period, respectively. The learning updates 
were shown in equations (8) and (9). 
 

𝑋𝑋′′𝑗𝑗,𝑃𝑃,𝑖𝑖 = 𝑋𝑋′𝑗𝑗,𝑃𝑃,𝑖𝑖 + 𝑟𝑟𝑖𝑖 × �𝑋𝑋′𝑗𝑗,𝑃𝑃,𝑖𝑖 − 𝑋𝑋′𝑗𝑗,𝑄𝑄,𝑖𝑖�,  
𝑖𝑖𝑖𝑖 𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑃𝑃,𝑖𝑖 < 𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑄𝑄,𝑖𝑖 

(8) 

 
𝑋𝑋′′𝑗𝑗,𝑃𝑃,𝑖𝑖 = 𝑋𝑋′𝑗𝑗,𝑃𝑃,𝑖𝑖 + 𝑟𝑟𝑖𝑖 × �𝑋𝑋′𝑗𝑗,𝑄𝑄,𝑖𝑖 − 𝑋𝑋′𝑗𝑗,𝑃𝑃,𝑖𝑖�,  

𝑖𝑖𝑖𝑖 𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑃𝑃,𝑖𝑖 > 𝑋𝑋′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑄𝑄,𝑖𝑖 
(9) 

 
Step 8. Interactive learning process 

Because the learning stage was to randomly select learners 
and interact with learners in the learning population, the 
learners themselves were not always to learn new things. In 
this study, an interactive learning process was added. This 
process was mainly to group learning populations so that 
learners could exchange knowledge with each other through 
interactive discussion among learners in the group to achieve 
better learning. We expressed the learning phenomenon of the 
interactive learning process as follows: 

𝑛𝑛𝑔𝑔_𝑎𝑎𝑎𝑎𝑎𝑎 = ⌊𝑛𝑛/𝑔𝑔⌋ (10) 

where 𝑢𝑢𝑔𝑔_𝑎𝑎𝑎𝑎𝑎𝑎 was the number of average learners in groups, 
which required Floor operation, u was the learning group size, 
𝑔𝑔 was the number of groups. 
 

In the interactive learning process, the learner set in each 
group, 𝑔𝑔𝑥𝑥, was expressed as follows: 

𝑔𝑔𝑥𝑥 = {𝐿𝐿1, 𝐿𝐿2, … , 𝐿𝐿𝑢𝑢𝑔𝑔} (11) 

where 𝑢𝑢𝑔𝑔 was the number of learners in each group. 
 

Two learners, 𝐿𝐿𝑐𝑐 and Ld, were then randomly selected from 
the 𝑔𝑔𝑥𝑥  group to learn from each other and exchange 
information by exchanging some of the learning outcomes 
from each other. The interactive learning update was shown 
by equations (12) and (13). 
 

𝑋𝑋′′′𝑗𝑗,𝐿𝐿𝑐𝑐,𝑖𝑖 = 𝑋𝑋′′𝑗𝑗,𝐿𝐿𝑑𝑑,𝑖𝑖 ,   𝑖𝑖𝑖𝑖 𝑋𝑋′′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐿𝐿𝑐𝑐,𝑖𝑖 < 𝑋𝑋′′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐿𝐿𝑑𝑑,𝑖𝑖 (12) 

 

𝑋𝑋′′′𝑗𝑗,𝐿𝐿𝑑𝑑,𝑖𝑖 = 𝑋𝑋′′𝑗𝑗,𝐿𝐿𝑐𝑐,𝑖𝑖 ,   𝑖𝑖𝑖𝑖 𝑋𝑋′′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐿𝐿𝑐𝑐,𝑖𝑖 > 𝑋𝑋′′𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐿𝐿𝑑𝑑,𝑖𝑖 (13) 
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Step 9. Evaluation of updated learning achievement 
Each updated learner was evaluated through the designed 

learning achievement function. Each updated learner had a 
corresponding learning achievement value. 
 
Step 10. Judgment of termination 

In the iterative process, the algorithm judged whether the 
current learner’s learning achievement value reached the 
preset number of iterations, and then stopped the algorithm 
operation. Otherwise, it went back to step 4 and then 
continued to steps 5 through 10. 

