
 

Abstract— The detection of bone fracture uses X-rays or CT-

scans device typically. These instruments have a negative effect 

of radiation and need high security for both patients and 

medical technicians. In this paper, we proposed a framework 

using the high–order polynomial approach and intensity 

gradient of two – dimensional B – mode ultrasound images for 

bone fracture detection. According to the ultrasound probe 

position, bone scanning process produce curved and flat 

contour surface. The local phase symmetry and morphology 

operation is used to extract the bone surface feature from the 

speckles and other noise. Then, a high order polynomial 

equation is used to obtain the center mass in the bone area. 

Two methods, Polynomial Tangent Perpendicular Line (PTPL) 

and Axis Perpendicular Line method are applied to determine 

the intensity gradient between adjacent columns based on the 

center of the mass bone area. These methods are tested to the 

bovine bone with no – fracture bone, and bone with transverse, 

oblique and comminuted fractures. Both PTPL and APL 

methods had 100% accuracy in the detection of fracture 

occurrence. For estimation width of fracture, the PTPL was 

more accurate than APL method. In the curved contour bone 

surface, the PTPL method has 1.14% error with the mean 

absolute error (MAE) of 0.016 mm. While the APL method has 

2.63% error with the MAE of 0.04 mm. Meanwhile, in the flat 

contour bone surface, the PTPL method has 2.41% error with 

the MAE of 0.03 mm while the APL method has 3.21% error 

with the MAE of 0.04 mm.   

 

Index Terms—bone fracture detection, intensity gradient, 

polynomial center of mass line, B – mode ultrasound image 

 

I. INTRODUCTION 

ONE fracture is a medical condition where there are 

damages to the continuity of the bone, a crack or breaks 

reduces bone function [1]. A bone fracture may be the result 

of high – force impact or stress that the force exerted against 

a bone is stronger than the bone can structurally withstand, 

or a minimal trauma injury as a result of specific bone 

cancer, or osteogenesis imperfect [2][3]. 

The most common sites for bone fractures are on the long 

bones. Treatment includes immobilizing the bone with a 

plaster cast, or surgically inserting metal rods or plates to 

hold the bone pieces together [4][5]. Some complicated 

fractures may need surgery and surgical traction [6]. X – 

rays are commonly used in fracture checks to ensure proper 

medical action. These modalities provide high – quality 

visualization, especially on bone imaging [7]. Some studies 

have used X – rays modality to detect femur fractures based 

on texture analysis and superimpose the target border and 

covering the extracted skeleton [8][9].  

 For some cases requiring bone examination in three – 

dimensional (3D), a CT – scans is a useful device [10][11]. 

However, the CT – scans is expensive and rarely available 

in most hospitals, especially in undeveloped countries. 

Additionally, the X – rays and CT – scans have a radiation 

and ionization hazard in their operation, which require high 

security for both the patients and the medical technicians 

[12]. We can use the ultrasound (US) modality which have 

no ionizing radiation as an alternative method of orthopedics 

and related medical field. The other advantages of US – 

imaging compared to X – rays and CT – scans is it has lower 

cost, does not need special requirements to operate and it is 

a non – invasive method, therefore it is not painful to the 

patients. Some researchers have used ultrasonic modality to 

detect the occurrence of fractures [13][14][15][16]. 

The B – mode US image is obtained from US signals that 

were reflected by the object and visualized in 2D – image 

[17]. The pixel intensity is proportional to the amplitude of 

the reflective signal, which was affected by the direction of 

the reflected signal and the angle between the emitted and 

reflected signals [18]. This characteristic raises various 

noises in the US image and results in low image quality 

[19][20]. Speckles fulfilled almost all area in the US images. 

In the US bone imaging, the speckles and reverberations 

make it exceedingly difficult to determine the bone surface 

conditions accurately [21][22]. 

II. DATA AQUISITION AND PROPOSED METHOD 

A. Data Aquisition 

Experiments held using ultrasound probe type L15 - 7 L40H 

US - 5, with Telemed Ultrasound – OEM Electronics system 
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and Echo Wave II 3.5.0 software to activate the US scanning 

process and display the result in two – dimensional  (2D) B – 

mode images. Fig. 1 illustrates the bone and US probe in the 

scanning process. The bone and head of the probe are 

immersed in water to ensure the US signal works. The probe is 

perpendicular to the bone, which the probe head is at the 

transverse or parallel position to the bone length direction, as 

shown in Fig. 2. 

 

 
Fig. 1.  US probe scanning to the bone surface. Both probe and bone are 

immersed in the water. 

 

 
 (a) (b) 

Fig. 2.  Probe position to the bone length direction: (a) in the transverse 

position and   (b) in the parallel position. 

 

The experiment uses the bovine’s long bone (such as femur, 

tibia, metatarsal, etc.) with various diaphysis size in the no 

fracture bone and in the transverse and oblique fractures. Some 

samples use comminuted fractures. All fracture is created 

artificially by cutting part of the bone diaphysis manually with 

1 – mm width. Transverse fractures are made transversally to 

the bone length direction, while the artificial oblique fracture 

pattern is formed at a 45° angle to the bone length, as shown in 

Fig. 3. Especially for comminuted fracture, we could not create 

a 1 – mm fracture width. In this experiment, the comminuted 

fracture was made by applying high impact pressure on the 

bone structure resulting in two or more irregular fractions. As a 

reference, manual measurement of the fracture width is done 

using a caliper.  

