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Abstract—An improved wavelet transform based weighted 

ε-twin support vector regression (WW-ε-TSVR) is proposed in 
this paper. In our WW-ε-TSVR, to reduce the impact of outliers, 
the wavelet weight matrix is introduced to give different 
penalties for the samples located in different places. Further, by 
using the ‘plus’ function, a pair of unconstrained minimization 
problems is solved in primal space rather than dual space, in 
which three smooth functions are introduced to replace the 
non-differentiable non-smooth ‘plus’ function. To speed up the 
training procedure, the generalized derivative iterative 
approach and Newton iterative approach are used to obtain the 
approximate solution, and five more detailed iterative 
algorithms are given. At last, the experimental results on 
several artificial and UCI datasets indicate that the proposed 
method is of effectiveness and applicability, it not only gives 
similar or better generalization performance with other 
popular methods such as TSVR and ε-TSVR, but also requires 
less computational time. 
 

Index Terms—Twin support vector regression, Smooth 
approximation, Unconstrained convex minimization, Wavelet 
transform, Iterative approach 
 

I. INTRODUCTION 

n recent years, support vector machine (SVM) [1-4] has 
gained great attention as a powerful method because it 
shows improved generalization performance in 

comparison with other machine learning techniques. SVM 
has been successfully applied in various aspects ranging from 
pattern recognition, text categorization, and financial 
regression. As for support vector regression (SVR) model [5], 
which uses SVM technique to solve the regression estimation, 
there are many significant methods, such as ε-support vector 
regression (ε-SVR) [6], v-support vector regression (v-SVR) 
[7] and so on. 
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 However, the main drawback of SVR is its high learning 
cost, i.e. ࣩሺሺ2݈ሻଷሻ, where l is the number of training samples. 
In order to improve the computational speed of SVR, Peng 
[8-10] proposed a twin support vector regression (TSVR) in 
the sprint of twin support vector machine (TSVM) [11]. 
Different from SVR, TSVR generates two nonparallel up- 
and down-bound functions by solving a pair of smaller sized 
quadratic programming problems (QPPs). It has been proved 
that learning cost of TSVM is 	2ࣩሺ݈ଷሻ , that is approximately 
four times faster than the standard SVR in theory. However, 
Khemchandani et al. [12] observed that the model of Peng [8] 
is not the true spirit of twin methodology, and only the 
empirical risk minimization principle is considered in TSVR. 
To overcome these problems, Shao et al. [13] presented 
another twin model for regression termed as ε-TSVR, which 
can be justified on the basis of structural risk minimization 
principle. Later, Rastogi et al. [14] extended ε-TSVR and 
presented v-TSVR, which can automatically optimize the 
parameters ε1 and ε2 according to the sample data. By 
employing the pinball loss function, Xu et al. [15] further 
developed asymmetric v-twin support vector regression 
termed as Asy-v-TSVR, which can effectively reduce the 
disturbance of the noise and improve the generalization 
performance. Consequently, twin-type SVR has been studied 
extensively.  

Nevertheless, it should be pointed that, in all these 
twin-type SVR models, the distribution of the training data 
wasn’t considered in solving regression problems. This 
implies that all samples play the same role on the bound 
function whether they are important or not, so it will lead to a 
decline in the performance of the regression. It is more 
reasonable to give the data samples different penalties 
depending on their importance. To this end, various methods 
[16-20] were developed to study this kind of fault. For 
example, Xu et al. [18] presented the K-nearest neighbor- 
based weighted twin support vector regression by using the 
local information existing on the samples, and improved the 
prediction accuracy. By clustering the training data based on 
their degree of similarity, the authors in [19] presented the 
modified twin support vector regression. Ye [20] proposed an 
efficient weighted Lagrangian ε-twin support vector 
regression with quadratic loss functions (WL-ε-TSVR), in 
which the samples are given different penalties by 
introducing a weight matrix D to reduce the impact of the 
outliers on the regressor to a certain extent. 

