
Dynamics of an Almost Periodic Single-Species
System with Harvesting Rate and Feedback

Control on Time Scales
Lili Wang

Abstract—This paper is concerned with a single-species model
with nonlinear harvesting rate and feedback control on time
scales, which modified from Ref. [11]. Based on the theory of
calculus on time scales, by applying the methods used in Ref.
[11], but improved, sufficient conditions which guarantee the
permanence and the existence of a unique globally attractive
positive almost periodic solution of the system are obtained.
Finally, numerical simulations are presented to illustrate the
feasibility and effectiveness of the results. The results in this
paper improved and generalized the results derived in [11].

Index Terms—Permanence; Almost periodic solution; Global
attractivity; Time scale.

I. INTRODUCTION

THE theory of time scales, which has achieved much
attention, was firstly introduced by S. Hilger in his PhD

thesis in 1988 [1], in order to unify continuous and discrete
analysis. The study of dynamic equations on time scales can
combine the continuous and discrete situations; by choosing
the time scale to be the set of real numbers, the general
results yields a result for ordinary differential equations; and
by choosing the time scale to be the set of integers, the
same general results yields a result for difference equations.
However, since there many other time scales than just the set
of real numbers or the set of integers, one has more general
results. In the past few years, many good results about the
study of the systems on time scales are obtained; see, for
example, [2-8].

Notice that ecosystems are often disturbed by outside
continuous forces in the real world, such as seasonal effects
and variations in weather conditions, food supplies, mating
habits, etc., the assumption of almost periodicity of the
parameters is a way of incorporating the almost periodicity of
a temporally nonuniform environment with incommensurable
periods (nonintegral multiples). Almost periodicity of differ-
ent types of ecosystems received more recently researchers’
special attention, see [9-11] and the references therein.

In [11], Hu and Lv study an almost periodic single-species
system with feedback control on time scales as follows: x∆(t) = r(t)x(t)[1− x(t)

a(t)+d(t)x(t)

−b(t)x(σ(t))− c(t)y(t)],
y∆(t) = −η(t)y(t) + g(t)x(t),

(1)

where t ∈ T, T is an almost time scale. All the co-
efficients r(t), a(t), b(t), c(t), d(t), η(t), g(t) are continuous,
almost periodic functions.
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However, in system (1), there is a term σ(t) on the right
side of the first equation. Let T be a special time scale,
for example, T = Z, etc., then system (1) is not conform
to ecology significance, that is, system (1) can’t accurately
describe the growth law of the species. Therefore, there is a
need to establish a new dynamic model on time scales.

Motivated by the above, in this paper, we devote to
studying the following single-species system with feedback
control on time scales

x∆(t) = x(t)[r(t)− a(t)x(t)− c(t)y(t)]

− b(t)x2(t)
d(t)+x2(t) ,

y∆(t) = −η(t)y(t) + g(t)x(t),

(2)

where t ∈ T, T is an almost time scale. x(t) is the density of
species x at t ∈ T; y(t) is control variables; r(t) expresses
the intrinsic growth rate of species x at t; a(t) stands for the
interspecific competing rate of species x at t; the form of
b(t)x2(t)
d(t)+x2(t) denotes harvesting rate invoking by Murray (see
[12]). All the coefficients r(t), a(t), b(t), c(t), d(t), η(t), g(t)
are continuous, almost periodic functions.

For convenience, we introduce the notation

fu = sup
t∈T

f(t), f l = inf
t∈T

f(t),

where f is a positive and bounded function. Throughout this
paper, we assume that the coefficients of the almost periodic
system (2) satisfy

min{rl, al, bl, cl, dl, ηl, gl} > 0,

max{ru, au, bu, cu, du, ηu, gu} < +∞.

The initial condition of system (2) in the form

x(t0) = x0, y(t0) = y0, t0 ∈ T, x0 > 0, y0 > 0. (3)

The aim of this paper is, by applying the methods used
in [12], but improved, to obtain sufficient conditions for the
permanence and the existence of a unique globally attractive
positive almost periodic solution of system (2).

In this paper, the time scale T considered is unbounded
above, and for each interval I of T, we denote by IT = I∩T.