In the US scanning process, the probe position is always at 

the shortest width of the fracture, in the parallel or transverse 

position to the bone length. When scanning of transverse 

fractured bone, probe position is parallel to the bone length, 

therefore the measured fracture width should be 1 – mm. On 

the oblique fracture bone scanning, the probe position could be 

in the transverse or parallel to the bone length. Using geometric 

calculation, the measured fracture width should be 1.414 mm 

(equal to 2𝑟, as shown in Fig. 3). Every sample bones produced 

100 images for no fracture and 100 images for each transverse 

and oblique fracture. Except for costa bone image, the US 

image of all tested bone at the transverse probe position have 

curved surface contour. While the parallel probe position 

produced the flat surface contour. The costa bone image with 

transverse probe position is included in flat surface contour. 

 

 
(a) 

 

 
(b) 

Fig. 3.  (a) Transverse fracture  (b) oblique fracture with 1.414 mm (2𝑟) 

width. 

B. Proposed Method 

The basic idea of this study is detecting the bone fracture 

by calculating the intensity difference on adjacent pixels. In 

the B – mode US bone image, the bone area looks brighter 

than the surrounding areas. The no – fracture bone surface 

reflects all the US signals it received and depicted it in high 

– intensity pixels, close to white color. However, in the 

fractured bone, the hard surface of the bone is broken, and 

the US signal will be reflected by the spongy bone structure 

with lower reflective capability. Therefore, the pixels 

represented fracture has a lower intensity than pixels of no – 

fracture bone. 

The first to do is to clean the bone image from noise to 

obtain bone area clearly and determine the center mass of 

bone area using high level polynomial approach. A set of the 

center of the mass form a polynomial center mass (PCM) 

line. Then we grouped the bone area in columns. A column 

is a straight line which passes the pixel on the polynomial 

center mass (PCM) line and connects the pixel on the upper 

boundary to the pixel on the lower limit of the bone area. 

The next step is to obtain the total intensity on each column 

and calculate the gradient intensity between adjacent 

column.   

We propose two methods for calculating the total 

intensity each column, the Polynomial Tangent Perpendicular 

Line (PTPL) method and Axis Perpendicular Line (APL) 

method. The standard deviation and direction of the gradient 

intensity are used to determine the occurrence of fracture in 

the long bone. 

 

1) Despeckling noise 

 The B – mode US images fulfill with speckles noise, 

making it difficult to determine the boundary between two 

adjacent tissues. Researchers have used many different 

filtering algorithms to improve the image quality 

[23][24][25][26][27][28]. This research used the local phase 

symmetry method [29][30][31][32] and combined with 

opening morphology operation to extract the bone feature. 

Fig. 4 shows 2D B – mode US grayscale – image of a 

bovine’s costa bone. The white area indicated bone’s area 
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which has unclear borders and causing an error in the bone 

fracture detection. If 𝐼(𝑥, 𝑦) denote the intensity pixels of 

grayscale ultrasound image, 𝑊𝑛
𝑒  and 𝑊𝑛

𝑜  denote the even – 

symmetric and odd – symmetric wavelets at scale n, then the 

response vector will be 

 

 𝑒𝑛 𝑥, 𝑦 , 𝑜𝑛 𝑥, 𝑦  =  𝐼 𝑥, 𝑦 ∗ 𝑊𝑛
𝑒 , 𝐼 𝑥, 𝑦 ∗ 𝑊𝑛

𝑜   (1) 

 

where  𝑒𝑛 𝑥, 𝑦 , 𝑜𝑛 𝑥, 𝑦   are the real and imaginary value 

of filter response, with the amplitude, 𝐴𝑛(𝑥, 𝑦), is  

 𝑒𝑛 𝑥, 𝑦 2 + 𝑜𝑛 𝑥, 𝑦 2 and the phase, 𝛷𝑛 𝑥, 𝑦 , is 

𝑎𝑡𝑎𝑛2(𝑒𝑛 𝑥, 𝑦 , 𝑜𝑛 𝑥, 𝑦 ).  

 

 
(a) 

 

 
(b) 

Fig. 4.  (a) Costa bovine bone as the fracture model    (b) 2D B – mode US 

bone image. 

 

A weighted average is used to combine multiple scales 

filter response. The sum of these weighted differences 

produced phase symmetry. If 𝜀 is small value constant and 𝑇 

is noise compensation value, the normalized of phase 

symmetry, 𝑆𝑦𝑚(𝑥, 𝑦), is given by (2). 