 Traditionally, the down and up bound regressors of 
twin-type SVR are obtain by their approximate dual solutions. 
However, Chapelle [21] observed that the approximate dual 
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solution may not result in good primal approximate solution 
by comparing approximate efficiencies of SVR in primal and 
dual spaces. There are some related works [22-25] that have 
been solved directly in the primal space. For example, 
motivated by the works of twin-type SVR and the Newton 
approach, Balasundaram et al. [23] proposed a new 
unconstrained Lagrangian TSVR (ULTSVR) to improve the 
computational speed by solving a pair unconstrained 
minimization problems. Gupta [24] and Balasundaram [25] 
used a generalized derivative approach to get the solution of 
QPPs, although their works were effective and fast, it took 
only empirical risk minimization into account, not structural 
risk minimization at the same time. 

Motivated by the above researches, this paper proposes an 
improved wavelet transform based weighted ε-twin support 
vector regression (WW-ε-TSVR). The main contributions 
compared with the existing researches of this paper are 
summarized as follows: 

1) Inspired by the K-nearest neighbor-based weight idea, 
the wavelet transform-based weight is introduced for 
regressing the time series signal. In the other words, the 
profile of time series is obtained first by wavelet transform 
(WT) [26], and then the distance between the training data 
and the wavelet transformed coefficient is calculated. By 
taking these distances as weights instead of K-nearest 
neighbor-based weights, each data is given a different penalty. 
It is noticed that the proposed WT-based weight TSVR is 
only suitable for time series signals. In addition, because the 
ε-TSVR model considers structural risk minimization, 
combing the ε-TSVR model and the WT-based weight idea 
makes the proposed algorithm consider both structural risk 
minimization and empirical risk minimization. 

2) After finding a pair of QPPs with constraints, they are 
first converted into a pair of unconstraint QPPs by 
introducing smooth functions [27-28]. Then, the 
unconstrained problem is solved directly in primal space by 
using generalized derivative iterative approach and Newton 
iterative approach [29-30] which can reduce the complexities 
of the model and speed up the training. Further, five more 
detailed iterative algorithms are given to solve the proposed 
WW-ε-TSVR. 

3) At last, experimental results on both artificial and real 
datasets show that, compared with the popular TSVR and 
ε-TSVR, our WW-ε-TSVR significantly shorts the training 
time with similar or better generalization performance. 

 The reminder of this paper is organized as follows: Section 
Ⅱ describes the background including linear TSVR and 
ε-TSVR. The proposed WW-ε-TSVR is given in section Ⅲ, 
and five iterative approaches are discussed to solve these 
unconstrained problems. Experimental results and analysis 
for both artificial and real datasets are carried out in Section 
Ⅳ. Section Ⅴ is the conclusion of the proposed work.  

II. BACKGROUND 

In this section, we give a brief description of twin support 
vector regression (TSVR) and ε-twin support vector 
regression (ε-TSVR). Given a training set 	ܶ ൌ ሼሺݔ௜,  		,௜ሻሽݕ
݅ ൌ 1,2, … , ݈ , where ݔ௜ ∈ ܴ௡  and ௜ݕ	 ∈ ܴ . Also let ܣ ൌ
ሺܣଵ, ,ଶܣ … , ௟ሻ்ܣ  be the input training sample, and ܻ ൌ
ሺݕଵ, ,ଶݕ … , ௟ሻ்ݕ  be the response of the training samples, 

where ܣ is an ݈ ൈ ݊ matrix, ܣ௜, the i-th row of ܣ, represents 
the i-th training sample, ܻ  is an ݈ ൈ 1  vector, and  ݕ௜ 
represents the i-th response. 

A. Twin Support Vector Regression (TSVR) 

The TSVR model [8] inspired by TSVM [11] finds two 
nonparallel functions ଵ݂ሺݔሻ ൌ ݔଵ்ݓ ൅ ܾଵ  and 	 ଶ݂ሺݔሻ ൌ
ଶݓ
୘ݔ ൅ ܾଶ , each one determines the down- and up-bound 

 insensitive regressors, respectively. In the linear case, it-ߝ	
can be obtained by solving the following QPPs:  

݉݅݊
௪భ,௕భ,క

1
2
‖ܻ െ ଵ݁ߝ െ ሺݓܣଵ ൅ ܾ݁ଵሻ‖ଶ ൅ ܿଵ்݁ߦ,

.ݏ ܻ					.ݐ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൒ ଵ݁ߝ െ ߦ			,	ߦ ൒ 0.
																			ሺ1ሻ 

and 

݉݅݊
௪మ,௕మ,ఎ

1
2
‖ܻ ൅ ଶ݁ߝ െ ሺݓܣଶ ൅ ