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Abstract—The purpose of the research is to stabilize a system
with a different kind of reference signals such as a unit-
ramp, unit-parabolic or higher order signals (Higher Order
Reference). The proposed controller consists of state feedback
and integrators. State feedback controller makes the system
have good performance. Meanwhile, integrators have natural
characteristic for eliminating the steady-state error. By using
new design of integrators, the system is able to be stable and
reach the reference value (tracking control). To design the
proposed controller design, the Coefficient Diagram Method
(CDM) will be used and the pole location will be examined first
to ensure the stability of the system. The design then is validated
in simulation by implementing it in some system models, such
as triple integrator system, DC motor, and inverted pendulum.
The proposed controller design then is compared to PID Ziegler
Nichols to evaluate system performances. The result proves that
the proposed controller can eliminate steady-state error and
stabilize the system with different kind of reference signals
within 3 second.

Index Terms—Tracking Control, Higher Order Reference,
Integrators, State Feedback, Coefficient Diagram Method.

I. INTRODUCTION

T here are many controllers that have been implemented
in the industrial world. One of them is the Proportional-

Integral-Derivative (PID) controller which is very famous
and popular [1]. PID is easy to understand and to be
implemented. PID has fast response characteristic, thus it can
give good system performance. However, PID is not suitable
for higher order than the second order system [2]. For higher
order systems with multiple complex conjugate pole pairs
(oscillations at multiple frequencies), the methods are not
suitable [3]. Also, PID needs some method to tune the gains
of proportional, integral, and derivative.

The other controller is Fuzzy Logic Controller (FLC).
Same with PID, it is also very famous and popular [4]. FLC
is built based on human knowledge or human logic so it
is easy to understand. FLC also has some disadvantages. To
design FLC, it needs data from the system specifications and
limitations. It also will be difficult to be designed to the
system that has many inputs and will perform slow response
too.

Neural network (NN) control is also famous in industrial
technology [5]. But, it needs a lot of data and a fast computer
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to train the controller. If it does not, it will waste time to
train. However, NN has good performance because it can
adapt to the new variable if there is any change within the
system. This can occur because it had a training with a lot
of data. This is the reason why it needs time to train and a
fast computer.

There are six important types of input changes used in
industrial practice for the purposes of modelling and control.
Those signals are an unit-impulse, unit-step, rectangular
pulse, unit-ramp, sinusoidal, and random signal [6]. Most
commonly used in the control system signals are unit-step,
unit-ramp and unit-parabolic. Those signals are categorized
into several orders. The sequence starts from unit-step as the
lowest order reference signal. The next sequences are a ramp,
then parabolic signal consequently from low to high order.

In the control system design, a system which has unit-step
or unit-ramp signal as reference input is easy to be stabilized,
particularly in eliminating the steady-state error [7]. It’s
controller also will be easy to be designed, as well as tuning
the controller gain. The problem arises on how to stabilize
system with parabolic signals or higher order reference signal
[8]. It will be even harder to get the controller gain as higher
the order of the reference signal.

A controller that can eliminate the steady-state error of the
system is important in the industrial process [9]. Despite the
type of the reference input signal, the controller must be able
to eliminate the steady-state error or tracking error. PID and
Fuzzy Controller can eliminate steady-state error quite easily
on the system that has low order reference signal. However,
controlling a system with high order reference input signal
using PID and Fuzzy Controller will be a hard task [10]
[11]. Also, it will be a difficult task to tune the controller
parameter.

State feedback controller is one of the simplest controllers
in modern control system that can make the system having
good performance. State feedback controller consists of gain
controllers which respond to every state in the system. Hence,
it can be modified following the dynamics of the system [12].
The application of state feedback such as inverted pendulum
on cart [13], crane system [14], magnetic levitation system
[15], quadrotor [16], balancing robot [17] [18].

The idea of the research is coming from eliminating the
steady-state error of the system when the reference signal is
given using an or some integrators with the state feedback
controller. It is quite simple and easy to be implemented.
The natural characteristic of an integrator is to eliminate
the steady-state error. During the experiment, the number
of integrators needed depends on the order of the reference
input.

State space representation will be used in the research. The
reason to use state space model is that the state feedback
controller needs a model in state space representation. State
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space model also can be used to represent the Multi-Input
Multi-Output (MIMO) system. Besides, by using state space
representation, the dynamics of the system can be known.