 

𝑆𝑦𝑚 𝑥, 𝑦 =
    𝑒𝑛(𝑥, 𝑦) −  𝑜𝑛(𝑥, 𝑦)  − 𝑇 𝑛

𝜀 +  𝐴𝑛(𝑥, 𝑦)𝑛
 (2) 

 

Calculation of (2) produces a value between 0 and 1, 

where 1 indicating very significant feature, while 0 

indicating no significance feature. The bright area in the 

ultrasound image produces high phase symmetry (close to 

1). We used the 𝑆𝑦𝑚(𝑥, 𝑦) value of bone feature as 

threshold for transforming the 2D grayscale image, 𝐼 𝑥, 𝑦 , 
into a black – white image, 𝐽 𝑥, 𝑦 , given by (3).  

 

𝐽 𝑥, 𝑦 =  
1, 𝑖𝑓 𝐼(𝑥, 𝑦) ≥ 𝑡
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  (3) 

 

The area with high probability as a bone has a norm value 

above the threshold and will be represented in the white 

pixels, whereas other regions are black, as background. Fig. 

5(a) shown the result. A narrow white area is often found 

around the true bone’s areas. Although its intensity meets 

the requirement of bone, however, these small areas do not 

include bone’s area. The pixels intensity in these narrow 

areas interferes with the process of identifying bone fracture. 

Therefore, these areas must be excluded. The morphology 

opening method is used to eliminate narrow noise area 

without changing the shape and size of the bone’s area 

[33][34]. The image erosion, 𝐺 ⊖𝐻, followed by a dilation 

process, 𝐺 ⊕𝐻, will erase and then dilate the images 

𝐺 using the structuring element 𝐻, as shown in Fig. 5(b). 

 

A o B = ((A⊖ B) ⊕ B (4) 

A⊖ B =   z | Bz   A  (5) 

A⊕ B = { z   (Bz    A   A (6) 

 

 
(a) 

 

 
(b) 

Fig. 5.  (a) There are several narrow areas with the pixel’s intensity such as 

intensity of bone pixels, but they are not bone pixels   (b) image after 

denoising process. 

 

2) Polynomial center of mass 

US – bone is the 2D image in the (𝑥, 𝑦) coordinate, where 

the 𝑥 – axis is used as a reference to determination of the 

area of each column based on its mass center. Let  𝑥𝑖 , 𝑦𝑖   

denote the mass center coordinate in the 𝑖𝑡𝑕  column, where 

𝑥𝑖  is 1, 2, 3, . . . , 𝑀 and 𝑀 is the number of columns in the 

bone areas, then the value of  𝑦𝑖  given by (7). 

 

𝑦𝑖 =(
1

𝐽𝑡𝑜𝑡  𝑥𝑖 ,𝑦𝑖 
 ) 𝐽 𝑥𝑖𝑙 , 𝑦𝑖𝑙 𝑦𝑖𝑙

𝐿
𝑙=1  (7) 

 

Where 𝑖 refers to column number and 𝑙 =
 1, 2, 3,… , 𝐿 represent the sequence of rows in the 𝑖𝑡𝑕 column 

with 𝐿 is the number of rows in the US image. 𝐽 𝑥𝑖𝑙 , 𝑦𝑖𝑙  is 

normalized intensity of pixels  𝑥𝑖𝑙 , 𝑦𝑖𝑙 , whereas 

𝐽𝑡𝑜𝑡 (𝑥𝑖 , 𝑦𝑖) =  𝐽 𝑥𝑖𝑙 , 𝑦𝑖𝑙 
𝐿
𝑙=1  is the total of normalized 

intensity in 𝑖𝑡𝑕  column. A comprehensive calculation result a 

set of center mass positions  𝑥1 ,𝑦1  ,  𝑥2   , 𝑦2    ,… ,  𝑥𝑀    , 𝑦𝑀     . 

According to [35], the bone surface area is an area 

composed of several pixels which have saturated intensity. 

A proper mass center coordinates of the  𝑖𝑡𝑕  column in the 

saturated image area,  𝑥𝑖 , 𝑦𝑖 , could be obtained using a high 

order polynomial approach, given by (8). 

 

𝑦𝑖 =   𝑝𝑛  𝑥𝑖
𝑛

𝑁

𝑛=0

 (8) 

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_10

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



Where 𝑝 is polynomial coefficients, 𝑛 = 0, 1, 2, 3,… ,𝑁 with 

𝑁 is the order of polynomial. Let denote 𝑥𝑖 = 1, 2, 3,… ,𝑀, 
then the set of bone center mass coordinate generated by 

polynomial approach, 𝑃 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑀 , 𝑦𝑀)}, 
is given by (9). 

And, to fit mass center pixels in a smooth curve, it needs 

minimizing of Least Square Error (LSE) between (7) and (8) 

for each column, given by (10). The curve generated by 

center mass fitting is marked as Polynomial Center Mass 

(PCM) line, as shown in Fig. 6. 
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As a reference to total intensity calculation on each 

column, PCM line start from column position of image 

𝑖 = 1 until the end of the column, 𝑀, in the bone area. Let 

𝑃𝐶𝑀𝑓𝑖𝑡𝑡  is the proper ordinate of mass center on each 

column in the saturated bone area, then 

 

𝑃𝐶𝑀𝑓𝑖𝑡𝑡 = 𝑚𝑖𝑛  𝑦𝑖 −   𝑝𝑛  𝑥𝑖
𝑛

𝑛

𝑛=0

  