III. RESULTS AND DISCUSSION 
In order to verify the proposed method, two obstacle 

environmental maps in the literature were performed and 
their results were discussed. The followings describe the 
execution environment and their parameter settings, two used 
obstacle environmental maps retrieved from the literature, the 
path planning results on Map 2020, and the path planning 
results on Map 2525. 

A. Execution environment and parameter settings 
The execution environment for this research experiment 

was performed on a 32-bit operating system Windows 7 SP1 
with 4G memory, and Intel(R) Core(TM) 2 Duo CPU E7500 
@ 2.93GHz processor. In the TLILBO algorithm parameter 
settings, the iteration size of its implementation was set to 500. 
The learning population was set to 10, 20, 30, 40, and 50, 
respectively, to observe the behavior of TLILBO for path 

planning under different learning population sizes. 

B. Two used obstacle environmental maps retrieved from 
the literature 
Two maps with obstacles were retrieved from the literature 

of Nianyin Zeng et al. [22], namely the map 2020 and the 
map 2525, as shown in Fig. 2 and Fig. 3. In the map 2020, 
there were 12 obstacles, the start position was (0, 0), and the 
end position was (19, 19). In the other map 2525, there were 
27 obstacles, the start position was (0, 0), and the end position 
was (24, 24). The mobile robot had to move from the start 
position to end position. Although we could determine the 
path by our eyes intuitively, the mobile robot had many paths 
to choose from during the moving and may not have arrived 
at the target. The TLILBO algorithm helped the mobile robot 
determine a feasible path based on the imported maps to 
move to the target. 

C. The path planning results on Map 2020 
First, this study used TLILBO to search feasible paths 

based on the imported map 2020. In this experiment, the 
planned paths of the mobile robot moving from the start point 
(0, 0) to the end position (19, 19) are discussed. The results 
are shown in Table I and Fig. 4. The planned paths for 
different learning population sizes are shown in Fig. 6 (Fig. 6 
is shown at the end of the article). From Table I and Fig. 4, 
we could see that the learning population size influenced the 
path planning result. The execution time was gradually 
increased with the increase in learning population size, except 

 
Fig. 2.  Map 2020 retrieved from the literature of Nianyin Zeng et al. S 
represents the start position and the E represents the end position. 
  

 
Fig. 3.  Map 2525 retrieved from the literature of Nianyin Zeng et al. S 
represents the start position and the E represents the end position. 
  

 
TABLE I 

TLILBO EXECUTION RESULTS FOR THE MAP 2020 

Learning population 
size Moving steps Moving distance (unit) Fitness Execution time (ms) 

10 61 70.527 0.014 16378 
20 56 64.284 0.016 18315 
30 48 53.799 0.019 22012 
40 45 54.527 0.018 28268 
50 52 60.284 0.017 25444 

※Bold font shows the best result. 
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that the learning population size was set to 50. When the 
learning population size was set to 30, the best fitness of 
0.019 and moving distance of 53.799 were performed. 
However, the moving steps of 48 were not the best. When the 
learning population size was set to 40, the best the moving 
steps of 45, and the secondary moving distance of 54.527, and 
fitness of 0.018 were performed. We found the smallest 
learning population size of 10 had the worst results. From Fig. 
4, we could see the planned path according to different 
learning population sizes. 

D. The path planning results on Map 2525 
Next, this study used TLILBO to search feasible paths 

based on the imported map 2525. In this experiment, the 
mobile robot moved from the start position (0, 0) to the end 
position (24, 24). The results are shown in Table II and Fig. 
5. The planned paths for different learning population sizes 
are shown in Fig. 7 (Fig. 7 is shown at the end of the article). 
From Table II and Fig. 5, we could see that the execution time 
also gradually increased with the increase in learning 
population size. When the learning population size was set to 
40, the best fitness of 0.015 and moving steps of 58 were 
performed. However, the moving distance of 336.037 was not 

the best. When the learning population size was set to 50, the 
best moving distance of 311.689, and the secondary fitness of 
0.014 were performed. On the other hand, when the learning 
population size was set to 30, we found that it performed the 
secondary moving steps of 63 and the secondary fitness of 
0.014, and it had better execution time than those of the 
learning population size when it was set to 40 and 50. We also 
found that a smaller learning population size had worse 
results, such as when the learning population size was set to 
10 and 20. From Fig. 5, we could see the planned path 
according to different learning population sizes. 

