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Training an Improved TSVR Based on Wavelet
Transform Weight Via Unconstrained Convex
Minimization

Nannan Zhao, Xinyu Ouyang, Chuang Gao and Zihui Zang

Abstract—An improved wavelet transform based weighted
e-twin support vector regression (WW-¢-TSVR) is proposed in
this paper. In our WW-¢-TSVR, to reduce the impact of outliers,
the wavelet weight matrix is introduced to give different
penalties for the samples located in different places. Further, by
using the “plus’ function, a pair of unconstrained minimization
problems is solved in primal space rather than dual space, in
which three smooth functions are introduced to replace the
non-differentiable non-smooth “plus’ function. To speed up the
training procedure, the generalized derivative iterative
approach and Newton iterative approach are used to obtain the
approximate solution, and five more detailed iterative
algorithms are given. At last, the experimental results on
several artificial and UCI datasets indicate that the proposed
method is of effectiveness and applicability, it not only gives
similar or better generalization performance with other
popular methods such as TSVR and &-TSVR, but also requires
less computational time.

Index Terms—Twin support vector regression, Smooth
approximation, Unconstrained convex minimization, Wavelet
transform, Iterative approach

I. INTRODUCTION

n recent years, support vector machine (SVM) [1-4] has

gained great attention as a powerful method because it

shows improved generalization performance in
comparison with other machine learning techniques. SVM
has been successfully applied in various aspects ranging from
pattern recognition, text categorization, and financial
regression. As for support vector regression (SVR) model [5],
which uses SVM technique to solve the regression estimation,
there are many significant methods, such as e-support vector
regression (e-SVR) [6], v-support vector regression (v-SVR)
[7] and so on.
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However, the main drawback of SVR is its high learning
cost, i.e. O((21)3), where [ is the number of training samples.
In order to improve the computational speed of SVR, Peng
[8-10] proposed a twin support vector regression (TSVR) in
the sprint of twin support vector machine (TSVM) [11].
Different from SVR, TSVR generates two nonparallel up-
and down-bound functions by solving a pair of smaller sized
quadratic programming problems (QPPs). It has been proved
that learning cost of TSVM is 20(13) , that is approximately
four times faster than the standard SVR in theory. However,
Khemchandani ef al. [12] observed that the model of Peng [8]
is not the true spirit of twin methodology, and only the
empirical risk minimization principle is considered in TSVR.
To overcome these problems, Shao et al. [13] presented
another twin model for regression termed as e-TSVR, which
can be justified on the basis of structural risk minimization
principle. Later, Rastogi et al. [14] extended ¢-TSVR and
presented v-TSVR, which can automatically optimize the
parameters & and &, according to the sample data. By
employing the pinball loss function, Xu et al. [15] further
developed asymmetric v-twin support vector regression
termed as Asy-v-TSVR, which can effectively reduce the
disturbance of the noise and improve the generalization
performance. Consequently, twin-type SVR has been studied
extensively.

Nevertheless, it should be pointed that, in all these
twin-type SVR models, the distribution of the training data
wasn’t considered in solving regression problems. This
implies that all samples play the same role on the bound
function whether they are important or not, so it will lead to a
decline in the performance of the regression. It is more
reasonable to give the data samples different penalties
depending on their importance. To this end, various methods
[16-20] were developed to study this kind of fault. For
example, Xu et al. [18] presented the K-nearest neighbor-
based weighted twin support vector regression by using the
local information existing on the samples, and improved the
prediction accuracy. By clustering the training data based on
their degree of similarity, the authors in [19] presented the
modified twin support vector regression. Ye [20] proposed an
efficient weighted Lagrangian e-twin support vector
regression with quadratic loss functions (WL-e-TSVR), in
which the samples are given different penalties by
introducing a weight matrix D to reduce the impact of the
outliers on the regressor to a certain extent.

Traditionally, the down and up bound regressors of
twin-type SVR are obtain by their approximate dual solutions.
However, Chapelle [21] observed that the approximate dual

(Advance online publication: 27 May 2019)



TAENG International Journal of Computer Science, 46:2, IJCS 46 2 15

solution may not result in good primal approximate solution
by comparing approximate efficiencies of SVR in primal and
dual spaces. There are some related works [22-25] that have
been solved directly in the primal space. For example,
motivated by the works of twin-type SVR and the Newton
approach, Balasundaram et al. [23] proposed a new
unconstrained Lagrangian TSVR (ULTSVR) to improve the
computational speed by solving a pair unconstrained
minimization problems. Gupta [24] and Balasundaram [25]
used a generalized derivative approach to get the solution of
QPPs, although their works were effective and fast, it took
only empirical risk minimization into account, not structural
risk minimization at the same time.

Motivated by the above researches, this paper proposes an
improved wavelet transform based weighted e-twin support
vector regression (WW-¢-TSVR). The main contributions
compared with the existing researches of this paper are
summarized as follows:

1) Inspired by the K-nearest neighbor-based weight idea,
the wavelet transform-based weight is introduced for
regressing the time series signal. In the other words, the
profile of time series is obtained first by wavelet transform
(WT) [26], and then the distance between the training data
and the wavelet transformed coefficient is calculated. By
taking these distances as weights instead of K-nearest

neighbor-based weights, each data is given a different penalty.

It is noticed that the proposed WT-based weight TSVR is
only suitable for time series signals. In addition, because the
&-TSVR model considers structural risk minimization,
combing the e-TSVR model and the WT-based weight idea
makes the proposed algorithm consider both structural risk
minimization and empirical risk minimization.

2) After finding a pair of QPPs with constraints, they are
first converted into a pair of unconstraint QPPs by
introducing smooth functions [27-28]. Then, the
unconstrained problem is solved directly in primal space by
using generalized derivative iterative approach and Newton
iterative approach [29-30] which can reduce the complexities
of the model and speed up the training. Further, five more
detailed iterative algorithms are given to solve the proposed
WW-e-TSVR.

3) At last, experimental results on both artificial and real
datasets show that, compared with the popular TSVR and
&-TSVR, our WW-¢-TSVR significantly shorts the training
time with similar or better generalization performance.

The reminder of this paper is organized as follows: Section
IT describes the background including linear TSVR and
&-TSVR. The proposed WW-¢-TSVR is given in section III,
and five iterative approaches are discussed to solve these
unconstrained problems. Experimental results and analysis
for both artificial and real datasets are carried out in Section
IV. Section V is the conclusion of the proposed work.