2
𝑀

𝑖=1

 (10) 

 

 
Fig. 6.  Polynomial Center Mass (PCM) line 

 

3) Total intensity 

The total intensity calculation of each column requires a 

definite column boundary. In this experiment, the boundary 

area is the outermost edge of the bone area. Therefore, an 

upper boundary and a lower boundary is obtained by 

scanning pointing up or down from the point on the PCM 

line to the black – white image boundaries. If the intensity at 

a pixel (𝑥, 𝑦) is  (means white), this pixel includes in the 

bone area. And, if the intensity of the pixel above it with 

coordinate  𝑥, 𝑦 − 1 , or the pixel below it with coordinate 

(𝑥, 𝑦 + 1), is  (means black or background), this pixel is 

not bone area. In that case, the pixel (𝑥, 𝑦) is marked and 

stored as the top or lowest edge, as shown in Fig. 7.  

The pixel in the upper boundary noted as  𝑥𝑢𝑖 , 𝑦𝑢𝑖  , and 

the pixel in the lower border, indicated as  𝑥𝑙𝑖 , 𝑦𝑙𝑖 . The 

straight line 𝑔 𝑥𝑖  will connect pixels on the upper and 

lower boundary, and the total intensity is obtained by 

calculating the total intensity of pixels along the 𝑔 𝑥𝑖  line. 

According to the above paragraph, we propose two 

methods to determine the straight lines that indicate the 

segment of each column: (i) straight line perpendicular to 

the tangent line of PCM line of each column or Polynomial 

Tangent Perpendicular Line (PTPL) method, (ii) straight 

line perpendicular to the x – axis of image area or Axis 

Perpendicular Line (APL) method. 

 

 
(a) 

 

 
(b) 

Fig. 7.  (a) Upper and lower boundary of bone areas is determined by 

scanning upside or downside, starting from pixel  𝑥𝑖 , 𝑦𝑖  on the PCM line  

(b) one segment of the bone area is enlarged to show the pixels in the upper 

and lower boundary. 

 

Polynomial Tangent Perpendicular Line (PTPL) method. The 

most important in PTPL method is to determine the straight line 

𝑔 𝑥𝑖 =  𝑚2 𝑥𝑖 + 𝐶, which perpendicular to the tangent PCM 

line on the 𝑖𝑡𝑕  column. The result of this method is shown in 

Fig. 8. Line 𝑔 𝑥𝑖  crosses the PCM line on  𝑥𝑖 , 𝑦𝑖 , with the 

top pixel on the upper boundary coordinates,  𝑥𝑢𝑖 , 𝑦𝑢𝑖  , and the 

bottom pixel on the lower boundary’s coordinates,  𝑥𝑙𝑖 , 𝑦𝑙𝑖  . To 

ensure 𝑔 𝑥𝑖  precisely perpendicular to the PCM line, we need 

to calculate the gradient of the tangent PCM line. Let 𝑚1 is a 

gradient of the tangent PCM line on each column, and 𝑓 𝑥  is 
the polynomial equation of PCM line, the correlation of both 

will satisfy (11). If 𝑓(𝑥) is an 𝑛 order polynomial equation, the 

gradient of the PCM line will have an (𝑛 − 1) degree. 

 

𝑚1 =
𝑑

𝑑𝑥
  𝑝𝑛𝑥

𝑛

𝑛

𝑘=0

  (11) 

𝑚1 𝑚2 = −1 (12) 

 

Moreover, 𝑓(𝑥) and 𝑔 𝑥𝑖  would fulfill (12) and gradient of 

𝑔 𝑥𝑖  in 𝑖𝑡𝑕  column, 𝑚2, could be calculated. The constant, 𝐶, 

of 𝑔 𝑥𝑖  is calculated using crossed point of 𝑔 𝑥𝑖  to PCM line 

at  𝑥𝑖 , 𝑦𝑖 . Then, this quation is utilized to obtain the pixels 

which fulfill the 𝑔 𝑥𝑖  line from lower to upper boundaries.  

 

Axis Perpendicular Line (APL) method. As a comparative 

method, we also proposed an APL method. In this method, a 

straight line 𝑔 𝑥𝑖  is designed to cross the PCM line at pixel 

 𝑥𝑖 , 𝑦𝑖  and perpendicular to the 𝑥 – axis of the image area. 

Top end of 𝑔 𝑥𝑖  line ended to the upper boundary, and bottom 

end of the 𝑔 𝑥𝑖  line ended to the lower edge. The upper 

boundary, lower boundary and the PCM line – 𝑔 𝑥𝑖  crossing 

point have the same 𝑥 coordinates. The result is shown on Fig. 

9. 
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(a) 

 

 
(b) 

Fig. 8.  (a) The straight line, 𝑔 𝑥𝑖 ,  is perpendicular to the tangent line of 

PCM on the 𝑖𝑡𝑕  column   (b) one segment of the bone area is enlarged to 

show the 𝑔 𝑥𝑖  line. 

 

  
(a) 

 

 
(b) 

Fig. 9.  (a) The 𝑔 𝑥𝑖  line is perpendicular to the x – axis of the bone area   

(b) one segment of the bone area is enlarged to show the 𝑔(𝑥𝑖) line.  