IV. CONCLUSION 
In this study, we proposed a teaching-learning-interactive 

learning-based optimization (TLILBO) method to solve the 
problem of mobile robot path planning in a static environment. 
Through simulation experiments in two cases of obstacle 
environmental maps retrieved from the literature, it was 
demonstrated that the proposed TLILBO method was feasible 
for path planning of mobile robots in a static environment. 
Furthermore, the study also showed that the execution time 
of TLILBO in obstacle environmental maps was gradually 

 
TABLE II 

TLILBO EXECUTION RESULTS FOR THE MAP 2525 
Learning population 

size Moving steps Moving distance (unit) Fitness Execution time (ms) 

10 68 360.304 0.013 30763 
20 69 354.693 0.013 43696 
30 63 357.089 0.014 53992 
40 58 336.037 0.015 74958 
50 65 311.689 0.014 113450 

※Bold font shows the best result. 
 

 
Fig. 4.  TLILBO execution results for the map 2020. (A) moving steps; (B) moving distance (unit); (C) fitness, and (D) execution time (ms). 
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increased with the increase in learning population size. In the 
map 2020, when the learning population size was set to 30 
and 40, there were better moving steps, moving distances, and 
fitness values. In the map 2525, when the learning 
population size was set to 30, 40 and 50, there were better 
moving steps, moving distances, and fitness values. In the 
future, we will deeply discuss the issue of more leaning 
population sizes and compare the efficiency of TLILBO with 
other methods. 

ACKNOWLEDGMENT 
This work was supported in part by the Ministry of Science 

and Technology (MOST) in Taiwan under grant MOST107-
2622-E-324-002-CC3, MOST107-2221-E-324-020, 
MOST107-2821-C-324-001-ES, MOST107-2218-E-005-
023, and the Chaoyang University of Technology (CYUT) 
and Higher Education Sprout Project, Ministry of Education, 
Taiwan, under the project name: “The R&D and the 
cultivation of talent for Health-Enhancement Products.” 

REFERENCES 
[1] T. Lozano-Perez, "Spatial planning: A configuration space 

approach," IEEE transactions on computers, no. 2, pp. 108-120, 1983. 
[2] F. Lingelbach, "Path planning using probabilistic cell 

decomposition," in Robotics and Automation, 2004. Proceedings. 
ICRA'04. 2004 IEEE International Conference on, 2004, vol. 1, pp. 
467-472: IEEE. 

[3] P. Bhattacharya and M. L. Gavrilova, "Roadmap-based path 
planning-using the voronoi diagram for a clearance-based shortest 
path," IEEE Robotics & Automation Magazine, vol. 15, no. 2, 2008. 

[4] J. Barraquand, B. Langlois, and J.-C. Latombe, "Numerical potential 
field techniques for robot path planning," IEEE transactions on 
systems, man, and cybernetics, vol. 22, no. 2, pp. 224-241, 1992. 

[5] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, "Deep 
convolutional neural network for inverse problems in imaging," IEEE 

Transactions on Image Processing, vol. 26, no. 9, pp. 4509-4522, 
2017. 

[6] D. Mishra and P. K. Kalra, "Modified Hopfield Neural Network 
Approach for Solving Nonlinear Algebraic Equations," Engineering 
Letters, vol. 14, no. 1, pp. 135-142, 2007. 

[7] P. Olranthichachat and S. Kaitwanidvilai, "GA based Fixed Structure 
H∞ Loop Shaping Controller for a Buck-Boost Converter," 
Engineering Letters, vol. 16, no. 3, pp. 346-352, 2008. 

[8] M. N. H. Siddique and M. O. Tokhi, "GA-based Neural Fuzzy 
Control of Flexible-link Manipulators," Engineering Letters, vol. 13, 
no. 3, pp. 148-157, 2006. 