The difficulty of the controller’s parameter design will
be solved using an optimization method. Some proposed
methods to design the controller parameter gains are Pole
Placement (Pole Assignment) [19] [20], Linear Quadratic
Regulator (LQR) [21], Genetic Algorithm [22], and firefly
algorithm [23].

The weakness of Pole Placement [24] and LQR [25] are
there are no standard parameters to determine the parameter
gains of the controller, thus it is still half trial and error
method. While Genetic Algorithm needs a time of iteration
to find the best parameter.

Another method is Coefficient Diagram Method (CDM)
which can be defined as improved LQG [26]. With this
method, trial and error can be avoided and determining a
gain controller will be effortless and timeless [15]. Hence,
this research will also implement the CDM in tuning the
proposed controller gains.

The paper will be divided into some parts. The first part
is the introduction. The second part presents system models
which will be used in this research. The third part discusses
the proposed controller that consists of state feedback with
integrators. Next part explains the theory of CDM. The fifth
part is the controller design. The sixth part is about numerical
simulation and result that consists of Triple Integrator system,
DC Motor system and Inverted Pendulum system. Then the
last part is a conclusion and future work.

II. PROPOSED CONTROLLER

Consider, the model of the system in the state space
representation is

ẋ =Ax +Bu (1)
y =Cx (2)

where x is state vector of the system (m-vector), ẋ is the
first derivative, u is control signal, y is the response of the
system (output signal), A is m ×m constant matrix, B is
m × 1 constant matrix and C is 1 ×m constant matrix.

The proposed controller is consists of Integrators and
State Feedback. The block diagram of the system with the
proposed controller is shown in Figure 1. The block n−Int is
the Integrators and the structure is shown in Figure 2. Also,
the block −K is the state feedback controller that is shown
in Figure 3.

The basic principle of the proposed method is to add some
integrators between error comparator and plant to remove the
steady-state error. The number of Integrators depends on the
reference input signal. If the reference is a unit-step (i = 1),
the system uses one Integrator. For the unit-ramp (i = 2), the
system uses two Integrators and so on.

A. State Feedback plus Feed Forward

Assume that the reference is unit-step so the system only
need one integrator. The equation from Figure 1 is

ż = Âz + B̂u +Fr (3)

y = Ĉz (4)

+ n−Int + ẋ = Ax +Bu Cx

−K

r ξ̇ uI u x y

uSF
−

Fig. 1. The Block Diagram of Augmented System

∫ kI1 ∑

∫ kI2

⋮

∫ kIi

ξ̇1 ξ1 = ξ̇2

ξ2 = ξ̇3

ξi = ξ̇i+1

uI

Fig. 2. The Block Diagram of n-Integrators

∑ −k1

−k2
⋮

−km

uSF x1

x2

xm

x

Fig. 3. The Block Diagram of State Feedback

where

z = [x
ξ
]

Â = [ A 0
−C 0

] B̂ = [B
0
] Ĉ = [C

0
]
T

F = [0
1
]

then, z is the new state vector of the plant (n-vector, n =
m+i), ξ is the state variable of the system, r is the reference
input signal, Â is n×n constant matrix, B̂ is n× 1 constant
matrix, Ĉ is 1×n constant matrix, T is transpose matrix and
F is reference matrix.

The u is the number of the control signal that consist
of Integrators control signal, uI , and state feedback control
signal, uSF . The number of the control signal, u, consist of
Integrators control signal and State feedback control signal.
It can be written as

u = uI + uSF . (5)

In state feedback scheme, the control signal, uSF , that
determined by instantaneous state [9] is written as

uSF = − [k1 k2 . . . km]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
.
.
xm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

= −Kx, (7)
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TABLE I
LIST NUMBER OF ORDERS REFERENCE

Orders Reference (i) Reference Integrator(s) Time
Signal Function

1 unit-step 1 t0

2 unit-ramp 2 t1

3 unit-parabolic 3 t2

⋮

i ⋯ i ti−1

where K is the state feedback gain matrix.

B. Integrators Control

The natural characteristic of Integral control can eliminate
steady-state error. To eliminate steady-state error because of
the reference signal (ramp, parabolic and above), it can be
done by adding some integrators.

However, there is no guidelines yet on designing the struc-
ture of those integrators. This includes where the integrators
and gains are placed in a system.