 

4) Intensity gradient 

The total intensity (normalized) in the 𝑖𝑡𝑕  column, 𝐽𝑡𝑜𝑡  𝑥𝑖 , is 
the total of pixels intensity along 𝑔 𝑥𝑖  straight line at rows of 

𝑘 = 1, 2,… , 𝐾 in the 𝑖𝑡𝑕 column, where 𝐾 is the total 

number of rows from lowest edge to top boundary along the 

𝑔 𝑥𝑖  line. If 𝐽(𝑥𝑖𝑘 , 𝑦𝑖𝑘) is intensity of a pixel (𝑥𝑘 , 𝑦𝑘) at the 

𝑔(𝑥𝑖), then 

 

𝐽𝑡𝑜𝑡 (𝑥𝑖) =   𝐽 𝑥𝑖𝑘 , 𝑦𝑖𝑘  

𝐾

𝑘=1

 (13) 

 

The intensity gradient, 𝛻𝐽(𝑥𝑖), is calculated from difference 

of total intensity between adjacent columns. If 𝛼𝑥𝑖 =
𝜕𝐽𝑡𝑜𝑡 (𝑥𝑖)

𝜕𝑥𝑖
 

and 𝛼𝑦𝑖 =
𝜕𝐽𝑡𝑜𝑡 (𝑥𝑖)

𝜕𝑦𝑖
 are the partial difference of total intensity 

in the x – axis and y – axis, then, 

 

∇𝐽 𝑥𝑖 =   𝛼𝑥𝑖 𝛼𝑦𝑖   (14) 

 ∇𝐽(𝑥𝑖) =   𝛼𝑥𝑖 
2

+  𝛼𝑦𝑖 
2
 (15) 

 

𝐽𝑡𝑜𝑡 (𝑥𝑖) is affected by 𝑔(𝑥𝑖) meanwhile 𝑔(𝑥𝑖) is function of 𝑥 

and 𝑦. Therefore, (14) could be simplified and rewritten as 

(16) and (17). The value of ∆𝑥 is always one, whereas the 

∆𝑦 is the distance between two adjacent center mass lying 

on the PCM line in the adjacent columns. It ensures, the ∆𝑥 

and ∆𝑦 influenced the intensity gradient in the PTPL 

method. However, in the APL method, the intensity gradient 

is affected by the ∆𝑥 only. 

 

𝛼𝑥𝑖 =
𝐽𝑡𝑜𝑡  𝑥𝑖 + ∆𝑥 − 𝐽𝑡𝑜𝑡 (𝑥𝑖)

 𝑥𝑖 + ∆𝑥 − 𝑥𝑖
 (16) 

𝛼𝑦𝑖 =
𝐽𝑡𝑜𝑡  𝑥𝑖 + ∆𝑥 − 𝐽𝑡𝑜𝑡 (𝑥𝑖)

 𝑦𝑖 + ∆𝑦 − 𝑦𝑖
 

(17) 

 

Fig. 10 shows the implementation of intensity gradient 

calculation using PTPL and APL methods. In the no – 

fracture bone, both methods produce a small intensity 

gradient between two adjacent column (close to zero). When 

the fracture occurred, at the beginning and the end of the 

fracture occurrence, the intensity gradient shows a 

significant amplitude, positive or negative higher than 

intensity gradient of the no – fracture bone.  

 

 
(a) 

 

 
(b) 

Fig. 10.  Intensity gradient calculation (a) using the PTPL method and (b) 

using the APL method. The sequence (1 – 3) on (a) and (b) is: (1) 

amplitude of intensity gradient, (2) bone area with PCM line and boundary 

pixels, and (3) the fracture detection. 

 

Let ∇𝐽(𝑥𝑖) and ∇𝐽(𝑥𝑖)         denote the intensity gradient in the 

𝑖𝑡𝑕  column and its average, 𝑀 is the number of columns in 

the bone area, then the standard deviation, 𝜎, is given as 

(18). The standard deviation of intensity gradient, 𝜎, could 

be used to identify the occurrence of bone fracture. 
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𝜎 =    ∇𝐽 𝑥𝑖 − ∇𝐽 𝑥𝑖          
2𝑀

𝑖=0

𝑀 − 1
 (18) 

 

The bone undergoes fractured in one or several locations 

if its standard deviation is higher than the standard deviation 

of the no – fracture bone, 𝜎𝑏 . 

 

𝜎 =  
≤ 𝜎𝑏 𝑛𝑜 − 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 
> 𝜎𝑏 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒   𝑏𝑜𝑛𝑒

  (19) 

 

Applying this concept to the US bone image, the fractured 

bone is detected as shown in Fig. 10. And the location of the 

higher intensity gradient than the threshold value indicate 

the location of the fracture. The both PTPL and APL 

methods could identify fractured at the same location even 

though they result in a different accuracy and pattern. 

III. EXPERIMENTAL RESULTS 

A. Calibration using no – fracture bone 

A piece of no – fracture femoral bovine bone is used as a 

reference for determining fracture of other tested femoral 

bone. The image produced by the scanning process where 

the probe is in the transverse position is shown in Fig. 