II. BACKGROUND

In this section, we give a brief description of twin support
vector regression (TSVR) and e-twin support vector
regression (e-TSVR). Given a training set T = {(x;, ¥;)},
i=12,..,1, where x; ER™ and y; ER. Also let A=
(A, Ay, ...,A)T be the input training sample, and Y =
(Y1, V2, -, ¥1)T be the response of the training samples,

where A is an | X n matrix, 4;, the i-th row of A, represents
the i-th training sample, Y is an [ X 1 vector, and y;
represents the i-th response.

A. Twin Support Vector Regression (TSVR)

The TSVR model [8] inspired by TSVM [11] finds two
nonparallel functions f;(x) =wl/x+b; and f(x) =
wix + b,, each one determines the down- and up-bound
e-insensitive regressors, respectively. In the linear case, it
can be obtained by solving the following QPPs:

1
min_=||Y — g;e — (Aw; + eb)||? + ¢;e”¢,
wyby§ 2

(€))
s.t. Y—(Aw,+eb) =2ege—&, £€=0.
and
1
min =||Y + e,e — (Aw, + eb,)||? + c,e™n,
Wzybzyﬂll 2 (Aw, 2|l 2€° 1] )

s.t. (Aw,+eb,) —Y =ege—n, n=0.
where ¢;,c, > 0 are the pre-specified penalty factors,
&1, &, > 0are constants, £ and 71 are slack vectors, and e is
column vector of ‘ones’ of appropriate dimension. Their dual
problems are

1
minEaTG(GTG)’lGTa —fT6(GTG) GTa + fTa,
a

®3)
s.t. 0<a<ce.
and
1
min=yTG(GTG)'GTy + h"G(GTG) *GTy — hTy,
y 2 ()]
s.t. 0=y <ce.
where f=Y —¢ge, h=Y+ee andG=[Ae] . The

augmented vectors u; = [wf b;]" and u, = [wl b,]" are
determined by u; = (GTG)GT(f—a) and u, =
(GTG)™1GT(h +y), respectively. The final estimated
regressor is constructed as

1 1 1
@) =5 (A) + £0) =3 +w)x + 5By +b) - (5)

B. &-Twin Support Vector Regression (e-TSVR)

Following the idea of TWSVM and TSVR, Shao et al. [13]
proposed another twin type SVR termed as e-twin support
vector regression (¢-TSVR). It also finds two insensitive
proximal linear function: f;(x) =w{x + b; and f,(x) =

. o 1
wlx + b,. Introducing the regularization terms > wlw;, +

b%), %(W;Wz + b2), and the slack variables &, &*,1,1%, the
primal problems can be expressed as
1 1 .
min_=csWiw; + b2) + =& + c,eT¢,
wibyE8* 2 2 )
s.t. Y —(Aw, +eb;) = &%,
Y—(Aw, +eb) = —ge—¢&, £ =0.
and

1 1
5 Wiwy +b3) + 500" + ce,

min
wa,b2,mm
s.t. (Aw, +eb,) —Y =17,
(Aw, +eb,) =Y = —g,e —1n, n=0.
where ¢4, ¢y, C3, C4, &, and €, are positive parameters. The

main difference between TSVR and ¢-TSVR is an extra

™

regularization term %crj wlw, + b?) in (6) (respectively
§c4 wlw, +b%) in (7)) so that the structural risk
minimization principle is implemented.

In order to get the solutions of (6) and (7), their dual
problems need to be derived. By introducing the Lagrangian
multiplies a and y, the dual problems of ¢-TSVR can be
derived as follows,
m;'n%aTG(GTG +cD)6Ta—YTG(GTG + ;1) GTa+ (eTe; + Ya, e

s.t. 0<a<ce.

)
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and
1
mininG(GTG + ¢, DTy + YTG(GTG + ¢,)™GTy — (YT —eTgy)y, @)
Y
s.t. 0<y<c,e.
The final regressor f(x) is in the same form as (5), in which

Uy, U, are as follows:
u; = [wf  bJ1T = (GTG + c;D)7IGT(Y — @)
u, = [wi bI]T=(GTG+c,DGT(Y+ v)

(10)
1)

III. PROPOSED WW-£-TSVR METHOD

Motivated by the above studies, wavelet transform based
weighted e-twin support vector regression (WW-¢-TSVR) is
proposed in this section. Further, a pair of unconstrained
convex minimizations in primal space will be given to obtain
the solutions of the proposed regression model.

A. Wavelet Transform Based Weighted Method

In e-TSVR, all samples are given the same weight, which
is not suitable for many practical situations, and it also
reduces the regression performance due to the impact of
outliers. Therefore, it is necessary to give different weight to
different sampling points in the training of regression model.
Next, a method of choosing weights based on wavelet
transform [26] is introduced. Assuming
Y = (y1,¥2 -+, ¥)T is a time series, the wavelet transform is
a good mathematical tool that can be used to extract its
low-frequency component because of the time frequency
localization properties of wavelets. First, perform & levels of
the wavelet transform on sample signal Y, and then
reconstruct only the low-frequency components to get
Yoo = Vwir Ywao = Ywi)T » Which is actually the profile of
sample single Y. It can be assumed that the closer the sample
point is to y,,;, the greater the weight that should be given.
Defining a variabled; = A — |y,,; — ¥;| represents the weight,
where A is a constant value, for example, A = max(d;). In
addition, it should be noted that the method based on wavelet
transform to determine weights is only suitable for time series
signals, but for random sequences, d; = 1.

B. Proposed WW-e-TSVR Method

A novel WW-¢-TSVR method is proposed in this
subsection. By introducing matrix D, that represents the
penalty for each sampling point, the proposed algorithm in
linear form is obtained by solving the following pair of QPPs:

%(y — (Aw; + b)) D(Y — (Aw, + eby))

min
b 1 12
W1b1§+EC3(W{W1+b12)+C1eTf, (12)
s.t. Y—(Aw, +eb) = —ge—¢&, §20.
and
T
- (Y = (Aw, + eb,)) D(Y — (Aw, + eby))
bl § caWiw, + b2) + e, 13)

s.t. (Aw, +eby) =Y = —ge—n, n=0.
where ¢y, ¢, C3, €4, & and &, are user specified positive
parameters, e is column vector of ‘ones’ of appropriate
dimension, and D = diag(d,,d,, -, d;) is a wavelet weight
diagonal matrix. If D = I, the proposed method degrades
into the original e-TSVR.