The structure of Integrators is shown in figure 2. The
output of the first integrator becomes the input of the second
integrator, and the output of the second integrator becomes
the input of the third integrator, and so on continuously.
Those output of Integrators will be multiplied by a gain to
fasten the response on eliminating steady-state error.

Based on Figure 2, the Integrators control signal is

uI = [kI1 kI2 . . . kIi+1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
ξ2
.
.
.

ξi+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=KIξ (8)

where i is the order of the reference as shown in Table I.
The Integrators state is

ξ̇1 = r − y = r −Cx

ξ̇2 = ξ1
ξ̇3 = ξ2
⋮ ⋮

ξ̇i+1 = ξi

(9)

therefore, the matrix of Integrators is

ξ̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0
1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r −Cx
0
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Next, let assume that the reference signal is a unit-ramp
or unit-parabolic signal, the matrix of the integrator is,

Iramp = [0 0
1 0

] (11)

Iparabolic =
⎡⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
(12)

for the High Order Reference (HOR), the matrix of the
integrator is,

IHOR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0
1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Based on (10) until (13), the first row which is r−Cx part
can be eliminated from the integrators matrix. Those equa-
tions also have an identity matrix as part of the integrators
matrix. Hence, the equation can be rewritten it as a general
equation as

IHOR = Ii×i (14)

where I is identity matrix and i is the order of reference.

C. The Augmented System

The new system design can be written as,

ż = Âz + B̂u +Fr, (15)

y = Ĉz, (16)

where

z = [x
ξ
]

Â =
⎡⎢⎢⎢⎢⎢⎣

A 0
−C 0
0 IHOR

⎤⎥⎥⎥⎥⎥⎦
B̂ =

⎡⎢⎢⎢⎢⎢⎣

B
0
0

⎤⎥⎥⎥⎥⎥⎦
Ĉ =

⎡⎢⎢⎢⎢⎢⎣

C
0
0

⎤⎥⎥⎥⎥⎥⎦

T

F =
⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
(17)

Because unit-ramp has one order of reference, i = 1, then
the system design is written as

Â =
⎡⎢⎢⎢⎢⎢⎣

A 0
−C 0
0 1

⎤⎥⎥⎥⎥⎥⎦
B̂ =

⎡⎢⎢⎢⎢⎢⎣

B
0
0

⎤⎥⎥⎥⎥⎥⎦
Ĉ =

⎡⎢⎢⎢⎢⎢⎣

C
0
0

⎤⎥⎥⎥⎥⎥⎦

T

,

While the system design for unit-parabolic that has two order
of reference, i = 2, is stated as

Â =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0
−C 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Ĉ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

.

The overall control signal is

u = uSF + uI
= −Kx +KIξ

= −K̂z (18)

where K̂ is gain of control signal and consists of state
feedback gains and integrators gains. It can be written as

K̂ = [k1 k2 ⋯ km ∣ −kI1 −kI2 ⋯ −kIi] (19)

Later, K and KIn will be designed using the CDM and
matrix transformation.

Then, the state error equation can be obtained by substi-
tuting (18) into (15) as

ż = (Â − B̂K̂)z +Fr (20)

y = Ĉz. (21)
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To apply the proposed controller, the system must fulfil
controllability condition, M, and state controllable condition,
P. Respectively, the condition is

M = [B AB A2B . . . Am−1B] (22)

P = [ A B
−C 0

] . (23)

III. COEFFICIENT DIAGRAM METHOD

Coefficient Diagram Method or CDM is one of the al-
gebraic design approach or polynomial method in control
system design that firstly introduced by Manabe [27]. It will
be used here to design the parameter gains of the proposed
controller (the n-integrators gain and state feedback gain).
The advantage of CDM is to have the standard parameter to
design the polynomial characteristic so it can avoid the trial
and error method [28]. Also, it will save effort and time to
obtain the parameter gains. The polynomial characteristic of
the closed loop system is defined as

P(s) = ∣sI − Â∣
= αns

n + αn−1s
n−1 + . . . + α1s + α0,

(24)

where αn is the coefficient of closed loop system.
The fundamental parameters of CDM are the equivalent

time constant, τ and the stability index, γ. The equivalent
time constant is corresponding to the response of the system
and the stability index is corresponding to the stability of the
system. The standard form of the equivalent time constant is

τ = 1

3
ts, (25)

where ts is desired sampling time. While, the standard form
of the stability index is

γn−1 = . . . = γ3 = γ2 = 2, γ1 = 2.5. (26)

