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Electroencephalographic Source Localization based
on Enhanced Empirical Mode Decomposition

Maximiliano Bueno-Lépez, Pablo A. Munoz-Gutierrez, Eduardo Giraldo and Marta Molinas

Abstract—In this work, a novel identification method
of relevant Intrinsic Mode Functions, obtained from
Electroencephalographic signals, by using an entropy criteria is
proposed. The idea is to reduce the number of Intrinsic Mode
Functions that are necessary for the electroencephalographic
source reconstruction. An entropy cost function is applied
on the Intrinsic Mode Functions generated by the Empirical
Mode Decomposition for automatic IMF selection. The resulting
Enhanced Empirical Mode Decomposition is evaluated in
simulated and real data bases containing normal and epileptic
activity by means of a relative error measure. The proposed
approach shows to improve the electroencephalographic source
reconstruction specifically for epileptic seizure detection.

Index Terms—Brain mapping, Epileptic seizures, Seizure
detection, Empirical-Mode-Decomposition.

I. INTRODUCTION

ICHARD Caton discovered electrical currents in the

brain in 1875 and Hans Berger recorded these
currents and published the first human Electroencephalogram
(EEG) in 1924 [1]. The EEG is used to measure the
electrical activity of the brain characterizing its various
normal and pathological states. Due to their non-linear and
non-stationary nature, these signals are very difficult to
analyze in the time -frequency frame. However, important
features can be extracted for assisting in the analysis of
Alzheimer‘s disease, attention-deficit/hyperactivity disorder
(ADHD), autism, autistic spectrum disorder, alcoholism,
epileptic seizures, depth of anesthesia, etc. [2], [3], [4]. EEG
is usually pre-processed by pass-band and stop-band filters
that can modify some features of the EEG signals and that
are essentially linear filters. However, given the nature of
these signals, adaptive filters that can preserve their nonlinear
information will be more adequate to analyze them. The
nature of EEG signals naturally harmonizes with the use
of EMD and Hilbert Huang Transform (HHT) to obtain
a better signal representation and to detect instantaneous
frequencies that with other methods are difficult to observe
[5]. The nonlinear parameters will then better describe the
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dynamics of the EEG signals considering their nonlinear and
non-stationary nature [6].

In [7], a method to quantify interaction between
nonstationary cerebral blood velocity (BFV) and blood
pressure (BP) is proposed for the assessment of dynamic
cerebral autoregulation (CA) using HHT. In [8] the authors
show a novel feature extraction methodology for the
classification of EEG signals involving the calculation of
EMD. A bandwidth parameter, measured from the analytic
signal representation of IMFs obtained from the EMD
method, for classification of seizure and nonseizure EEG
signals is presented in [9]. In [10], the authors show an
evolution of EMD called Multivariate Empirical Mode
Decomposition (MEMD), which is very useful in direct
multichannel data analysis; in that case used for a full
data-driven analysis to decompose resting-state fMRI
(functional Magnetic Resonance Imaging) data into different
sub-bands looking for connectivity functions. This paper has
a similar purpose, but instead of using fMRI we use EEG
signals and another brain reconstruction algorithm, in this
case we used IRA-L2 (Iterative Regularization Algorithm
with norm [ — 2). The use of fMRI implies higher costs
and low accessibility due to the equipment required for
acquisition and processing of information.

Different strategies have been used for the process of
reconstruction of Neural Activity from EEG data, but the use
of EMD has been scarcely reported and its performance is
still an open issue due to the challenge posed in the selection
of relevant modes for activity reconstruction [5], [11], [12],
[13]. One of the alternatives is to apply the methodology
of the inverse problem. An iterative regularized method
that explicitly includes space (grounded in a physiological
model) and time constraints within the dynamic solution of
the EEG inverse problem is presented in [14].

The treatment of focal epilepsy when the medicines
to control epileptic seizures are not effective, consists
in a surgery where a part of the brain is removed. The
surgery is performed after carefully locating the sources or
brain zones that initiate the epileptic seizures. The smaller
the region that is removed, the lower the effects on the
patient will be. Therefore, highly precise brain mapping
techniques are required to performed this task. However,
when precise mapping is not available, an additional surgery
is performed in order to obtain additional estimation of
the zone that has to be removed by using intra-cranial
electrodes [15]. Multiple studies have been done on the
detection of the risk of epilepsy. For example, in [16], the
authors presented a comparison between the performance
of a Genetic Algorithm (GA) and Multi- Layer Perceptron
(MLP) Neural network in the classification of epilepsy risk

(Advance online publication: 27 May 2019)