WW-¢-TSVR finds two proximal functions f;(x) =
wix + b, and f,(x) = wlx + b,,and the final regressor
f(x), which is in the same form as (5), is determined by the
mean of these two proximal functions. Note that there are

three terms in the objective function (12). The first term is the
sum of squared distances from the shifted function f; (x) to
the training points, and different weights are also given to
each training sample base on the matric D. Therefore,
minimizing it can cause the function f; (x) to be suitable for
the training samples. The constraint requires the estimated
function f; (x) to be at a distance of at lease & from the
training samples. The slack vector ¢ is introduced to measure
the error wherever the distance is closer to &;. The second
term is an extra regularization term, the structural risk is
minimized in (12) due to this term. The third term of the
objective function minimizes the sum of error variables,
which attempts to over-fit the training points. For the
optimization problem (13), we have the similar illustrations.
Next, by introducing the addition function (-), , the

constraint problems (12) and (13) are converted into a pair of
unconstrained problems and rewritten as

77114117’1 Ly(uy) = % Y = Gu)"D(Y - Guy) + %C3u{u1 +cie” (Gu, - fi) + (14)
and

min L) =3 (¥ = Gu)' DY = Gus) + e,y + coe” (fy = Gu) 1 (15)
where fi =Y +¢e L=Y—¢&, u=[w b, u,=
Wl by]T , G=[Ae] for the linear case and G =
[K (A, AT) e] for the nonlinear case. It can be seen that (14)
and (15) solve two smaller sized unconstrained minimization
problems. However, it is worth mention that the ‘plus’
functions that exist on (14) and (15) are not differentiable. In
order to solve this problem, these non-smooth ‘plus’
functions should be replaced by smooth approximate
functions. Denoting p(+) as a smooth function, (14) and (15)
are modified as

nllll;n Ly (wy) :%(Y = Gu)"D(Y - Guy) + %Csu{u1 +ce” p(Guy - f1) (16)
and

TYILLLZTL L,(uy) =%(Y — Gu,)"D(Y — Guy,) + %quﬁuz +c,e"p (f, — Gu,) (17)

The solution of unconstrained in (16) and (17) can be

sovled by computing their critical point i.e. VL, (u;) = 0 and
VL,(u,) = 0. Next, the generalized derivative iterative
approach and Newton iterative approach are applied to solve
the solution directly. Before that, three popular smoothing
functions are first introduced, each of which will be used to
substitute into (16) and (17) in this work. The definitions of

them are as follows:
2

(5%0) = b x4 D] 18
P1(X, X _4|x0| 2x 4x0 (18)
1
p(x, @) =x + Elog(l + e %) (19)
x +Vx? + 4a?
ps(x, @) = —— (20)

C. Generalized Derivative Iterative Approach

In this subsection, the generalized derivative iterative
approach is used to solve the proposed primal unconstrained
problems of (16) and (17). In fact, the generalized gradient of
problems are as follows:

VL,(uy) = (GTDG + csDuy — GTDY + ¢,GTp*(Guy — f;)
and

VL,(uy) = (GTDG + c,Duy — GTDY — ¢,GTp*(f; — Guy)
where p*(-) is the sub-gradient of p(-) . Computing
VL, (u;) =0, VL,(uy) = 0, defining Q; = (GTDG + ¢3I),
Q, = (GTDG + c,I) and denoting k as the k-th iteration, the
following iterative scheme can be gotten:

(Advance online publication: 27 May 2019)
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Quui™ = G"DY —c,G"p*(Guf — f1) 2D

and
Qus*' = GTDY + ¢,G"p" (f, — Guf) (22)
Next, three popular smoothing functions will be

substituted into (21) and (22), respectively.

The first smooth function p; (x, x,) that is differential is
first considered here, where x, is a non-zero real number.
This function will be a better approximation of ‘plus’
function as long as |x,| is very close to |x|. From (21) and
(22), we can get

Guk—f, e
k+1 — T _ T 1 1, €
Qui™ =G"'DY —c,G < 2] +2) (23)

and

2] x| 2

Obviously, the solutions u; and u, depend on the choice
of X, so that the vector |X,| can be adjusted till it is close to
|Gu1 f1|| for (23) and close to |f2 — Guk | for (24). The
further iterative procedures are obtained as follows

(24)

—Guf e
Qul* = GTDY + ;67 <f2 2+ )

Wkt = (0, + 2 Gpola) -1GT (DY+ 1d1 fi— ) (25)
and

k+1 —(Q + = GpoIG) 1GT (DY+ Zdz f2 ) (26)
where dit = dlag(|Gu1 fil ) , dyt= dla9(|fz -

Gu¥ | ) to simplify our expression.

Now let’s summarize the proposed smooth WW-¢-TSVR
model as Algorithm 1: GWW-¢-TSVR1, where only the
iterative algorithm for (25) is given here, and the iterative
algorithm for (26) is similar.

Algorithm 1: GWW-¢-TSVRI1

Input:
- tol: the error tolerance for learning accuracy.
- itmax: the maximum number of iterations.
©Q1,G,D, ¢y,
. old _ RS . .
ui*® = e: initial approximation of u;.

=Y +¢eez = DY—%e
k=0
Output:
The optimal solution u;.
Process:
do {

-dP* = diag ((|Gu°ld fil + pe)_l), where p > 0 is
a small positive number.
-1
- Solve uf®” = (@, +2G7d}'G) 67 (z +2dl )
cerr = uew — 9
. ulld — unew

‘k=k+1
} while (lerr| > tol and k < itmax)

The second smooth function introduced by this paper is
p.(x, ) = x + %lo g(1 + exp(—ax)), where the parameter

a > 0. Using the generalized derivative iterative approach,
we can obtain

C1

1+ exp(—a(Guf - fl))

uk*t = Q16T |DY — 27)

and

C2
1+ exp(—a(fz - Gu’z‘))
The proposed smooth WW-¢-TSVR model of (27) is
summarized Algorithm 2: GWW-¢-TSVR2 given in

uf*tt = Q;'G" (DY + (28)

Appendix A.
The third smooth function introduced by this paper is
[ 22 2
p(x,a) = w. To simplify our expression, di° =
. 1 D3 — AJi 1
e e N
its iterative formulation can be obtained as follows:
uk*t = Q16T [Dy > (e +dPGuk - £))] (29)
and
ust = Q3167 DY +2 (e + a2 (f, - Gub))| (30)

The proposed smooth WW-¢-TSVR model of (29) is
Algorithm 3: GWW-¢-TSVR3 shown in Appendix A.