11(a.2). The image is in curved contour. The 10𝑡𝑕  order 

polynomial is implemented to obtain the mass center of the 

bone area, which the PCM line has a minimum error to the 

average mass center of each column in the bone area. Both 

PTPL and APL methods give the nearly same intensity 

gradient amplitude across all columns, proving that the bone 

is really in a state not cracked. 

Nevertheless, the US scanning with parallel probe 

position produced a flat contour image, as shown in Fig. 

11(b.2). The 7𝑡𝑕  order polynomial is used to fit the mass 

center each column to the PCM line. Implementation of 

PTPL and APL methods to this image produce the same 

value of the intensity gradient. 

According to the Table I, the mean, maximum and 

standard deviation of the no – fracture femoral bone 

produced by APL method is higher than the values produced 

by PTPL. This fact shows that PTPL has higher sensitivity 

in the detecting fracture than APL method. For the parallel 

probe position, the results are relatively similar between the 

PTPL and APL methods, because the resulting 2D image 

has a nearly flat contour from end to end. The maximum 

intensity gradient and the standard deviation are used as the 

threshold value of bone surface fracture detection. Let 𝜎𝑐𝑢𝑟𝑣  

and 𝜎𝑓𝑙𝑎𝑡  are the standard deviation for femoral bovine bone 

image, then 

 

𝜎𝑐𝑢𝑟𝑣 =  
≤ 0.354 𝑛𝑜 − 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 
> 0.354 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒   𝑏𝑜𝑛𝑒

  (20) 

 

𝜎𝑓𝑙𝑎𝑡 =  
≤ 0.337 𝑛𝑜 − 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 
> 0.337 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒   𝑏𝑜𝑛𝑒

  
(21) 

 

To detect fracture location, we use the maximum intensity 

gradient,  𝛾 𝑥, 𝑦 𝑐𝑢𝑟𝑣   and  𝛾 𝑥, 𝑦 𝑓𝑙𝑎𝑡   as given by (22) and 

(23) for curved and flat contour. 

 

 𝛾 𝑥, 𝑦 𝑐𝑢𝑟𝑣  =  
≤ 1.71 𝑛𝑜 − 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 
> 1.71 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒   𝑏𝑜𝑛𝑒

  (22) 

  

 𝛾 𝑥, 𝑦 𝑓𝑙𝑎𝑡  =  
≤ 1.42 𝑛𝑜 − 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 
> 1.42 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒   𝑏𝑜𝑛𝑒

  
(23) 

 

The standard deviation on (20) – (21) and maximum 

value of intensity gradient on (22) – (23) are used to 

determine the fracture and its location in the other femoral 

tested bones. 

 

 
(a) (b) 

Fig. 11.  Fracture detection of the no – fracture femoral bone, with probe 

position to the bone length (a) on transverse position and (b) on parallel 

position. The row sequences from (1) to (4) are: (1) bone and probe 

position, (2) 2D B – mode US image, (3) fracture detection using PTPL 

method, (4) fracture detection using APL method. 

 
TABLE I 

INTENSITY GRADIENT OF NO – FRACTURE FEMORAL BONE IMAGE 

Probe Position Method 
Intensity gradient (normalized) 

Max Mean Std Dev. 

Transverse 

PTPL 1.69 0.35 0.35 

APL 1.73 0.4 0.36 

Average 1.71 0.38 0.35 

Parallel 

PTPL 1.42 0.34 0.34 

APL 1.42 0.34 0.34 

Average 1.42 0.34 0.34 

B)  Oblique – fracture femoral bone 

The image for transverse probe position is shown in Fig. 

12(a) and for lateral/parallel probe position is shown in Fig. 

12(b). The PTPL and APL method of both probe position 

detect fractures in the same position. For a transverse probe 

position, the 2D image is in the curved contour, while for a 

parallel probe position, the B – mode image is in the flat 

contour.   
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  (a) (b) 

Fig. 12.  Bone fracture detection on an oblique pattern, with probe position 

to the bone length (a) on transverse position (b) on parallel position. The 

row sequences from (1) to (4) are: (1) bone and probe position, (2) B – 

mode US image, (3) fracture detection using PTPL method  (4) fracture 

detection using APL method. 

 

For curved contour image, the PCM line is determined 

using the 12
th
 order polynomial and the fracture detection 

uses the formula of (20) and (22). Whereas for parallel 

probe position, the 2D B – mode image is in the flat contour. 

We obtain the best PCM line using the 8
th
 order polynomial. 

And the fracture is detected using the rule of (21) and (23).  

 
TABLE II 

INTENSITY GRADIENT OF OBLIQUE – FRACTURE FEMORAL BONE IMAGE 

Probe 

Position 
Method 

Intensity gradient (normalized) 

Max Mean Std Dev. 