The characteristic polynomial, PT, is known as the desired
characteristic equation which is expressed by a coefficient,
a0, the equivalent time constant, τ , and stability index, γ. It
can be written as

PT(s) = α0

⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=2

⎛
⎝
i−1

∏
j=1

1

γji−j

⎞
⎠(τs)i

⎫⎪⎪⎬⎪⎪⎭
+ τs + 1

⎤⎥⎥⎥⎥⎦
= αns

n + αn−1s
n−1 + . . . + α1s + α0

(27)

where αn is the coefficient of the desired characteristic
equation, n is the p + 1 of A matrix of the system, and
α0 [14] can be written as

α0 =
∏n−1

j=1 γ
j
n−j

τn
. (28)

Based on (27), the stable pole location as µ1, µ2, ...µn, in
the LHP (Left Half Plane) of s-plane are

(s − µ1)(s − µ2)(s − µ3) ⋯ (s − µn) = 0 (29)

IV. CONTROLLER DESIGN

The Matrix Transformation, T, will be used to obtain
gains of the Integrators and state feedback from Coefficient
Diagram Method. The Matrix Transformation is,

T =MW, (30)

where M is the controllability matrix and it can be defined
as,

M = [B AB A2B . . . An−1B], (31)

while

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 β2 ⋯ βn−1 1
β2 β3 ⋯ 1 0
⋮ ⋮ ⋰ ⋮ ⋮

βn−1 1 ⋯ 0 0
1 0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

where βn is the open loop polynomial of the system (15)
given by

POL(s) = ∣sI − Â∣
= βnsn + βn−1sn−1 + . . . + β1s + β0. (33)

Let, define a new state vector by ẑ as

z = Tẑ, (34)

then, if the rank of controllability matrix is full, it means
that the matrix T can be inverse. The system then can be
modified in the controllable canonical form as

ˆ̇z = T−1ATẑ +T−1Bu. (35)

Choose the desired eigenvalues as in (29), then the desired
characteristic is (27). Now, define K̂T as

K̂T = [k1 k2 . . . km ∣ kI1 kI2 . . . kIi] . (36)

When control signal u = −K̂Tẑ is used to control the
system (35), the system equation becomes,

PCL(s) = ∣sI −T−1AT +T−1BK̂T∣
= sn + (αn−1 + k1)sn−1 + (αn−2 + k2)sn−2 + . . .
+ (α1 + kI(n−1))s + (α0 + kIn). (37)

According to CDM, the desired polynomial characteristic
based on the stability index and the equivalent time constant
is needed. Therefore, the coefficients of the desired poly-
nomials a0 to an−1 can be obtained from (27). Finally by
equating (33) and (37), the gain matrix Ka for the augmented
system can be found as

K̂ = [k1 k2 . . . km ∣ −kI1 −kI2 . . . −kIi]T−1

(38)

where,

k1 = αn−1 − βn−1
k2 = αn−2 − βn−2
⋮

−kI(n−1) = α1 − β1
−kIn = α0 − β0.

V. ALGORITHM

The proposed controller gains can be derived using the
CDM. It is effortless than using trial and error method which
takes a lot of time. The procedure to determine controller
gains is explained briefly as

1) Determine the matrix size (m), based on the A Ma-
trix’s of the system, the reference order (for ramp
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i = 1), and the Â matrix size of the augmented system,
n =m + i. The matrix system is,

A =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

Â =
⎡⎢⎢⎢⎢⎢⎣

A 0
−C 0
0 1

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2) Determine the polynomial target (desired polynomial)
that can be obtained using (27) which has parameter
as in (26) and (28). The polynomial target is,

α0 = γ4γ
2
3γ

3
2γ

4
1

τ5
,

PT =α0( τ5

γ4γ23γ
3
2γ

4
1

s5 + τ4

γ3γ22γ
3
1

s4 + τ3

γ2γ21
s3

+ τ
2

γ1
s2 + τs + 1)

PT = α5s
5 + α4s

4 + α3s
3 + α2s

2 + α1s + α0.

The polynomial target code from the CDM can be seen
in the Appendix.