TAENG International Journal of Computer Science, 46:2, [IJCS 46 2 11

level from EEG signal parameters. The epilepsy risk level
is classified based on the extracted parameters like energy,
variance, peaks, sharp and spike waves, duration, events
and covariance from the EEG of the patient. In [17], the
authors show the application of Multi-Layer Perceptron
(MLP) as an optimizer for classification of epilepsy risk
levels obtained from the fuzzy techniques using EEG signal
parameters. The obtained risk level patterns from fuzzy
techniques are found to have low values of Performance
Index (PI). Another good approximation in this topic has
been presented in [18]. In that paper is intended to compare
the performance of four different types of fuzzy aggregation
methods in classification of epilepsy risk levels from EEG
Signal parameters.

In this paper, an improvement is proposed for a brain

mapping technique by introducing a pre-processing stage
of the EEG signals. The main goal is to develop a more
precise brain mapping method that classifies the information
into frequency bands from the IMFs. In this way, it will
be possible to more precisely locate the area in the brain
where the epileptic seizures occur. To this end, an automatic
selection of IMFs is performed based on an entropy cost
function. The entropy is an indicator of the amount of
information stored in a more general probability distribution
and is a measure of the complexity of the time series [19].
As a result an Enhanced Empirical Mode Decomposition
is obtained for EEG -based activity source reconstruction.
Some previous works have considered the use of entropy to
detect the source of epileptic seizure [20], [21]. We applied
EMD in simulated and real EEG signals containing normal
and epileptic activity based on a nonlinear complex model.
The simulated EEG signals are generated for one active
source under several noise conditions. In order to detect the
sources associated to epileptic seizures a brain mapping stage
is performed using a reconstructed EEG signals obtained
from the optimally selected IMFs. A relative error measure
is used to compare the brain mapping results from the
EEG database without applying EMD and the optimally
reconstructed signals using EMD. An additional evaluation
over real EEG signals containing epileptic seizures events is
performed.
The paper is organized as follows: Section II gives an
introduction to the essential concepts of EMD and EEG
signals. The experimental setup is presented in Section III
and the results obtained with the EEG signals are presented
in Section IV. The discussion of the results is presented in
Section V. Finally, some conclusions are given in Section
VI

II. MATERIALS AND METHODS
A. Brain Mapping: The Inverse Problem

The forward problem of EEG generation can be
formulated

y(ty) = Mx(ty) + €(tx) )

being y(tx) € RY the EEG, and z(t;) € R" the neural
activity, with t; = kh the time at sample k being k =
1,...,T the total number of samples, h the sample time
and M € R%*" the lead-field matrix that relates the neural

activity with the EEG. The evolution of x(tx) in time can
be used to model several behaviors of the EEG signals.
It is possible to formulate an iterative inverse problem
(IRA-L2) [14] in order to estimate the neural activity T (¢)
for each measurement y(¢x), as described in:

2(t) = arg minly(te) - Ma(ty,) |3 + ol (tr) |1
k

+ Ml (te) — Z(t—1)]I3

being A\ and oy the regularization parameters computed by
generalized cross validation [14].

B. Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) is an
adaptive, and data-dependent method. The aim of the EMD
method is to decompose the nonlinear and non-stationary
signal y(¢x) into a sum of intrinsic mode functions (IMFs)
that satisfies two conditions [22]:

1) The number of extrema and the number of zero
crossings must be the same or differ at most by one.

2) At any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the
local minima is zero.

The EMD algorithm can be summarized in Fig. 1
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Flowchart indicating the various stages of the EMD method

Fig. 1.

Empirical Mode Decomposition is applied over y(tx) to
obtain ~y;(t) being 4 the intrinsic mode function (IMF), and

N

y(tr) = > vilte) +r(t) 3)

i=1
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where N is the number of IMFs and r(¢;) a residual.
Recently, some optimization techniques have been proposed
to improve the performance of the EMD [23], [24].

Having obtained the intrinsic mode function components,
we can apply the Hilbert transform to each IMF component,
and compute the instantaneous frequency according to
equation (4).

1 do;(t)

L) & 5 =5 “)

where 6;(t) is the function phase of each IMF calculated
from the analytic signal associated [25]. Finally, the
instantaneous frequency can be observed in the Hilbert
Spectrum.

C. Automatic IMF selection: Entropy Function

An entropy based cost function is applied over each IMF
~i(tx) as follows:

= Il log (i) [13) (5)

k

being e; the entropy of each IMF, and e = [e; ... en].
In order to reconstruct the EEG signal ¢(¢;) an automati
selection of the IMFs (IMFs with highest entropy) are applied
according to the measured entropy e;.