D. Newton Iterative Approach

In this subsection, Newton iterative method, which is a
good mathematical tool commonly used to solve extreme
problems, is used to solve the proposed algorithm. p, (x, a)
and p;(x, @) mentioned above are discussed here.

For the second smooth function p, (x, &), the minimization
problems (16) and (17) are modified as

1 1
min L, (u;) = E(Y - Gu)™D(Y — Guy) + Ecguful
Uy

+c1e"p,(Guy — fi, @) 31
and
1 1
min L,(u,) = 3 (Y = Gup)"D(Y — Guy) + Ec4u§u2
Uz
+c,e"p,(f, — Guy, @) (32)

The gradient vector VL, (u;) and VL, (u,) of the (31) and
(32) can be obtained as

— T —
VLi(uy) = Quu — G [DY 1+ exp( a(Gul f1))] (33)
and
— _ T ‘2
VL,(u;) = Qu, — G [DY + T exp(—a(fz — Guz))] (34)

Defining d¥? = diag((1 + exp(—a(Gu, — f1)))™1), and
db? = diag((1 + exp(—a(f, — Guy)))™), (33) and (34)
can be modified as follows:

VLi(uy) = Quuy —

GTDY + c,GTdM e (35)

and
VL,(uy) = Quuy — GTDY — ¢,GTdb%e
Then, V2L, (u;) and V2L,(u,) are as follows
exp(—a(Gu, — 1)) 2) ¢ (37
(1 + exp(—a(6w;, — £1)))

Guz))

G (38)
Guz)))2>

dzgz _ dlag( eXp(—a(Gul - f1)) >
(1 + exp(—a(Gu,

(36)

V2L (uy) = Q. + achTdiag<
and

exp(-a(f, -

(1+exp(—a(f; -

V2L, (uy) = Q, + achTdiag<

Let’s define

- )’
and
exp(—a(f, — Gu
i = diog (o oot Gy

then (37) and (38) can be modified as

V2L, () = Q, + ac,6Td5%G, (39)
and

V2L, (u,) = Q, + ac,GTd42G . (40)

(Advance online publication: 27 May 2019)
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Next, Newton method can be applied to solve (31) and (32)
by combining (33) to (40). This algorithm is termed as
Algorithm 4. NWW-¢-TSVR2 in Appendix A, and its
iterative procedure is as follows:

Q) + ac, GTdPG) Wt —uk) = —(Quuy — GTDY + ¢,GTd%e) (41)
and

(Q, + ac,GTdP G) (st — uk) = —(Quuy — GTDY — ¢,GTdb%e) (42)

x+vVx2+4a?

For the third smooth function p;(x,a) = > . the
minimization problems (16) and (17) are modified as
1 1
min L, (u,) = 7 (Y = Gu)™D(Y — Guy) + §c3u1u1
+c1e"p3(Guy — fi, @) (43)
and
1 1
min L,(uy) = E(Y — Guy)"D(Y — Gu,) + §c4u£u2
Uz
+c,e"pu(fo — Guy, @) (44)

So the gradient vector VL;(u,) and VL,(u,) can be

obtained for the (43) and (44) as

VL (uy) = Qu, — GTDY + %ClGT(e +dP*(Gu; — )  (45)
and

VL,(u;) = Quu, — GTDY — %CZGT(e +dP(f, - Gup))  (46)

where the definition of d?* and d5? is the same as the
Algorithm 3, then we get

V2L (uy) = Q, + 2a2¢,GTd5G 47
and
V2L, (u,) = Q, + 2a%¢,6Td}3G (48)
where
d¥? = diag( ! )
(\/ (Guy — f1).2+ 4a)3
and
dy =di
N T T ey
Combining (45) with (48), we have
(Q1 + 2a2c,GTdP G (WS *t —uk) =
~(Quts ~ DY + 3,670 + dP(Gus ~ 1)) (49)
and
(Qy +2ac,GTdPG) (k™ —uf) =
1
—(Qau, — G"DY — EQGT(@ + dga (fz — Guy))) (50)

This algorithm is summarized as Algorithm 5: NWW-¢-
TSVR3 given in Appendix A.

IV. EXPERIMENTAL RESULTS

To demonstrate the performance of the proposed
WW-e-TSVR, we compare it with the popular TSVR and
&e-TSVR in several datasets, including 5 types of artificial
datasets and 5 benchmark datasets [31]. All computations are
carried out on Windows 7 OS Intel Core i5-4210U CPU
(24GHz) with 4GB RAM and MATLAB R2014a
environment. In order to decrease the computational
complexity in parameter selection, let c; =c,, ¢z =c,4, and
& = & . Gaussian kernel function defined by k(a,b) =

-p||% | . . . o
exp(— % ) is used to deal with nonlinear situations,

where the vectors a,b € R™, and the parameter p > 0.
3-level discrete wavelet transform (DWT), and db2 wavelet
are choose for the wavelet transform algorithm of all the
following experiments.

Some commonly used evaluation criterions [8] as shown in
Table I are introduced before evaluating the performances of

these methods. Without loss generality, let m be the number
of test samples, y; be the real-value of sample x;, J; be the
prediction of y;, and ¥ = (3};¥;)/m be the mean of
Y1,¥2**, Ym- SSE represents the fitting precision, namely,
the smaller is SSE, the fitter the estimation is, and small
SSE/SST means good agreement between estimations and

real-values, while the smaller SSE/SST is usually
accompanied by an increase of SSR/SST [8].
TABLE 1
PERFORMANCE METRICS AND THEIR CALCULATION
Metric Calculation
SSE YR —9)?
SSR LG —y)°
SST I —9)°
SSE/SST TG =9/ 2E 0 - )?
SSR/SST SR = /IR0 = ¥)?