3) Determine the open loop polynomial of augmented
system using (33), W matrix using (32) and control-
lability matrix using (31). The open loop polynomial
is,

POL = β5s5 + β4s4 + β3s3 + β2s2 + β1s + β0
4) Calculate the transformation matrix T using (30). The

inverse transformation matrix is,

T−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1
0 0 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
5) Calculate the gains of proposed controller K̂ using

(38). The gains is,

K̂ = [−2500 − 2500 1000 200 20]T−1. (39)

Steps 3-5 can be replaced with easier ways. The code
acker (from Ackermann’s formula) in MATLAB also can
be used. After getting the polynomial target, the poles can
be obtained. Then, by using ’acker’ command, the gains can
be determined.

VI. NUMERICAL SIMULATION AND DISCUSSION

The simulation will be generated using Matlab Simulink.
The equivalent time constant (τ ) in simulation is 1 second
and the stability index (γi) are in (26). There is three experi-
ment in the section. The first is poles location experiment that
is used to ensure the stable system. The second is response
comparison between a system with proposed controller and
conventional controller. The third is comparison response
between the proposed controller and PID Ziegler-Nichols.

A. Pole Location Experiment

First of all, pole locations of desired polynomials that were
designed using CDM will be examined to ensure its stability
which can be shown in Table II and Figure 4. Based on
Table II, all poles have a negative value. Negative poles are
located on a left-half plane (LHP). Since all poles position
is on LHP, the system will be stable. So CDM can give the
stable system based on the location of the poles.

While, based on Figure 4, the dominant poles are located
on real axis so that the system performs no overshoot in
response. Besides, they are located close enough to the
imaginary axis hence the generated control signal is not too
big.

TABLE II
POLE LOCATION IN s-PLANE

m Desired Polynomial Pole Position

4 s4 + 10s3 + 50s2 + 125s + 125 u1,2 = −2.5 ± 3.44i

u3,4 = −2.5 ± 0.81i

5 s5 + 20s4 + 200s3 + 1000s2 u1,2 = −5.56 ± 6.3983i

+2500s + 2500 u3,4 = −3.02 ± 1.7642i

u5 = −2.84

6 s6 + 40s5 + 800s4 + 80003 u1,2 = −11.14 ± 13.04i

+4 × 104s2 + 105s + 105 u3,4 = −3.22 ± 1.86i

u5 = −8.3253

u6 = −2.9567

7 s7 + 80s6 + 3200s5 + 64000s4 u1,2 = −22.25 ± 26.07i

+6.4 × 105s3 + 3.2 × 106s2 u3,4 = −3.21 ± 1.85i

+8 × 106s + 8 × 106 u5 = −14.64

u6 = −11.49

u7 = −2.95

⋮

10 s1 + 640s6 + 204800s5 u1,2 − 178.02 ± 208.53i

+3.2768 × 107 + 2.6214 × 109 u3,4 − 3.21 ± 1.85i

+1.0486 × 1011 + 20972 × 1012 u5 − 119.97;u6 − 84.04

+2.0972 × 1013 + 1.0486 × 1014 u7 = −39.96;u8 = −19.86

+2.6214 × 1014 + 2.6214 × 1014 u9 = −10.76;u10 = −2.95

By using CDM, the desired pole location can be designed
so that the system is guaranteed in its stability and well
performance. It will eliminate the trial and error method and
lessen the effort in determining the pole. Table II shows that
even in a high order system (for example is a system with
10 poles), CDM provides the desired polynomials with ’best’
designated pole location in a very easy way.
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B. Proposed Controller Experiment

The simulation will use a unit-ramp and unit-parabolic
as a reference signal. It will compare the result between
the system with proposed controller and an conventional
integrator control. The augmented system in Simulink can
be seen in Figure 13 at Appendix.

Some system models will be used to examine the proposed
controller in this research through simulation. The system
models are a triple integrator, DC motor, and Inverted Pen-
dulum in state space representation. The system model can
be written generally as

ẋ = Ax +Bu,
y = Cx.

The matrix constants of triple integrator system are

A1 =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
B1 =

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
C1 =

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦

T

. (40)

The matrix constants of DC motor system are

A2 =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 −5 10
0 −0.2 −4

⎤⎥⎥⎥⎥⎥⎦
B2 =

⎡⎢⎢⎢⎢⎢⎣

0
0
2

⎤⎥⎥⎥⎥⎥⎦
C2 =

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦

T

. (41)

The matrix constants of inverted pendulum system are

A3 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
20.601 0 0 0

0 0 0 1
−0.4905 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
0
0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(42)
Not every system can be controlled by this proposed

controller (state feedback with integrators controller). The
system must fulfil the criterion of the controllability matrix
and must be a state controllable system. By using (7) and (8),
the criterion of the systems can be obtained. Those systems
have more than 1 rank of controllability matrix and state
controllable. Hence, state feedback with integrators controller
can be applied to those systems.