= ilts) ©6)

i€O
being O the subset of of IMFs whose entropy e; is over a
threshold 7, computed as follows

maxe — mine

5 + mine )

Te =

III. EXPERIMENTAL SETUP

The performance of the aforementioned method is
evaluated by using simulated and real EEG signals containing
epileptic seizures. The experimental setup is divided in the
following tasks, as depicted in Fig. 2:

1) EEG acquisition or simulation y(t).

2) Apply EMD on the EEG signal.

3) Optimal selection of IMFs using an entropy based cost

function.

4) Reconstruction of a signal g(¢x) based on the optimally
selected IMFs according to (7).

5) Brain mapping of the neural activity based on the
reconstructed signal.

6) Detection of focal origin of Epileptic seizures is
performed by locating the source where the seizure
is generated.

Four methods are considered for brain mapping
comparison to evaluate the performance of the proposed
algorithm:

1) Brain mapping (Z(tx)) using the EEG database y(tx)

without EMD.

2) Brain mapping (Zgnap(tx)) using the reconstructed
EEG y(t;) obtained from EMD standard
decomposition and an entropy based IMF selection.

3) Brain mapping (Zw(tx)) using the reconstructed
EEG gw (i) obtained from Wavelet Transform using
Daubechies wavelet and three decompositions levels,

IMF,

EFEG

Entropy-based
Optimal IMF's selection
BRAIN MAPPING

Multi-channel
EMD

IMF,

IMF,

Fig. 2. Experimental setup for entropy-based selection of IMFs

where the level with highest energy is selected for
reconstruction of the EEG.

4) Brain mapping (Zwp(tx)) using the reconstructed
EEG gwp(ty) obtained from Wavelet Packets
decomposition using Daubechies wavelet and three
decompositions levels, where the level with highest
entropy is selected for reconstruction of the EEG.

A common procedure to evaluate the performance of brain
mapping techniques is by using simulated EEG signals where
the underlying brain activity is known. In this case, a measure
of the brain mapping quality can be evaluated with the
relative error measure [26] as follows:

1&(t) — ot
8
= el ®
_ ||$EMD(’5k) —z(ty) |3
cEa = Ekj EDIE ®
2w (tr) — z(tr)3
Sl S e 1o

Y

Z |Zwp(tr) — (i)l

e (te) 113

being e; the reconstruction error of the brain mapping
estimation Z(t;) resulting from y(¢x), egmp the
reconstruction error of the brain mapping estimation
Zrnmp(ty) resulting from y(ty), ew the reconstruction
error of the brain mapping estimation &y (tx) resulting
from gw (t;) and ey p the reconstruction error of the brain
mapping estimation Zw p(tx) resulting from gw p(tx).

A. Simulated EEG signals

For the first simulated database (SD-1) a complex
nonlinear model of neural activity is used for EEG generation
during an epileptic seizure based on [27] as follows

a:(tk) = Alaz(tkfl) + Agx(tk,Q)

+ Agm(tk_T) + A4.’B(tk_1)02 + A5:c(tk_1)03 + n(tk)

12)

being Al = a,]_In, A2 = agIn, A3 = agIn, A4 = a4In and
As = asI,, where I,, € R"*™ is an identity matrix and a; €
R, are the model parameters which describe the dynamics of
the brain activity, where c 1 denotes the Hadamard Power.
The model parameter are set to 7 =20, a; = 1.0628, ay =

—0.42857, a3 = 0.008, ay = 0.000143, a5 = —0.000286,
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and ||n(tx)]|<0.05. The epileptic seizure is simulated at time
tr = 0.5s by modifying the values of a; from 1.0628 to 1.3,
while ao from —0.428 to —1 over the entire diagonal. The
simulated EEG y(t,) is obtained from «(tx) using (1) where
€(ty,) is set to achieve the Signal-to-Noise Ratios (SNRs) of
0, 5, 10, 15 and 20dB, the sample rate is 250Hz, and a
number of d = 128 electrodes and n = 8196 sources are
considered.

For the second simulated database (SD-2), the epileptic
seizure is simulated at time ¢; = 0.5 s by using a sinusoidal
signal with frequencies linearly varying in the range of 8 to
12Hz [14]. The simulated EEG y(¢) is obtained from x(t;)
using (1) where €(t;) is set to achieve the Signal-to-Noise
Ratios (SNRs) of 0, 5, 10, 15 and 20 dB. The sample rate is
500Hz, and a number of d = 128 electrodes and n = 8196
sources are considered.