Transverse 
PTPL 15.84 0.51 1.33 

APL 15.84 0.49 1.146 

Parallel 
PTPL 10.97 0.28 0.844 

APL 10.83 0.32 1.023 

 

Table II confirms Fig. 12.a (3 – 4) and Fig. 12.b (3 – 4), 

that the proposed method has success to detect a fracture of 

a femur bone on one or several positions of its surface. The 

standard deviation is greater than the standard deviation on 

(20) and (21), thus fulfilling the criteria that the bone tested 

is broken. 

C) Fracture on other bone type 

The following are the results of the PTPL and APL 

fracture detection method implementation on bovine long 

bone such as the tibia, metatarsal, humerus, ulna, radius, 

metacarpal, phalange, and costa with transverse, oblique and 

comminuted fracture types, as shown in Fig. 13. For 

comminuted type, fractures are detected in several adjacent 

locations, with varying fracture width. Determination of 

standard deviation, 𝜎, and maximum intensity gradient, 

𝛾(𝑥, 𝑦), as a reference to detect fracture and its position is 

done by initial scanning at the location of no – fracture of 

each bone type. Fig. 13 confirms that the proposed method 

has succeeded in detecting the presence of fracture and their 

positions for various types of bovine bone. 

 

 

 

 

 
  (a) (b) (c) (d) (e) 

Fig. 13.  Fracture detection in some bovine bone samples. Row sequences from 1 to 3 are: 1) 2D B–mode image   2) fracture detection using PTPL method, 

and 3) fracture detection using APL method. While the column sequences from (a) to (e) are: (a) costa on comminuted fracture  (b) costa on oblique fracture  

(c) tibia on oblique fracture  (d) ulna on comminuted fracture   (e) metatarsal on comminuted fracture.  
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IV. DISCUSSION 

Several studies of bone fracture have succeeded in 

separating the bone area from surrounding soft tissue, found 

the outer bone contour and detected the fracture happened. 

Hacihaliloglu et al. have presented a method for bone 

segmentation from ultrasound images using intensity – 

invariant local image phase and detected the fracture. Their 

research produced a 41% improvement in surface 

localization error over the previous 2D phase symmetry 

method with a localization accuracy of 0.6 mm and mean 

errors in estimating fracture displacements below 0.6 mm 

[31]. Demers et al. detected the induced long bone fractures 

from cadaver model. Their research result the 

sensitivity/specificity of fracture detection with range 87.3 – 

95.2 / 69.8 – 88.9% for proximal tibia, distal radius and 

temporal bone types [36].  

In this paper, we have proposed method to detect bone 

fracture accurately based on high order polynomial equation 

and intensity gradient calculation of the 2D – bovine bone 

US – images. This proposed method offered another 

alternative using a simple basic equation, therefore, the 

processing time could be shortened and the decisions could 

be obtained quickly and accurately. Our proposed method 

proved that the use of the high – order polynomial 

approaches combined with PTPL and APL methods 

produced 100% accuracy in determining the presence of 

transverse, oblique and comminuted fractures on the many 

type bovine long bones. 

A. Effect of polynomial order 

Polynomial equations are used to anticipate uncertain 

surface contour characteristics. High – order polynomial 

could follow changing pattern flexibly to obtain the precise 

position of the center of mass. The use of an improper 

polynomial order causes an error in the definition of 

column, 𝑔(𝑥𝑖), and result in fracture detection errors. The 

polynomial orders for various bone types and various 

fractures are shown in Fig. 14. No – fracture bone has the 

lowest polynomial order. If there is a fracture, the 

polynomial order will increase. The more fractures location 

detected cause the increment of polynomial order, and the 

polynomial order on the curved contour is higher than the 

flat contour.  

B. Width fracture evaluation 

In our previous research, we have proposed the estimation 

of wire phantom position using the polynomial approach on 

2D - US images [35]. The research resulted that the distance 

of 1-centimeter between two wire phantoms is equal to 

122.72 pixels. We implemented these result for evaluating 

the fracture width. Table III and Table IV present the 

fracture width evaluation of curved and flat contour surface 

of tested bones. The accuracy of detection on start – end 

fracture position affects the fracture width estimation.  

The PTPL method is more accurate than APL method. In 

the curved contour bone surface, the estimation width 

fracture using PTPL method has 1.14% error with the mean 

absolute error (MAE) of 0.016 mm. While the APL method 

has 2.63% error with the MAE of 0.04 mm (see Table III). 

Meanwhile, in the flat contour bone surface, the estimation 

width fracture using PTPL method has 2.41% error with the 

MAE of 0.03 mm while the APL method has 3.21% error 

with the MAE of 0.04 mm (see Table IV). 

C. Pattern evaluation 

The higher intensity gradient than the threshold value 

identifies the start of the fracture area. In the fractures area, 

the total intensity of each column has almost the same value, 

and its gradient approaches zero (or below the threshold 

value). And, at the end of the fracture, the intensity gradient 

will exceed the threshold value with the gradient direction 

opposite from the gradient direction at the beginning of the 

fracture.  

The PTPL method and the APL method produce different 

fracture pattern on the fracture detection of the same bone. 

Fig. 15 shows the comparison of fracture pattern between 

PTPL and APL methods on curved contour, according to 

Fig. 12(a) on sequence (3 – 4). Fracture detection using the 

PTPL method was marked as 1 – 2, whereas using the APL 

method, the fracture was marked as 3 – 4.  