The result of the simulation using a unit-ramp and unit-
parabolic reference is shown in Figure 5 - 10. Figure 5 and
6 are the response of the triple integrator system, Figure 7
and 8 are the response of the DC motor and Figure 9 and
10 are the response of the Inverted Pendulum.

Based on Figure 5, triple integrator system with the
proposed controller gives a response that can achieve the
reference value of the ramp signal. Meanwhile, the same
system that is given only one integrator cannot reach refer-
ence signal value and makes a steady-state error. The same
result with the different system can be seen in Figure 7 and
Figure 9.

As seen in Figure 6, a similar result is shown on the same
system response which the parabolic signal reference unit
is given. By applying the proposed controller, the system
is able to follow the reference signal. However, when only
one integrator is applied to the system, it responds quite bad
performance with a bigger steady-state error. The same result
with the different system also can be seen in Figure 8 and
Figure 10.

To stabilize the system, the proposed controller does not
take a long time. The parameter gains of the proposed

controller are taken from the CDM. In the research, the
standard parameter of CDM is used and can give the good
result to stabilize the system while reaching the reference
signal. Even, it only takes under 4 seconds of time.

Based on Figure 5-10, the response of the system that
using the proposed controller can follow the reference signal.
By using a unit-ramp and unit-parabolic as the reference
signal, the proposed controller (with Integrators) can make
the system stable and can eliminate the steady-state error.
While, for the system with conventional integrator control,
it is not able to follow the reference signal.

Based the simulation, it is clearly defined that there is no
steady-state error. To prove it mathematically, the analysis is
done by doing input substitution [29],

ess(ramp)(∞) = lim
t→∞

⟨[1 + ĈÂ−1B̂]t + Ĉ(Â)−1)2B̂⟩ (43)

ess(parabolic)(∞) = lim
t→∞

⟨[1 + ĈÂ−1B̂]t2

+ [1 + ĈÂ−1B̂]t + Ĉ(Â)−1)2B̂⟩
(44)

where,

Â =
⎡⎢⎢⎢⎢⎢⎣

A −BK BkI1 BkI2
−C 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
B̂ =

⎡⎢⎢⎢⎢⎢⎣

0
F
0

⎤⎥⎥⎥⎥⎥⎦
Ĉ =

⎡⎢⎢⎢⎢⎢⎣

C
0
0

⎤⎥⎥⎥⎥⎥⎦

T

.

For the triple integrators system with ramp-unit as refer-
ence, the steady-state error is,

ess(∞) = lim
t→∞

⟨0t + 0⟩ = 0, (45)

while with parabolic-unit as reference,

ess(∞) = lim
t→∞

⟨0t2 + 0t + 0⟩ = 0. (46)

Based on (45) and (46), zero result means there is no
steady state error by mathematical calculation. Thus, it is
proven on simulation and mathematically that the steady-
state error has been eliminated by proposed controller.
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Fig. 5. Triple integrator response of unit-ramp
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Fig. 6. Triple integrator response of unit-parabolic
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Fig. 7. DC motor response of unit-ramp
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Fig. 8. DC motor response of unit-parabolic

C. Comparison with PID Ziegler-Nichols

The third simulation is to compare the proposed controller
with PID Ziegler-Nichols. Both controllers are implemented
in DC Motor system model. As in CDM, the PID Ziegler-
Nichols also has a standard parameter to determine the con-
troller parameter. The result is shown in Figure 11 (response
of unit-ramp) and Figure 12 (response of unit-parabolic).

Overall, there is no steady-state error when PID Controller
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Fig. 9. Inverted pendulum response of unit-ramp

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5

6

7

8

9

S
ta
te

Time (second)

Response of unit parabolic

 

 

Reference
Proposed
One Conventional

Steady-state error

Fig. 10. Inverted pendulum response of unit-parabolic

is implemented to the system with a ramp reference is given,
even though the system responds a bit overlapping in the
beginning. Meanwhile, there is a difference value of 0.0021
between the response and the reference (steady-state error)
when parabolic reference is given.