[9] K. Y. Chan, G. Pong, and K. Chan, "Investigation of Hybrid Particle 
Swarm Optimization Methods for Solving Transient-Stability 
Constrained Optimal Power Flow Problems," Engineering Letters, 
vol. 16, no. 1, pp. 61-67, 2008. 

[10] C.-H. Yang, Y.-H. Cheng, and L.-Y. Chuang, "PCR-CTPP design 
based on Particle Swarm Optimization with Fuzzy Adaptive 
Strategy," Engineering Letters, vol. 20, no. 2, pp. 196-202, 2012. 

[11] M. Brand, M. Masuda, N. Wehner, and X.-H. Yu, "Ant colony 
optimization algorithm for robot path planning," in Computer Design 
and Applications (ICCDA), 2010 International Conference on, 2010, 
vol. 3, pp. V3-436-V3-440: IEEE. 

[12] M. Dorigo and T. Stützle, "Ant colony optimization: overview and 
recent advances," in Handbook of metaheuristics: Springer, 2019, pp. 
311-351. 

[13] S. X. Yang and C. Luo, "A neural network approach to complete 
coverage path planning," IEEE Transactions on Systems, Man, and 
Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 718-724, 2004. 

[14] J. Chakraborty, A. Konar, L. C. Jain, and U. K. Chakraborty, 
"Cooperative multi-robot path planning using differential evolution," 
Journal of Intelligent & Fuzzy Systems, vol. 20, no. 1, 2, pp. 13-27, 
2009. 

[15] Y. Hu and S. X. Yang, "A knowledge based genetic algorithm for 
path planning of a mobile robot," in Robotics and Automation, 2004. 
Proceedings. ICRA'04. 2004 IEEE International Conference on, 
2004, vol. 5, pp. 4350-4355: IEEE. 

[16] P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, and A. K. Nagar, 
"Multi-robot path-planning using artificial bee colony optimization 
algorithm," in Nature and Biologically Inspired Computing (NaBIC), 
2011 Third World Congress on, 2011, pp. 219-224: IEEE. 

[17] Y.-Q. Qin, D.-B. Sun, N. Li, and Y.-G. Cen, "Path planning for 
mobile robot using the particle swarm optimization with mutation 

 
Fig. 5.  TLILBO execution results for the map 2525. (A) moving steps; (B) moving distance (unit); (C) fitness, and (D) execution time (ms). 
  

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_08

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



 

operator," in Machine Learning and Cybernetics, 2004. Proceedings 
of 2004 International Conference on, 2004, vol. 4, pp. 2473-2478: 
IEEE. 

[18] H. Keesari and R. Rao, "Optimization of job shop scheduling 
problems using teaching-learning-based optimization algorithm," 
Opsearch, vol. 51, no. 4, pp. 545-561, 2014. 

[19] R. Rao and K. More, "Optimal design of the heat pipe using TLBO 
(teaching–learning-based optimization) algorithm," Energy, vol. 80, 
pp. 535-544, 2015. 

[20] S. Priyambada, P. K. Mohanty, and B. K. Sahu, "Automatic voltage 
regulator using TLBO algorithm optimized PID controller," in 
Industrial and Information Systems (ICIIS), 2014 9th International 
Conference on, 2014, pp. 1-6: IEEE. 

[21] Y.-H. Cheng, "Estimation of teaching-learning-based optimization 
primer design using regression analysis for different melting 
temperature calculations," IEEE transactions on nanobioscience, vol. 
14, no. 1, pp. 3-12, 2015. 

[22] R. Rao and V. Patel, "An elitist teaching-learning-based optimization 
algorithm for solving complex constrained optimization problems," 
International Journal of Industrial Engineering Computations, vol. 3, 
no. 4, pp. 535-560, 2012. 

[23] R. V. Rao and V. Patel, "An improved teaching-learning-based 
optimization algorithm for solving unconstrained optimization 
problems," Scientia Iranica, vol. 20, no. 3, pp. 710-720, 2013. 