A. Artificial Datasets

To test the regression performance of our proposed
WW-¢-TSVR, five functions shown in Table II are used to
generate all artificial datasets. The training data’s observed
values are polluted by the form y = f(x) + err, where err
is an additive noise by adding Ula, b] or N(u, o2). U[a, b]
represents the uniformly random variable in [a,b] and
N(u,0?) represents the Gaussian random variable with
means u and variance o2, respectively. To avoid biased
comparisons, twenty independent groups of noisy samples
for each kind of noise are generated randomly by Matlab
toolbox, each of which includes 260 samples for training and
500 samples for testing for each function. Besides, testing
data points are uniformly sampled from the objective

function without any noise.
TABLE II
FUNCTIONS DEFINITION USED FOR GENERATING ARTIFICIAL DATASETS

Name Function definition Domain of definition
fi(x) sin(x)/x x € [—4m, 47
() x| xe[-21]
fs(x) 0.2sin(2mx) + 0.2x2 + 0.3 x €[0,2]
4

fax) T2 + cos(2x) + sin(3x) x € [—10,10]
£ 1.9[1.35+e*1sin(13(x; — 0.6)?) x, €[0,1],

5 + 3% 155in(4m(x, — 0.9)%)] x, €[0,1]

For simplicity and clarity, one run results of e&-TSVR and
NWW-e-TSVR2 on f;(x) to f,(x) with N(0,0.12) are
shown in Fig. 1, and their SSE values are 0.4504 and 0.4100
for f;(x), 0.9813 and 0.8127 for f,(x), 0.3464 and 0.0435
for f53(x) and 0.8765 and 0.7829 for f,(x), respectively. It
can be observed that our proposed algorithm has better
approximates than e-TSVR. Table I1I shows the performance
comparisons of our proposed GWW-e-TSVRI,
GWW-¢-TSVR2, GWW-¢-TSVR3, NWW-¢-TSVR2 and
NWW-¢-TSVR3 with TSVR and &-TSVR on artificial
datasets for uniformly distributed noise over the interval [-0.2,
0.2] with Gaussian kernel. Table IV shows the performance
comparisons of our proposed methods for Gaussian noise
with mean zero and standard deviation 0.1. It can be seen that
our proposed five algorithms have similar generalization
performance, but they all have better approximates than
TSVR and ¢-TSVR. Besides, Table III and Table IV also
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compare the training CPU time for all methods, and it can be
seen that our proposed methods are the fastest learning

training datasets is well expressed by our WW-¢-TSVR with
the lowest average regression errors and the fastest learning

method. This indicates the statistical information in the

speed.
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Fig. 1 Performance Comparison of e&-TSVR and NWW-¢-TSVR2 on f; (x) to f,(x) with N(0, 0.1%).
TABLE 11T
PERFORMANCE COMPARISON ON ARTIFICIAL DATASETS FOR U[-0.2, 0.2]
Dataset Regressor SSE SSE/SST SSR/SST CPU sec.
TSVR 0.4859 & 0.2246 0.0090 £ 0.0042 0.9787 + 0.0452 0.25
e-TSVR 0.3332 &+ 0.1667 0.0062 £ 0.0031 0.9760 £ 0.0390 0.25
GWW-¢-TSVR1 0.2874 &+ 0.1499 0.0053 £ 0.0028 1.0129 % 0.0463 0.06
i) GWW-¢-TSVR2 0.2802 & 0.1535 0.0052 £ 0.0029 1.0159 & 0.0451 0.02
GWW-¢-TSVR3 0.3355 &+ 0.1847 0.0062 + 0.0034 1.0166 % 0.0453 0.02
NWW-¢-TSVR1 0.2800 + 0.1533 0.0052 £ 0.0029 1.0159 & 0.0451 0.04
NWW-¢-TSVR2 0.2776 &+ 0.1544 0.0052 & 0.0029 1.0155 + 0.0443 0.05
TSVR 0.9692 £ 0.1653 0.0112 4 0.0019 0.9919 + 0.0340 0.24
&e-TSVR 0.9568 + 0.1319 0.0110 £ 0.0015 0.9893 & 0.0341 0.24
GWW-¢-TSVR1 0.8765 & 0.0462 0.0101 £ 0.0005 0.9843 + 0.0394 0.09
(%) GWW-¢-TSVR2 0.8767 = 0.0510 0.0101 £ 0.0006 0.9874 & 0.0394 0.02
GWW-¢-TSVR3 0.9162 & 0.0528 0.0106 & 0.0006 0.9887 & 0.0388 0.03
NWW-¢-TSVR1 0.8767 &+ 0.0510 0.0101 £ 0.0006 0.9874 + 0.0394 0.04
NWW-¢-TSVR2 0.8713 £ 0.0494 0.0101 4 0.0006 0.9859 + 0.0388 0.06
TSVR 0.4063 £ 0.1998 0.0157 £ 0.0077 1.0224 = 0.0619 0.24
&e-TSVR 0.3223 &+ 0.1533 0.0125 £ 0.0059 1.0083 + 0.0536 0.24
(%) GWW-¢-TSVR1 0.1746 = 0.0714 0.0068 £ 0.0028 0.9930 & 0.0354 0.10
GWW-¢-TSVR2 0.1710 % 0.0665 0.0066 + 0.0026 0.9936 = 0.0377 0.02
GWW-¢-TSVR3 0.2073 & 0.0962 0.0080 & 0.0037 0.9946 + 0.0355 0.03
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NWW-¢-TSVR1 0.1710 & 0.0664 0.0066 = 0.0026 0.9936 + 0.0377 0.04
NWW-¢-TSVR2 0.1646 + 0.0722 0.0064 + 0.0028 0.9951 % 0.0328 0.06
TSVR 1.0306 + 0.2667 0.0018 + 0.0005 1.0006 & 0.0172 0.23
&-TSVR 0.9282 + 0.1762 0.0016 % 0.0003 0.9966 * 0.0147 0.24
GWW-¢-TSVR1 0.7722 %+ 0.0863 0.0013 % 0.0001 0.9968 = 0.0114 0.11
fa(x) GWW-¢-TSVR2 0.8535 + 0.0997 0.0015 + 0.0002 0.9955 £ 0.0129 0.02
GWW-¢-TSVR3 0.7865 + 0.0938 0.0013 % 0.0002 0.9965 + 0.0120 0.04
NWW-¢-TSVR1 0.8535 & 0.0997 0.0015 % 0.0002 0.9955 + 0.0129 0.04
NWW-¢-TSVR2 0.7857 % 0.0900 0.0013 % 0.0002 0.9964 + 0.0119 0.08
TSVR 0.7041 = 0.1352 0.0006 %= 0.0001 1.0000 & 0.0102 0.24
&-TSVR 0.6288 + 0.1222 0.0005 % 0.0001 0.9997 £ 0.0092 0.24
GWW-¢-TSVR1 0.5677 = 0.1021 0.0005 % 0.0001 1.0027 £ 0.0064 0.10
(%) GWW-¢-TSVR2 0.5748 + 0.1058 0.0005 + 0.0001 1.0026 % 0.0062 0.02
GWW-¢-TSVR3 0.5468 = 0.1015 0.0005 % 0.0001 1.0026 % 0.0063 0.03
NWW-¢-TSVRI 0.5748 + 0.1058 0.0005 % 0.0001 1.0026 % 0.0062 0.04
NWW-¢-TSVR2 0.5467 + 0.1016 0.0005 + 0.0001 1.0026 + 0.0063 0.07
TABLE 1V
PERFORMANCE COMPARISON ON ARTIFICIAL DATASETS FOR N[0, 0.17]