Since there is a steady-state error in the system response
of unit-parabolic, modification of PID Controller is needed
to stabilize the system. Thus, the design could be repeated
until the augmented system performs no steady-state error.

The proposed controller is able to make the system reach
the reference value both when the parabolic and the unit-
ramp is given as reference. Although the system also re-
sponds a bit overlapping with the ramp reference in the
beginning, it is still able to achieve reference value. Also,
the augmented system is able to follow the reference value
when the parabolic reference is given. Thus, no modification
is needed when the proposed controller is implemented.

VII. CONCLUSION AND FUTURE WORK

In the paper, the experiment of the proposed controller, the
Integrators and state feedback has been done by simulation
in Matlab Simulink. By using the proposed controller, the
steady-state error of the system that caused by any reference
signal can be eliminated and the system can be stable. The
optimization method, Coefficient Diagram method, also can
be used to design the parameter gain of the controller to
accelerate the controller design process. As long as the order
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Fig. 11. The response of unit-ramp
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Fig. 12. The response of unit-parabolic

of the reference signal is known and the system is modelled
in state space representation, the controller can be designed.

The flexibility of the proposed controller is still an issue
which means not all system cannot be applied by it. There
are some requirements that the system would meet before
can be implemented with the proposed controller.

Another issue which this paper still cannot comply is
that addition of Integrators still needs to be done through
controller design. In other words, if the reference signal type
is changed after the design process, the parameter must be
redesigned. The parameter cannot be changed automatically
when the reference signal is changed.

APPENDIX

PLANT SIMULATION IN SIMULINK

Fig. 13. Plant in simulink

COEFFICIENT DIAGRAM MATLAB CODE

c l e a r ; c l o s e ; c l c

t a u = 1 ; %E q u i v a l e n t t i m e c o n s t a n t

G= [ 2 . 5 2 2 2] %S t a n d a r d s t a b i l i t y i n d e x

%C a l c u l a t e a lpha 0 − alpha 5
a0 =(G( 4 ) *G( 3 ) ˆ 2 *G( 2 ) ˆ 3 *G ( 1 ) ˆ 4 ) / ( t a u ˆ 5 ) ;
a1=a0 * t a u ;
a2=a0 * [ ( t a u ˆ 2 ) / G ( 1 ) ] ;
a3=a0 * [ ( t a u ˆ 3 ) / ( G( 2 ) *G ( 1 ) ˆ 2 ) ] ;
a4=a0 * [ ( t a u ˆ 4 ) / ( G( 3 ) *G( 2 ) ˆ 2 *G ( 1 ) ˆ 3 ) ] ;
a5=a0 * [ ( t a u ˆ 5 ) / ( G( 4 ) *G( 3 ) ˆ 2 *G ( 2 ) ˆ 3 * . . .
G ( 1 ) ˆ 4 ) ] ;

%D e s i r e d p o l y n o m i a l
d a t a 3 =[ a5 a4 a3 a2 a1 a0 ]

J= r o o t s ( d a t a 3 ) ’ %P o l e s

z p l a n e ( J ’ ) %Pole l o c a t i o n
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[20] T. Abdelaziz and M. Valášek, “Pole-placement for siso linear systems
by state-derivative feedback,” IEE Proceedings-Control Theory and
Applications, vol. 151, no. 4, pp. 377–385, 2004.

[21] A. M. Benomair, F. Bashir, and M. O. Tokhi, “Optimal control based
lqr-feedback linearisation for magnetic levitation using improved spiral
dynamic algorithm,” in International Conference on Methods and
Models in Automation and Robotics 20th (MMAR 2015). IEEE, 2015,
pp. 558–562.

[22] P. S. Oliveira, L. S. Barros, and L. d. Q. S. Júnior, “Genetic algorithm
applied to state feedback control design,” in Transmission and Dis-
tribution Conference and Exposition: Latin America (T&D-LA), 2010
IEEE/PES. IEEE, 2010, pp. 480–485.

[23] M. Sababha, M. Zohdy, and M. Kafafy, “Robust pole placement using
firefly algorithm,” International Journal of Electrical and Computer
Engineering, vol. 9, no. 2, pp. 1058–1066, 2019.

[24] M. Ahmad, A. Khan, M. A. Raza, and S. Ullah, “A study of state
feedback controllers for pole placement,” in 2018 5th International
Multi-Topic ICT Conference (IMTIC). IEEE, 2018, pp. 1–6.