Fig. 16 shows the comparison of fracture pattern between 

PTPL and APL methods on flat contour surface, according 

to Fig. 12(b) on sequence (3 – 4). A fracture was marked by 

1 until 5 using the PTPL method and 6 until 11 using the 

APL method. Number 3 – 4 and 8 – 9 are decided as a 

fracture position because there is a change of gradient 

direction. 

 

 
(a) 

 

 
(b) 

Fig. 14.  Comparison of polynomial order on various type fractured bovine 

bones for: (a) curved contour bone surface (b) flat contour bone surface.  
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TABLE III 

WIDTH FRACTURE ESTIMATION OF CURVED CONTOUR BONE SURFACE 

Bone 

sample 
Method 

Intensity gradient (norm) Width Measurement (mm) 
Error (%) 

Std. Dev. Max Manual Propose Method 

       

1 
PTPL 0.498 8.752 1.4 1.39 0.71 

APL 0.533 9.219 
 

1.47 5 

2 
PTPL 0.664 6.686 1.4 1.39 0.71 

APL 0.689 8.294 
 

1.47 5 

3 
PTPL 0.463 3.229 1.4 1.47 5 

APL 0.477 3.865 
 

1.47 5 

4 
PTPL 1.304 6.545 1.4 1.39 0.71 

APL 1.363 6.545 
 

1.55 10.7 

5 
PTPL 0.641 4.957 1.4 1.39 0.71 

APL 0.703 6.922 
 

1.47 5 

6 
PTPL 0.972 3.261 1.4 1.47 5 

APL 1.383 3.422 
 

1.55 10.7 

7 
PTPL 2.062 1.925 1.4 1.47 5 

APL 2.338 2.027 
 

1.47 5 

8 
PTPL 0.585 4.15 1.4 1.47 5 

APL 0.614 4.472 
 

1.55 10.7 

Note: Bone samples are: 1. Femur, 2. Tibia, 3. Metatarsal, 4. Humerus, 5. Radius, 6. Ulna, 7. Metacarpal, and 

8. Phalange. 

 
TABLE IV 

WIDTH FRACTURE ESTIMATION OF FLAT CONTOUR BONE SURFACE 

Bone 

sample 
Method 

Intensity gradient (norm) 
Width  

Measurement (mm) 
Error (%) 

Std. Dev. Max Manual 
Propose 

Method  

1 
PTPL 0.438 10.376 1 1.06 6 

APL 0.467 10.376 
 

1.06 6 

2 
PTPL 0.498 14.269 1.4 1.39 0.71 

APL 0.527 14.296 
 

1.39 0.71 

3 
PTPL 0.455 6.69 1 0.98 2 

APL 0.463 6.688 
 

0.98 2 

4 
PTPL 0.49 12.265 1 1.06 6 

APL 0.498 12.265 
 

1.06 6 

5 
PTPL 1.168 14.735 1.4 1.39 0.71 

APL 1.201 15.26 
 

1.47 5 

6 
PTPL 0.855 8.229 1 1.06 6 

APL 0.902 8.751 
 

1.06 6 

7 
PTPL 0.449 8.925 1 1.06 6 

APL 0.467 9.139 
 

1.06 6 

8 PTPL 0.874 10.569 1.4 1.47 5 

APL 0.883 10.583 
 

1.47 5 

Bone samples are: 1. Femur on transverse fracture, 2. Tibia on oblique fracture, 3. Metatarsal on transverse 

fracture, 4. Humerus on transverse fracture, 5. Radius on oblique fracture, 6. Ulna on transverse fracture, 7. Metacarpal 

on transverse fracture, 8. Phalange on oblique fracture. 

V. CONCLUSION 

From the above discussion, we concluded that the high 

order polynomial approach as the base of the intensity 

gradient calculation to detect the occurrence and estimate 

the width of bone fracture worked accurately. PTPL and 

APL methods deliver 100% accuracy in the detection of 

bone fracture occurrence. 

Detection of fracture width by PTPL method in curved 

contour is more accurate than using APL method. For 1 – 

mm artificial bovine bone fracture, the PTPL method 

produce MAE of 0.016 mm while the APL method has 

MAE of 0.04 mm. For fracture width estimation on flat 

contour,  the PTPL method gave MAE of 0.03 mm and the 

APL method produce MAE of 0.04 mm. It can be concluded 

that the PTPL method which considers the direction of the 

gradient between two adjacent mass centers results in the 

more accurate measurement of fracture width than the APL 

method, for all tested bone types.  

For future work, it is necessary to improve the US image 

calibration method, so that the scale of the scalar to the pixel 

of 2D – US image is smaller and the accuracy of the fracture 

width detection could be improved. And then applying its 
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method to other bone types and the human bone with the 

real fracture. 

   

 
 (a) (b) 

Fig. 15.  Pattern of oblique femur fracture on curved contour using (a) 

PTPL method and (b) APL method. 

 

 
 (a) (b) 

Fig. 16.  Pattern of oblique femur fracture on flat contour using (a) PTPL 

method and (b) APL method. 
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