II. PRELIMINARIES

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators σ, ρ : T → T and the
graininess µ : T → R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},

µ(t) = σ(t)− t.
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A point t ∈ T is called left-dense if t > inf T and ρ(t) = t,
left-scattered if ρ(t) < t, right-dense if t < supT and σ(t) =
t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then Tk = T\{m}; otherwise Tk = T. If
T has a right-scattered minimum m, then Tk = T\{m};
otherwise Tk = T.

A function f : T → R is right-dense continuous provided
it is continuous at right-dense point in T and its left-side
limits exist at left-dense points in T. If f is continuous at
each right-dense point and each left-dense point, then f is
said to be a continuous function on T.

The basic theories of calculus on time scales, one can see
[13].

A function p : T → R is called regressive provided 1 +
µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all regressive and
rd-continuous functions p : T → R will be denoted by R =
R(T,R). Define the set R+ = R+(T,R) = {p ∈ R : 1 +
µ(t)p(t) > 0, ∀ t ∈ T}.

If r is a regressive function, then the generalized expo-
nential function er is defined by

er(t, s) = exp

{∫ t

s

ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions, define

p⊕ q = p+ q+ µp q, ⊖p = − p

1 + µp
, p⊖ q = p⊕ (⊖q).

Lemma 1. (see [13]) If p, q : T → R be two regressive
functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t,s)

eq(t,s)
= ep⊖q(t, s);

(vi) (ep(t, s))∆ = p(t)ep(t, s).

Lemma 2. (see [14]) Assume that a > 0, b > 0,−b ∈ R+,
and y(t) > 0, t ∈ [t0,+∞)T.
(i) If y∆(t) ≥ y(t)(b− ay(t)), then lim inf

t→+∞
y(t) = b

a .

(ii) If y∆(t) ≤ y(t)(b− ay(t)), then lim sup
t→+∞

y(t) = b
a .

Let T be a time scale with at least two positive points,
one of them being always one: 1 ∈ T, there exists at least
one point t ∈ T such that 0 < t ̸= 1. Define the natural
logarithm function on the time scale T by

LT(t) =

∫ t

1

1

τ
∆τ, t ∈ T ∩ (0,+∞).

Lemma 3. (see [15]) Assume that x : T → R+ is strictly
increasing and T̃ := x(T) is a time scale. If x∆(t) exists for
t ∈ Tk, then

∆

∆t
LT(x(t)) =

x∆(t)

x(t)
.

Lemma 4. (see [13]) Assume that f, g : T → R are
differentiable at t ∈ Tk, then fg : T → R is differentiable

at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).

Definition 1. (see [16]) A time scale T is called an almost
periodic time scale if

Π = {τ ∈ R : t± τ ∈ T, ∀t ∈ T}.

Definition 2. (see [16]) Let T be an almost periodic time
scale. A function f : T → R is called an almost periodic
function if the ε-translation set of f

E{ε, f} = {τ ∈ Π : |f(t+ τ)− f(t)| < ε,∀t ∈ T}

is a relatively dense set in T for all ε > 0; that is, for any
given ε > 0, there exists a constant l(ε) > 0, such that in any
interval of length l(ε), there exists at least a τ ∈ E{ε, f}
such that

|f(t+ τ)− f(t)| < ε, ∀t ∈ T.

τ is called the ε-translation number of f and l(ε) is called
the inclusion length of E{ε, f}.

Lemma 5. (see [11]) Let T be an almost periodic time scale.
If f(t), g(t) are almost periodic functions, then, for any ε >
0, E{ε, f}∩E{ε, g} is a nonempty relatively dense set in T;
that is, for any given ε > 0, there exists a constant l(ε) > 0,
such that in any interval of length l(ε), there exists at least
a τ ∈ E{ε, f} ∩ E{ε, g} such that

|f(t+ τ)− f(t)| < ε, |g(t+ τ)− g(t)| < ε,∀t ∈ T.

III. MAIN RESULTS

Assume that the coefficients of (2) satisfy
(H1) rl − cuM2 > 0.

Lemma 6. Let (x(t), y(t)) be any positive solution of system
(2) with initial condition (3). If (H1) hold, then system (2)
is permanent, that is, any positive solution (x(t), y(t)) of
system (2) satisfies

m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M1, (4)

m2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ M2, (5)

especially if m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, then

m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,+∞)T,

where

M1 =
ru

al
,M2 =

guM1

ηl
,m1 =

rl − cuM2

au + bu

dl

,m2 =
glm1

ηu
.