[24] S. C. Satapathy, A. Naik, and K. Parvathi, "Weighted teaching-
learning-based optimization for global function optimization," 
Applied Mathematics, vol. 4, no. 03, p. 429, 2013. 

[25] R. Rao and V. Patel, "A multi-objective improved teaching-learning 
based optimization algorithm for unconstrained and constrained 
optimization problems," International Journal of Industrial 
Engineering Computations, vol. 5, no. 1, pp. 1-22, 2014. 

[26] S. Sultana and P. K. Roy, "Multi-objective quasi-oppositional 
teaching learning based optimization for optimal location of 
distributed generator in radial distribution systems," International 
Journal of Electrical Power & Energy Systems, vol. 63, pp. 534-545, 
2014. 

[27] A. Ramirez-Serrano, H. Liu, and G. C. Pettinaro, "Mobile robot 
localization in quasi-dynamic environments," Industrial Robot: An 
International Journal, vol. 35, no. 3, pp. 246-258, 2008. 

[28] K. H. Sedighi, K. Ashenayi, T. W. Manikas, R. L. Wainwright, and 
H.-M. Tai, "Autonomous local path planning for a mobile robot using 
a genetic algorithm," in Evolutionary Computation, 2004. CEC2004. 
Congress on, 2004, vol. 2, pp. 1338-1345: IEEE. 

 

Yu-Huei Cheng (M'12) received the M.S. degree and Ph.D. degree from the 
Department of Electronic Engineering, National Kaohsiung University of 
Applied Sciences, Taiwan, in 2006 and 2010, respectively. He crosses many 
professional fields including biological and medical engineering, electrical 
and electronic engineering, and information engineering. He is currently an 
associate professor of Department of Information and Communication 
Engineering, Chaoyang University of Technology, Taichung, Taiwan. He 
has authored and co-authored more than 100 technical papers. His research 
interests include artificial intelligence, automatic control, bioinformatics, 
biomedical engineering, computational intelligence, embedded systems, 
electric and hybrid vehicles, internet of things, machine learning, mobile 
medical, power electronics, renewable energy and robotics. In terms of 
academic activities, he is currently the associate editor of IEEE Access. He 
is also a Senior Member (SM) of the Institute of Electrical and Electronics 
Engineers (IEEE) and the Universal Association of Computer and 
Electronics Engineers (UACEE), as well as a member of the IAENG 
(International Association of Engineers) and the Taiwanese Association for 
Artificial Intelligence (TAAI). 
 
 
 
Pei-Ju Chao is currently an assistant professor of International School at 
Duy Tan University, Vietnam. Her research interests include supply chain 
management, organizational behavior, small and medium-sized enterprises, 
and e-commerce. 
 
 
 
Che-Nan Kuo was born on December 1979 in Tainan, Taiwan. He received 
his B.S. degree in the Department of Computer Science from the Tunghai 
University, Taichung, Taiwan in 2002, and the M.S. and Ph.D. degrees from 
the Department of Computer Science and Information Engineering at the 
National Cheng Kung University, Tainan, Taiwan in 2004 and 2009. Now, 
he is an assistant professor in the Department of Business Administration, 
CTBC Financial Management College, Tainan, Taiwan. He has many 
excellent research papers about folded hypercubes published on famous 
journals, such as Theoretical Computer Science, Discrete Applied 
Mathematics, Information Sciences, and Computers and Mathematics with 
Applications. His current research interests include interconnection networks, 
discrete mathematics, computation theory, graph theory, and algorithm 
analysis. 
 
  

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_08

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



 

 
  

 
Fig. 6.  The planned paths by using TLILBO based on the 2020 obstacle environmental map with different learning population sizes. (A) learning population 
size set to 10; (B) learning population size set to 20; (C) learning population size set to 30; (D) learning population size set to 40, and (E) learning population 
size set to 50. 
  

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_08

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



 

 

 
Fig. 7.  The planned paths by using TLILBO based on the 2525 obstacle environmental map with different population sizes. (A) learning population size 
set to 10; (B) learning population size set to 20; (C) learning population size set to 30; (D) learning population size set to 40, and (E) learning population size 
set to 50. 
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