Dataset Regressor SSE SSE/SST SSR/SST CPU sec.
TSVR 0.2825 % 0.1060 0.0053 % 0.0020 1.0107 £ 0.0390 0.23
&-TSVR 0.2383 % 0.0952 0.0044 + 0.0018 1.0089 £ 0.0411 0.22
GWW-¢-TSVR1 0.2243 + 0.1102 0.0042 + 0.0020 0.9914 £ 0.0264 0.06
fi®) GWW-¢-TSVR2 0.2174 = 0.1027 0.0040 & 0.0019 0.9879 & 0.0211 0.02
GWW-¢-TSVR3 0.2314 + 0.0828 0.0043 + 0.0015 0.9883 + 0.0212 0.02
NWW-¢-TSVR1 0.2175 + 0.1029 0.0040 + 0.0019 0.9879 + 0.0211 0.03
NWW-¢-TSVR2 0.2174 = 0.0979 0.0040 & 0.0018 0.9880 *+ 0.0215 0.04
TSVR 0.9222 + 0.0812 0.0115 % 0.0009 0.9864 + 0.0297 0.21
&-TSVR 0.8814 + 0.0604 0.0102 + 0.0007 0.9930 £ 0.0299 0.22
GWW-¢-TSVR1 0.8274 + 0.0584 0.0096 % 0.0007 0.9846 + 0.0234 0.09
%) GWW-¢-TSVR2 0.8253 + 0.0524 0.0095 % 0.0006 0.9839 & 0.0249 0.02
GWW-¢-TSVR3 0.8649 + 0.0717 0.0100 % 0.0008 0.9844 + 0.0245 0.02
NWW-¢-TSVR1 0.8251 = 0.0522 0.0095 % 0.0006 0.9839 % 0.0249 0.03
NWW-¢-TSVR2 0.8269 * 0.0548 0.0095 % 0.0006 0.9850 %+ 0.0250 0.04
TSVR 0.2000 * 0.0464 0.0077 £ 0.0018 0.9916 % 0.0475 0.23
&-TSVR 0.1830 % 0.0440 0.0071 + 0.0017 0.9907 & 0.0570 0.23
GWW-¢-TSVR1 0.1263 * 0.0487 0.0049 % 0.0019 1.0046 & 0.0521 0.10
(%) GWW-¢-TSVR2 0.1221 % 0.0492 0.0047 %+ 0.0019 1.0047 £ 0.0489 0.02
GWW-¢-TSVR3 0.1201 + 0.0477 0.0046 + 0.0018 1.0045 £+ 0.0513 0.02
NWW-¢-TSVR1 0.1221 % 0.0492 0.0047 & 0.0019 1.0047 % 0.0489 0.04
NWW-¢-TSVR2 0.1217 % 0.0462 0.0047 &+ 0.0018 1.0057 £ 0.0510 0.06
TSVR 0.8332 + 0.1269 0.0014 %+ 0.0002 1.0046 &+ 0.0111 0.21
&-TSVR 0.8148 + 0.1311 0.0014 % 0.0002 1.0011 % 0.0122 0.23
GWW-¢-TSVR1 0.7778 % 0.1462 0.0013 % 0.0003 1.0020 £ 0.0100 0.09
fa(x) GWW-¢-TSVR2 0.7811 % 0.1427 0.0013 + 0.0002 1.0006 % 0.0095 0.02
GWW-¢-TSVR3 0.7732 + 0.1384 0.0013 % 0.0002 1.0018 & 0.0098 0.03
NWW-¢-TSVR1 0.7811 % 0.1427 0.0013 % 0.0002 1.0006 % 0.0095 0.03
NWW-¢-TSVR2 0.7753 + 0.1395 0.0013 % 0.0002 1.0018 £ 0.0097 0.07
TSVR 0.4367 = 0.1106 0.0003 % 0.0001 0.9990 & 0.0079 0.22
&-TSVR 0.4117 £ 0.0929 0.0003 % 0.0001 0.9997 % 0.0085 0.22
GWW-¢-TSVR1 0.3778 % 0.0591 0.0003 % 0.0000 1.0007 % 0.0063 0.09
(%) GWW-¢-TSVR2 0.3835 + 0.0673 0.0003 + 0.0001 1.0006 % 0.0064 0.02
GWW-¢-TSVR3 0.3768 * 0.0647 0.0003 % 0.0001 1.0006 % 0.0063 0.03
NWW-¢-TSVRI 0.3835 + 0.0673 0.0003 % 0.0001 1.0006 % 0.0064 0.04
NWW-¢-TSVR2 0.3768 + 0.0637 0.0003 + 0.0001 1.0006 + 0.0063 0.07

B. Real Work Benchmark Datasets

For further evaluation, two time series UCI datasets and
five non-time series UCI datasets, which are all commonly
used in testing machine learning algorithms, are tested. Being
PM2.5 Data Dataset is a kind of time series dataset, in which
the hourly data set contains the PM2.5 data of US Embassy in
Beijing, meanwhile, meteorological data from Beijing
Capital International Airport are also included. The number
of attributes is seven including dew point, temperature,
pressure, combined wind direction, cumulated wind speed