Proof: Assume that (x(t), y(t)) be any positive solution
of system (2) with initial condition (3). From the first
equation of system (2), we have

x∆(t) ≤ x(t)[ru − alx(t)]. (6)

By Lemma 2, we can get

lim sup
t→+∞

x(t) ≤ ru

al
:= M1.
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Then, for arbitrary small positive constant ε > 0, there exists
a T1 > 0 such that

x(t) < M1 + ε, ∀t ∈ [T1,+∞]T.

From the second equation of system (2), when t ∈
[T1,+∞)T,

y∆(t) < −ηly(t) + gu(M1 + ε).

Let ε → 0, then

y∆(t) ≤ −ηly(t) + guM1. (7)

By Lemma 2, we can get

lim sup
t→+∞

y(t) =
guM1

ηl
:= M2.

Then, for arbitrary small positive constant ε > 0, there exists
a T2 > T1 such that

y(t) < M2 + ε, ∀t ∈ [T2,+∞]T.

On the other hand, from the first equation of system (2),
when t ∈ [T2,+∞)T,

x∆(t) > x(t)[rl − cu(M2 + ε)− (au +
bu

dl
)x(t)].

Let ε → 0, then

x∆(t) ≥ x(t)[rl − cuM2 − (au +
bu

dl
)x(t)]. (8)

By Lemma 2, we can get

lim inf
t→+∞

x(t) =
rl − cuM2

au + bu

dl

:= m1.

Then, for arbitrary small positive constant ε > 0, there exists
a T3 > T2 such that

x(t) > m1 − ε, ∀t ∈ [T3,+∞]T.

From the second equation of system (2), when t ∈
[T3,+∞)T,

y∆(t) > −ηuy(t) + gl(m1 − ε).

Let ε → 0, then

y∆(t) ≥ −ηuy(t) + glm1. (9)

By Lemma 2, we can get

lim inf
t→+∞

y(t) =
glm1

ηu
:= m2.

Then, for arbitrary small positive constant ε > 0, there exists
a T4 > T3 such that

y(t) > m2 − ε, ∀t ∈ [T4,+∞]T.

In special case, if m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, by
Lemma 2, it follows from (6)-(9) that

m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,+∞)T,

This completes the proof.
Let S(T) be the set of all solutions (x(t), y(t)) of system

(2) satisfying m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤ M2 for all
t ∈ T.

Lemma 7. S(T) ̸= ∅.

Proof: By Lemma 6, we see that for any t0 ∈ T with
m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, system (2) has a solution
(x(t), y(t)) satisfying m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤
M2, t ∈ [t0,+∞)T. Since r(t), a(t), b(t), c(t), d(t), η(t),
g(t) are almost periodic, it follows from Lemma 5 that there
exists a sequence {tn}, tn → +∞ as n → +∞ such that
r(t + tn) → r(t), a(t + tn) → a(t), b(t + tn) → b(t), c(t +
tn) → c(t), d(t+ tn) → d(t), η(t+ tn) → η(t), g(t+ tn) →
g(t) as n → +∞ uniformly on T.

We claim that {x(t+ tn)} and {y(t+ tn)} are uniformly
bounded and equi-continuous on any bounded interval in T.

In fact, for any bounded interval [α, β]T ⊂ T, when n is
large enough, α + tn > t0, then t + tn > t0, ∀t ∈ [α, β]T.
So, m1 ≤ x(t + tn) ≤ M1, m2 ≤ y(t + tn) ≤ M2 for any
t ∈ [α, β]T, that is, {x(t+tn)} and {y(t+tn)} are uniformly
bounded. On the other hand, ∀t1, t2 ∈ [α, β]T, from the mean
value theorem of differential calculus on time scales, we have

|x(t1 + tn)− x(t2 + tn)|

≤ M1(r
u + auM1 + cuM2 +

buM1

dl
)|t1 − t2|, (10)

|y(t1 + tn)− y(t2 + tn)|
≤ (ηuM2 + guM1)|t1 − t2|. (11)

The inequalities (10) and (11) show that {x(t + tn)} and
{y(t+ tn)} are equi-continuous on [α, β]T. By the arbitrary
of [α, β]T, the conclusion is valid.