[25] M. A. M. Cheema, J. E. Fletcher, D. Xiao, and M. F. Rahman, “A
linear quadratic regulator-based optimal direct thrust force control of
linear permanent-magnet synchronous motor,” IEEE Transactions on
Industrial Electronics, vol. 63, no. 5, pp. 2722–2733, 2016.

[26] S. Manabe, “Brief tutorial and survey of coefficient diagram method,”
in 4th Asian Control Conference, 2002, pp. 25–27.

[27] ——, “Importance of coefficient diagram in polynomial method,” in
Proceedings IEEE Conference on Decision and Control 42nd, vol. 4.
IEEE, 2003, pp. 3489–3494.

[28] A. Ma’arif, A. I. Cahyadi, and O. Wahyunggoro, “Servo state feedback
based on coefficient diagram method in magnetic levitation system
with feedback linearization,” in International Conference on Science
and Technology 3rd (ICST 2017). IEEE, 2017, pp. 22–27.

[29] N. S. Nise, Control Systems Engineering, 7th ed. Wiley, 2015.

Alfian Ma’arif obtained his bachelor degree from
Department of Electrical Engineering, Faculty of
Industrial Technology, Universitas Islam Indone-
sia, Indonesia. He started his undergraduate study
in 2009 and finished it in 2014. Later, he got his
master degree from Department of Electrical En-
gineering and Information Technology, Universitas
Gadjah Mada, Indonesia, in 2018. He is currently a
lecturer in the Department of Electrical Engineer-
ing, Faculty of Industrial Technology, Universitas
Ahmad Dahlan, Indonesia. Alfian Ma’arif, S.T.,

M.Eng., is an IAES Member. His research interest involve computer
programming, robotics and control systems.

Adha Imam Cahyadi obtained his bachelor de-
gree from Department of Electrical Engineering,
Faculty of Engineering, Universitas Gadjah Mada,
Indonesia in 2002. Later, he got his master in Con-
trol Engineering from KMITL in 2005, Thailand,
and Doctor of Engineering from Tokai University,
Japan in 2008. Currently, he is a lecturer in the
Department of Electrical Engineering and Infor-
mation Technology, Universitas Gadjah Mada, In-
donesia. Also, Dr.Eng. Adha Imam Cahyadi, S.T.,
M.Eng., is serving Department electrical engineer-

ing as the head of the department and an IEEE Member. His research
areas involve mechanical control systems, telemanipulation systems, and
Unmanned Aerial Vehicles.

Samiadji Herdjunanto obtained his bachelor de-
gree from Department of Electrical Engineering,
Faculty of Engineering, Universitas Gadjah Mada,
Indonesia, in 1979. Later he got his master degree
from Ohio State University, the USA in 1985, and
the doctoral degree from Department of Electrical
Engineering, Faculty of Engineering, Universitas
Gadjah Mada, Indonesia in 2015. Dr. Ir. Samiadji
Herdjunanto, M.Sc., is currently lecturer in Depart-
ment of Electrical Engineering and Information
Technology, Universitas Gadjah Mada, Indonesia.

His research areas involve control, signal processing, fault detection, isola-
tion and reconstruction.

Iswanto obtained his bachelor, master, and the
doctoral degree from the Department of Electrical
Engineering and Information Technology, Faculty
of Engineering, Universitas Gadjah Mada, Indone-
sia, in 2009, 2013, and 2018. Dr. Ir. Iswanto, S.T.,
M.Eng., IPM., is currently a lecturer in the Depart-
ment of Electrical Engineering, Faculty of Engi-
neering, Universitas Muhammadiyah Yogyakarta,
Indonesia. His research areas involve intelligent
control, control system, and instrumentation.

Yoshio Yamamoto obtained his B. Eng and M.
Eng degree, both from Tokyo University in 1981
and 1983, respectively. He joined Furukawa Elec-
tric Co. Ltd. as a R& D engineer and earned M.Sc
in computer science and Ph.D. from Columbia
University, USA in 1989 and from University
of Pennsylvania in 1994, respectively. In 1994
he joined Ibaraki University as a research asso-
ciate, and then moved to Department of Precision
Engineering of Tokai University as an associate
professor in 1998 where he currently is a professor.

His research interests include coordination and control of wheeled mobile
manipulator, outdoor navigation of autonomous mobile robots, applications
of haptic interface, and applications of giant magnetostriction materials.

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_09

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 