(m/s), cumulated hours of snow and cumulated hours of rain.
The time period of this dataset is from Jan. 1st, 2010 to Dec
31st, 2014. To test the proposed algorithm, three groups of
data were selected from Being PM2.5 Data Dataset. Each
group has 2,000 data from about 84 days in different years
(from 2011 to 2014). Istanbul stock exchange dataset is
another time series UCI datasets, which includes returns of
Istanbul stock exchange with seven other international
indexes from Jun. 5, 2009 to Feb. 22, 2011. Note that cross
validation experiments cannot be adopted in time series,
otherwise the feature of time series will be destroyed.
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Therefore, the odd number examples are selected for training,
and the even number examples are selected for testing. As for
non-time series UCI datasets, five UCI datasets: Servo,
Wisconsin breast cancer datasets, Auto-Mpg, Concrete
compressive strength and Combined cycle power plant are
tested. Due to the large number of samples in combined cycle
power plant dataset, 1 sample out of every 12 is taken. A
more detailed description of these non-time series UCI
datasets is shown in Table V. To avoid biased comparisons,
the optimal values are computed by using standard ten-fold
cross-validation on the training data. It’s important to note

SSE/SST among the popular TSVR and e-TSVR because of
introducing the wavelet transform based weight D. It has
been seen that in Table VII our WW-¢-TSVR gives the better
performance than TSVR, the similar performance to e-TSVR
because both our method and the &-TSVR all consider
minimizing structural risks. As for the computation time, it is
obviously that our method needs less CPU time than others,
indicating that our proposed iterative methods are the

efficient algorithm for regression.
TABLEV
THE DESCRIPTION FOR UCI DATASETS

that these datasets are not time-sequence, so D = [. The Datasets No. of samples No. of features
performance of time series datasets and non-time series Servo 167 !
datasets listed in Table VI and Table VII respectively show Wisconsin B.C. 194 32
the superiority of the proposed algorithms based on Auto-Mpg 398
generalized derivative iterative approach and Newton Concrete CS 1030
iterative approach. In Table VI, our proposed five iterative CombinedCPP 798
WW-e-TSVR algorithms all derive the smallest SSE and
TABLE VI
PERFORMANCE COMPARISON ON TIME SERIES UCI DATASETS
Dataset Regressor SSE SSE/SST SSR/SST CPU sec.
TSVR 7.2172 0.4365 09117 0.66
&e-TSVR 6.7495 0.4083 0.8459 0.69
Beijing GWW-¢-TSVR1 6.6496 0.3983 0.8659 0.44
PM2.5 GWW-¢-TSVR2 6.6592 0.3988 0.8664 0.30
(2011) GWW-¢-TSVR3 6.6499 0.3983 0.8656 0.11
NWW-¢-TSVR1 6.6592 0.3988 0.8664 0.20
NWW-¢-TSVR2 6.6504 0.3983 0.8660 0.64
TSVR 7.8362 0.4151 0.8084 0.60
&e-TSVR 7.5562 0.4003 0.7428 0.57
Beijing GWW-¢-TSVR1 7.4564 0.3923 0.7628 0.37
PM2.5 GWW-¢-TSVR2 7.4569 0.3923 0.7622 0.07
(2012) GWW-¢-TSVR3 7.4565 0.3923 0.7626 0.10
NWW-¢-TSVR1 7.4569 0.3923 0.7622 0.20
NWW-¢-TSVR2 7.4564 0.3923 0.7628 0.22
TSVR 24.7274 0.3797 0.7595 0.71
&e-TSVR 24.1335 0.3706 0.7117 0.64
Beijing GWW-¢-TSVR1 24.0334 0.3626 0.7217 0.30
PM2.5 GWW-¢-TSVR2 24.0457 0.3628 0.7220 0.07
(2013) GWW-¢-TSVR3 24.0321 0.3626 0.7216 0.10
NWW-¢-TSVR1 24.0457 0.3628 0.7220 0.18
NWW-¢-TSVR2 24.0323 0.3626 0.7217 0.23
TSVR 24.6978 0.5347 0.7271 0.59
&e-TSVR 23.3219 0.5049 0.6645 0.53
Beijing GWW-¢-TSVR1 23.2226 0.4949 0.6845 0.32
PM2.5 GWW-¢-TSVR2 23.2614 0.4957 0.6857 0.25
(2014) GWW-¢-TSVR3 23.2232 0.4949 0.6844 0.16
NWW-¢-TSVR1 23.2614 0.4957 0.6857 0.20
NWW-¢-TSVR2 23.2236 0.4949 0.6845 0.24
TSVR 9.4095 0.7771 0.7113 0.19
&e-TSVR 8.5706 0.7079 0.6400 0.16
Istanbul GWW-¢-TSVR1 8.4709 0.6979 0.6600 0.06
Stock GWW-¢-TSVR2 8.4618 0.6971 0.6582 0.01
Exchange GWW-¢-TSVR3 8.4728 0.6980 0.6602 0.02
NWW-¢-TSVR1 8.4618 0.6971 0.6582 0.03
NWW-¢-TSVR2 8.4714 0.6979 0.6601 0.04
TABLE VII
PERFORMANCE COMPARISON ON NON-TIME SERIES UCI DATASETS
Dataset Regressor SSE/SST SSR/SST CPU sec.
TSVR 0.1778 % 0.1069 1.0310 + 0.3332 0.09
e-TSVR 0.1722 + 0.0914 0.9987 + 0.3160 0.09
GWW-¢-TSVR1 0.1722 + 0.0914 0.9987 + 0.3161 0.02
Servo GWW-¢-TSVR2 0.1723 4+ 0.0914 0.9988 + 0.3162 0.01
GWW-¢-TSVR3 0.1722 + 0.0914 0.9987 + 0.3160 0.01
NWW-¢-TSVRI1 0.1723 + 0.0914 0.9988 + 0.3162 0.01
NWW-¢-TSVR2 0.1722 + 0.0914 0.9987 + 0.3161 0.02
TSVR 1.0208 + 0.3496 0.4764 + 0.3204 0.07
Wisconsin B.C. e-TSVR 0.9634 + 0.2953 0.4217 + 0.2731 0.07
GWW-¢-TSVR1 0.9634 + 0.2953 0.4217 + 0.2731 0.02
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GWW-¢-TSVR2 0.9631 + 0.2948 0.4209 + 0.2725 0.01
GWW-¢-TSVR3 0.9634 + 0.2953 0.4217 + 0.2731 0.01
NWW-¢-TSVR1 0.9631 + 0.2948 0.4209 + 0.2725 0.01
NWW-¢-TSVR2 0.9634 + 0.2953 0.4217 + 0.2731 0.01
TSVR 0.2640 + 0.0813 0.8471 £ 0.1540 0.43
e-TSVR 0.2490 + 0.0551 0.8370 £ 0.1473 0.41
GWW-¢-TSVR1 0.2490 + 0.0551 0.8370 + 0.1473 0.14
Auto-Mpg GWW-¢-TSVR2 0.2491 + 0.0551 0.8370 + 0.1474 0.04
GWW-¢-TSVR3 0.2490 + 0.0551 0.8369 + 0.1472 0.05
NWW-¢-TSVR1 0.2491 + 0.0551 0.8370 £ 0.1474 0.08
NWW-¢-TSVR2 0.2490 + 0.0551 0.8370 + 0.1472 0.10
TSVR 0.1362 % 0.0342 0.9280 + 0.0742 3.26
e-TSVR 0.1393 + 0.0313 0.9081 + 0.0748 3.18
GWW-¢-TSVR1 0.1393 + 0.0313 0.9081 + 0.0748 1.93
Concrete CS GWW-¢-TSVR2 0.1394 + 0.0313 0.9080 + 0.0748 0.40
GWW-¢-TSVR3 0.1393 4+ 0.0313 0.9081 + 0.0748 0.55
NWW-¢-TSVR1 0.1394 + 0.0313 0.9080 + 0.0748 1.05
NWW-¢-TSVR2 0.1393 + 0.0313 0.9081 + 0.0748 1.32
TSVR 0.0712 &+ 0.0166 0.9484 + 0.0489 1.25
&e-TSVR 0.0668 + 0.0143 0.9417 + 0.0493 1.46
GWW-¢-TSVR1 0.0668 + 0.0143 0.9417 £+ 0.0493 0.76
CombinedCPP GWW-¢-TSVR2 0.0667 = 0.0143 0.9413 + 0.0493 0.17
GWW-¢-TSVR3 0.0668 + 0.0143 0.9417 + 0.0493 0.24
NWW-¢-TSVR1 0.0667 + 0.0143 0.9413 + 0.0493 0.43
NWW-¢-TSVR2 0.0668 + 0.0143 0.9417 + 0.0493 0.55
Output:
V. CONCLUSION The optimal solution u;.
In this paper, an improved wavelet transform based P rc()ice?s:
0