By Ascoli-Arzela theorem, there exists a subsequence of
{tn}, we still denote it as {tn}, such that

x(t+ tn) → p(t), y(t+ tn) → q(t),

as n → +∞ uniformly in t on any bounded interval in T.
Furthermore,

x∆(t+ tn) = x(t+ tn)[r(t+ tn)
−a(t+ tn)x(t+ tn)
−c(t+ tn)y(t+ tn)]

− b(t+tn)x
2(t+tn)

d(t+tn)+x2(t+tn)
,

y∆(t+ tn) = −η(t+ tn)y(t+ tn)
+g(t)x(t+ tn).

Let n → +∞, then
p∆(t) = p(t)[r(t)− a(t)p(t)− c(t)q(t)]

− b(t)p2(t)
d(t)+p2(t) ,

q∆(t) = −η(t)q(t) + g(t)p(t).

It is clear that (p(t), q(t)) is a solution of system (2).
Moreover,

m1 ≤ p(t) ≤ M1, m2 ≤ q(t) ≤ M2, ∀t ∈ T.

This completes the proof.

Lemma 8. In addition to the condition (H1), assume fur-
ther that the coefficients of system (2) satisfy the following
conditions:

(H2) al − gu > 0; dl −M2
1 > 0; ηl − cu > 0;

(H3) 0 < γ < min{m1(a
l − gu), ηl − cu} and λ ∈ R+.

Then system (2) is globally attractive.

Proof: Let z1(t) = (x1(t), y1(t)) and z2(t) =
(x2(t), y2(t)) be any two positive solutions of system (2). It
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follows from (4)-(5) that for sufficient small positive constant
ε0 (0 < ε0 < min{m1,m2}), there exists a T > 0 such that

m1 − ε0 < xi(t) < M1 + ε0, (12)
m2 − ε0 < yi(t) < M2 + ε0, (13)
t ∈ [T,+∞)T, i = 1, 2.

Since xi(t), i = 1, 2 are positive, bounded and dif-
ferentiable functions on T, then there exists a positive,
bounded and differentiable function m(t), t ∈ T, such that
xi(t)(1 + m(t)), i = 1, 2 are strictly increasing on T. By
Lemma 3 and Lemma 4, we have

∆

∆t
LT(xi(t)[1 +m(t)])

=
x∆
i (t)[1 +m(t)] + xi(σ(t))m

∆(t)

xi(t)[1 +m(t)]

=
x∆
i (t)

xi(t)
+

xi(σ(t))m
∆(t)

xi(t)[1 +m(t)]
, i = 1, 2.

Here, we can choose a function m(t) such that |m∆(t)|
1+m(t) is

bounded on T, that is, there exist two positive constants ζ >

0 and ξ > 0 such that 0 < ζ < |m∆(t)|
1+m(t) < ξ, ∀t ∈ T.

Set

V (t) = |e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|),

where δ ≥ 0 is a constant (if µ(t) = 0, then δ = 0; if µ(t) >
0, then δ > 0). It follows from the mean value theorem of
differential calculus on time scales for t ∈ [T,+∞)T,

1

M1 + ε0
|x1(t)− x2(t)|

≤ |LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|

≤ 1

m1 − ε0
|x1(t)− x2(t)|. (14)

Let 0 < γ < min{m1(a
l − gu), ηl − cu}. We divide the

proof into two cases.
Case I. If µ(t) > 0, set δ > max{M1ξ

m1
, γ} and 1−µ(t)δ <

0. Calculating the upper right derivatives of V (t) along the
solution of system (2), it follows from (12)-(14) and (H2)
that for t ∈ [T,+∞)T,

D+V (t)

= |e−δ(t, T )|sgn(x1(t)− x2(t))

[
x∆
1 (t)

x1(t)
− x∆

2 (t)

x2(t)

+
m∆(t)

1 +m(t)

(
x1(σ(t))

x1(t)
− x2(σ(t))

x2(t)

)]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

≤ −|e−δ(t, T )|
[
a(t) +

b(t)(d(t)− x1(t)x2(t))

(d(t) + x2
1(t))(d(t) + x2

2(t))

−g(t)

+
|m∆(t)|
1 +m(t)

x1(σ(t))

x1(t)x2(t)