B. Real EEG signals

The real EEG database (RD) is recorded from two patients
one having frontal and another temporal lobe epilepsy [14].
Data were collected during routine clinical practice (Instituto
de Epilepsia y Parkinson del Eje Cafetero from Pereira,
Colombia), in an awake resting state. All patients signed the
informed consent form before being enrolled into the study,
and the process was approved by the ethical committee. A
number of d = 34 electrodes are placed according to the
10 — 20 system and data is sampled at rate of 1kHz with
16 bits-resolution. For the purpose of analysis, each 1 s
time series is segmented from the long recording around
the beginning of the ictal event, that is at ¢t = 0.5 s. It is
worth noting that the pre-processing stage to remove noise
or artifacts is not considered for the real EEG recordings.
The testing head structure assumes n = 20484, where all
sources are placed on the tessellated cortex surface and
are perpendicular to it. For the real database, an additional
analysis of epileptic seizure detection is performed based on
the Hilbert spectrum.

IV. RESULTS

A. Simulated Data Base

An example of the EEG signal for SD-1 for a SNR of
0dB is shown in Fig. 3. The analyzed signals are nonlinear
and nonstationary, therefore the EMD is a good alternative to
obtain information. An example of the signal in one channel
is presented in Fig. 4.

EEG
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Fig. 4. Example of one channel of simulated EEG for SD-1

After analyzing the database with the EMD, we obtained
6 IMFs per channel. In the IMF 2 in Fig. 5, it is possible to
observe two areas in red that show how different frequencies
(different oscillations) appear in the same IMF. In these IMFs
the mode mixing problem is evident [28]. An example of
the retained energy and entropy for each IMF is presented
in Fig. 6. In this example, the threshold is 7. = 1930.9 and
then the EEG signal is reconstructed by using the /M F; and
IMF5.
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Fig. 5. IMFs of ys for SD-1 using standard EMD
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Retained energy and entropy of y(tx) for SD-1 using standard

An example of the Hilbert spectrum is presented in Fig. 7,
it is possible to see how the instantaneous frequency is
changing over time. As expected, it is observed that the
highest frequency is in IMF 1 (¢q (¢)).
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Fig. 7. Hilbert spectrum of y(t;) for SD-1 using standard EMD

A comparison of the original y(¢x) and reconstructed
y(ty) signals is presented in Fig. 8. The resulting brain
mapping for each method is presented in Fig 9.

Relative error measure is used for evaluation. For the
above example the relative errors based on (8) are as follows:

es = 1.3284
epmp = 1.2942
ew = 1.3106
ewp = 1.2007

showing that the best result is obtained for the brain
mapping computed from the reconstructed neural activity
using entropy-based selection of IMFs. An analysis based
on 30 trials for each noise condition is shown in Fig. 10.
As shown in Fig. 10, the best results are achieved by the
proposed method of EMD decomposition with automatic
selection of relevant IMFs based on the entropy measure
(EMD-entropy). Therefore, for SD-2 and the Real Database,
the comparison is performed only for the EEG data with
and without the EMD stage. An example of the signal in
one channel is presented in Fig. 11 and the resulting IMFs
for SD-2 using standard EMD is presented in Fig. 12.

Original
| EMD-entmpyJ

01 02 03 04 05 06 07 08 09 1
Time[s]

Fig. 8. Comparison of simulated y () and optimally reconstructed g (tx)
signals for SD-1 by using standard EMD for one channel

Ground-truth

’

without EMD Wavelet-energy
v~ M
» »
- - ¥
EMD-entropy WP-entropy

X -
i, N

Fig. 9. Comparison of brain mapping obtained for simulated a(ty),

estimated without EMD Z(t;) and optimally reconstructed &(tj) neural
activity for SD-1

15+ without EMD 1
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[ 11y
I‘@ g —
1
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0.57
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Fig. 10. Relative error comparison for SD-1 under several noise conditions
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Fig. 11. Example of one channel of simulated EEG for SD-2

The retained energy and entropy for each IMF are
presented in Fig. 13. In this example, the threshold is
T = —1.4239x 10° and then the EEG g(t;) is reconstructed
by using the IM Fs, IMF5, IMFg and I M F5.
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Fig. 12. IMFs of y(ty) for SD-2 using standard EMD
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Fig. 13. Retained energy and entropy of y(t;) for SD-2 using standard