weighted ¢-TSVR formulation (WW-¢-TSVR) in primal
space for the regression of time series is proposed, where the
wavelet weight matrix is introduced to give different
penalties for the samples located in different places.
Although the proposed algorithm is based on e-TSVR, unlike
&-TSVR, it not only adds a weighted matrix D into QPPs, but
also introduces a ‘plus’ function to convert the algorithm into
a pair of unconstrained minimization problems. To further
solve these unconstrained minimization problems in primal
space, generalized derivative iterative approach and Newton
iterative approach depending on differential smooth
functions are proposed. Unlike solving the quadratic
programming problem by using external optimization
toolbox, five iterative algorithms including GWW-¢-TSVRI1,
GWW-¢-TSVR2, GWW-¢-TSVR3, NWW-¢-TSVR2 and
NWW-e-TSVR3 can be easily coded in MATLAB. The
experimental results on several artificial and UCI datasets
show that our proposed method gives similar or better
generalization performance with TSVR and ¢-TSVR, but
what is important is that it has greatly reduced the
computation time. Moreover, how to select the optimal
hyperparameters is a difficult problem and should be
addressed in the future.

APPENDIX A

. dfz = diag((1 + exp(—a(Gui’ld - f1)))_1)
- Solve u®" =, (DY — c,dV?e)

err = uew — ygld
. ui)ld — u;‘LEW
k=k+1

} while (Jerr| > tol and k < itmax)

Algorithm 3: GWW-¢-TSVR3

Algorithm 2: GWW-¢-TSVR2

Input:
- tol: the error tolerance for learning accuracy.
- itmax: the maximum number of iterations.
-Q1,G,D,cq,6,
-uf' = e: initial approximation of u;.
“fi=Y+eger =0Q{1GT
k=0

Input:
- tol: the error tolerance for learning accuracy.
- itmax: the maximum number of iterations.

: Ql’ G, D, CI’ El,a
-ufl = e: initial approximation of u.

: fl =Y+ &enrn = Ql_lGT,Zl = Dy—cz—le
k=0
Output:
The optimal solution u;.
Process:
do {
1
-} = diag((Guf™ — f,). "2 + 4a*)72)

Solve uf®” =3[z = e} (Gu — f)]

- err = upew —y9ld
. ugld — u?ew
k=k+1

} while (lerr| > tol and k < itmax)

Algorithm 4: NWW-¢-TSVR2

Input:
. tol: the error tolerance for learning accuracy.
- itmax: the maximum number of iterations.
“Q1,G,D,cq,5,
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u

fi
k

9ld = e: initial approximation of u;.

=Y +¢ge
=0

Output:

The optimal solution u;.

Process:

do {
- d?* = diag((1 + exp(—a(Guf' — £))™)

P2 _ g exp(-a(Guf'-f))
dy” = diag ((1+exp(—a(au§”d—f1)))2

T =Q; +ac,GTdb%e
s = Quuf'® — GTDY + ¢;,G"d}’%e

- Solve upew = ufld — r=1g
err = uew — 9l

. ufld — u;lew

k=k+1

} while (lerr| > tol and k < itmax)

Algorithm 5: NWW-¢-TSVR3

Input:

. tol: the error tolerance for learning accuracy.
- itmax: the maximum number of iterations.

“Q4,G,D,cq,6,
-uf! = e: initial approximation of u;.
fi=Y +¢ge
k=0
Output:
The optimal solution u;.
Process:
~do {
-dP* = diag(————
(Gudl—f).r2+4a2
- d¥? = diag( ! D)

< (Gugld—fl).2+4a2>
T =Q, +2a%¢,GTdYG
's = Quu{ — GTDY + 167 (e + db* (Gug™ — £))

- Solve upew = ugld —r=1s
err = ulw —yfld
. ,,0ld —_ , new
U =u
k=k+1

} while (lerr| > tol and k < itmax)
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