]
|x1(t)− x2(t)|

−|e−δ(t, T )|
[

δ

M1 + ε0
− |m∆(t)|

1 +m(t)

1

x2(t)

]
×|x1(σ(t))− x2(σ(t))|
−|e−δ(t, T )|(η(t)− c(t))|y1(t)− y2(t)|
−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

≤ −|e−δ(t, T )|(al − gu)|x1(t)− x2(t)|
−|e−δ(t, T )|(ηl − cu)|y1(t)− y2(t)|

≤ −|e−δ(t, T )|
[
(m1 − ε0)(a

l − gu)

×|LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|
+(ηl − cu)|y1(t)− y2(t)|

]
≤ −γ|e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)
= −γV (t). (15)

By the comparison theorem, (15) and (H3), we have

V (t) ≤ e−γ(t, T )V (T )

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
e−γ(t, T ),

that is,

|e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

then
1

M1 + ε0
|x1(t)− x2(t)|+ |y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e(−γ)⊖(−δ)(t, T )|. (16)

Since 1− µ(t)δ < 0 and 0 < γ < δ, then (−γ)⊖ (−δ) < 0.
It follows from (16) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

Case II. If µ(t) = 0, set δ = 0, then σ(t) = t and
e−δ(t, T ) = 1. Calculating the upper right derivatives of
V (t) along the solution of system (2), it follows from (12)-
(14) and (H2) that for t ∈ [T,+∞)T,

D+V (t)

= sgn(x1(t)− x2(t))

(
x∆
1 (t)

x1(t)
− x∆

2 (t)

x2(t)

)
+sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

≤ −
(
a(t) +

b(t)(d(t)− x1(t)x2(t))

(d(t) + x2
1(t))(d(t) + x2

2(t))
− g(t)

)
×|x1(t)− x2(t)|
−(η(t)− c(t))|y1(t)− y2(t)|

≤ −[(m1 − ε0)(a
l − gu)|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ (ηl − cu)|y1(t)− y2(t)|]
≤ −γ(|LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|

+|y1(t)− y2(t)|)
= −γV (t), (17)
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By the comparison theorem,(17) and (H3), we have

V (t) ≤ e−γ(t, T )V (T )

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
e−γ(t, T ),

that is,

|LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|
+|y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
e−γ(t, T ),

then

1

M1 + ε0
|x1(t)− x2(t)|+ |y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
e−γ(t, T ). (18)

It follows from (18) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

From the above discussion, we can see that system (2) is
globally attractive. This completes the proof.

Theorem 1. Assume that the conditions (H1)− (H3) hold,
then system (2) has a unique globally attractive positive
almost periodic solution.

Proof: By Lemma 7, there exists a bounded positive
solution u(t) = (u1(t), u2(t)) ∈ S(T), then there exists a
sequence {t′k}, {t′k} → +∞ as k → +∞, such that (u1(t+
t′k), u2(t+ t′k)) is a solution of the following system:

x∆(t) = x(t)[r(t+ t′k)− a(t+ t′k)x(t)

−c(t+ t′k)y(t)]−
b(t+t′k)x

2(t)
d(t+t′k)+x2(t) ,

y∆(t) = −η(t+ t′k)y(t) + g(t+ t′k)x(t).

From the above discussion and Lemma 6, we have that not
only {ui(t+t′k)}, i = 1, 2 but also {u∆

i (t+t′k)}, i = 1, 2 are
uniformly bounded, thus {ui(t+ t′k)}, i = 1, 2 are uniformly
bounded and equi-continuous. By Ascoli-Arzela theorem,
there exists a subsequence of {ui(t + tk)} ⊆ {ui(t + t′k)}
such that for any ε > 0, there exists a N(ε) > 0 with the
property that if m, k > N(ε) then

|ui(t+ tm)− ui(t+ tk)| < ε, i = 1, 2.

It shows that ui(t), i = 1, 2 are asymptotically almost
periodic functions, then {ui(t + tk)}, i = 1, 2 are the sum
of an almost periodic function qi(t + tk), i = 1, 2 and a
continuous function pi(t+ tk), i = 1, 2 defined on T, that is,

ui(t+ tk) = pi(t+ tk) + qi(t+ tk), ∀t ∈ T,

where

lim
k→+∞

pi(t+ tk) = 0, lim
k→+∞

qi(t+ tk) = qi(t),

qi(t) is an almost periodic function. It means that
lim

k→+∞
ui(t+ tk) = qi(t), i = 1, 2.