EMD

An example of the Hilbert spectrum is presented in Fig. 14
and a comparison of the original and reconstructed signals
is shown in Fig. 15. The resulting brain mapping for each
method applied in SD-2 is presented in Fig 16. Relative error

measure is used for evaluation. For the above example, the
relative errors are as follows:

s =1.3284
= 1.2942

A comparison in terms of the relative error for 30 trials
of the SD-2 is shown in Fig. 17.
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Fig. 14. Hilbert spectrum of y(¢;) for SD-2 using standard EMD
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Fig. 15. Comparison of simulated y(tx) and optimally reconstructed §(t)
signals for SD-2 by using standard EMD for one channel
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o
Fig. 16.  Comparison of brain mapping obtained for simulated x(ty),

estimated without EMD &(t;) and optimally reconstructed &(tj) neural
activity for SD-1
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Fig. 17. Comparison of relative error measure in reconstruction for SD-2

under several noise conditions

From the above, it can be seen an improvement of
the source localization in terms of the relative error. This
improvement is encouraging for further investigation since
during epilepsy surgery the brain area where epileptic
seizures begin is removed.

B. Real Data Base

An example of the EEG from the RD is presented in 18.

AT AN e
AR

0 01 02 03 04
Time [s]

Fig. 18. EEG from RD

For the real database a comparison of the original
and reconstructed signal is presented in Fig. 19. The
reconstructed signal is the sum of an optimal selection of
the IMFs 4, 3 and 5.
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Fig. 19. Comparison of real EEG signal and optimally reconstructed signal
by using standard EMD for one channel

The resulting IMFs using standard EMD are presented in
Fig. 20
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Fig. 20. IMFs of real database using standard EMD

An example of the retained energy and entropy for each
IMF is presented in Fig. 21. It can be seen that the IMFs
are ordered according to the entropy values. In this case,
the IMFs 4, 3 and 5 are used to reconstruct the signal since
they are over the defined entropy threshold. An example of
the frequency spectrum using Hilbert is presented in Fig. 22.
The resulting brain mapping for each method is presented in
Fig 23.
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Fig. 23.  Comparison of brain mapping obtained for real database Z(ty)
and optimal reconstructed &(t;) neural activity

V. DISCUSSION

In this section we highlight some aspects that allow
us to show the usefulness of the methodology proposed.
The decomposition using IMFs allows us to reconstruct
the neuronal activity using only the information that is
considered relevant for this application. According to some
previous works [5], the EMD does not have a good
performance in decomposing and reconstructing the signals
with low frequency because of the problem of mode

mixing. In Figures 5, 12 and 20 is possible to observe this
phenomena. Some methodologies such as the masking signal
[29] or Ensamble Empirical Mode Decomposition (EEMD)
have been proposed to avoid this problem [30]. The mode
mixing does not disappear completely, however the technique
is very interesting when it is compared with other strategies
quite common for this type of application, for example with
Discrete Wavelet Transform (DWT) is necessary to consider
four factors affecting the performance in epileptic focus
localization: the mother wavelet, the level of decomposition,
frequency bands, and features [31]. Based on the above, we
have proposed a new and simple methodology based on an
entropy function that allows us to select the IMFs regardless
of the mode mixing problem. The threshold value proposed
in (7) was obtained after several tests with the values of
entropy and retained energy in each IMF. The first validation
using simulated databases allowed us to calculate the relative
error and to affirm that the technique presented provides an
accurate detection of sources associated to epileptic seizures.
In Figures 9 and 16 is possible to observe the desired
mapping (ground-truth) and the values obtained without
EMD and with the proposed method (EMD-entropy). In both
cases, the relative error is lower with our method. In the
first case, the EEG is reconstructed by using the IM F; and
IMF5 and in the second case we used the IM F5, IMF5,
IMFg and I M F5. The IMFs are selected automatically, and
depending of the EEG the number of IMFs could change,
but in either case the sources are located exactly. In both
cases, the epileptic seizure appears at time ¢, = 0.5s and
although time localization was not one of the purposes of
this paper, it can be observed in the Hilbert spectrum that
the instantaneous frequencies associated with each IMF have
a change in their behavior at exactly this time, therefore an
additional analysis of the instantaneous frequency could be
performed in order to automatically detect the onset of an
epileptic activity.

VI. CONCLUSIONS

In this work, we presented a technique for automatic
detection of sources associated to epileptic seizures based
on EMD and an entropy function. This strategy avoids the
use of common methods that need expert clinicians visual
inspection of electroencephalography (EEG) signals, which
tends to be time consuming and sensitive to bias. The tests
carried out with the simulated databases and real databases
and the calculation of the relative error measure show an
promising performance of the proposed methodology.
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