On the other hand

lim
k→+∞

u∆
i (t+ tk)

= lim
k→+∞

lim
h→0

ui(t+ tk + h)− ui(t+ tk)

h

= lim
h→0

lim
k→+∞

ui(t+ tk + h)− ui(t+ tk)

h

= lim
h→0

qi(t+ h)− qi(t)

h
.

So, the limit qi(t), i = 1, 2 exist.
Next, we shall prove that (q1(t), q2(t)) is an almost

solution of system (2).
From the properties of almost periodic function, there

exists a sequence {tn}, tn → +∞ as n → +∞, such
that r(t + tn) → r(t), a(t + tn) → a(t), b(t + tn) →
b(t), c(t + tn) → c(t), d(t + tn) → d(t), η(t + tn) →
η(t), g(t+ tn) → g(t) as n → +∞ uniformly on T.

It is easy to know that ui(t + tn) → qi(t), i = 1, 2 as
n → +∞, then we have

q∆1 (t) = lim
n→+∞

u∆
1 (t+ tn)

= lim
n→+∞

[
x(t+ tn)[r(t+ tn)

−a(t+ tn)x(t+ tn)− c(t+ tn)y(t+ tn)]

− b(t+ tn)x
2(t+ tn)

d(t+ tn) + x2(t+ tn)

]
= q1(t)[r(t)− a(t)q1(t)− c(t)q2(t)]

− b(t)q21(t)

d(t) + q21(t)
,

q∆2 (t) = lim
n→+∞

u∆
2 (t+ tn)

= lim
n→+∞

[−η(t+ tn)u2(t+ tn)

+g(t+ tn)x(t+ tn)]

= −η(t)q2(t) + g(t)q1(t).

This proves that (q1(t), q2(t)) is a positive almost periodic
solution of system (2). Together with Lemma 8, system
(2) has a unique globally attractive positive almost periodic
solution. This completes the proof.

IV. EXAMPLE AND SIMULATIONS

Consider the following system on time scales
x∆(t) = x(t)[(0.8 + 0.2 sin

√
2t)− x(t)

−0.2y(t)]− x2(t)
(4.5+0.5 sin t)+x2(t) ,

y∆(t) = −(0.4 + 0.1 cos
√
3t)y(t)

+(0.015 + 0.005 sin
√
2t)x(t).

(19)

By a direct calculation, we can get

ru = 1, rl = 0.6, au = al = 1, bu = bl = 1,

cu = cl = 0.2, ηu = 0.5, ηl = 0.3, gu = 0.02,

gl = 0.01, du = 5, dl = 4,

M1 = 1,M2 = 0.0667,m1 = 0.4693,m2 = 0.0094,

then
(H1) rl − cuM2 = 0.5867 > 0;
(H2) al−gu = 0.9800 > 0; dl−M2

1 = 3.0000 > 0; ηl−cu =
0.1000 > 0;
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(H3) min{m1(a
l − gu), ηl − cu} = 0.1 > 0.

Choose a λ ∈ (0, 0.1) with λ ∈ R+, then conditions (H1)-
(H3) hold. According to Theorem 1, system (19) has a
unique globally attractive positive almost periodic solution.
Dynamic simulations of system (19) with T = R and T = Z,
see Figures 1 and 2, respectively.
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Fig. 1. T = R. Dynamics behavior of system (5.1) with initial condition
(x(0), y(0)) = {[0.5, 0.06]; [0.8, 0.02]; [1, 0.03]}.
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Fig. 2. T = Z. Dynamics behavior of system (5.1) with initial condition
(x(1), y(1)) = {[0.1, 0.01]; [0.5, 0.05]; [1, 0.1]}.

V. CONCLUSION

This paper studied a single-species model with feedback
control on time scales. Based on the theory of calculus
on time scales, by using the properties of almost periodic
functions and constructing a suitable Lyapunov functional,
sufficient conditions which guarantee the existence of a
unique globally attractive positive almost periodic solution
of the system are obtained.

This paper provided an effective method for the further
study on the existence of almost periodic solution on time
scales. Future work will include biological or epidemic
dynamic systems modeling and analysis on time scales, one
may see [19-22].
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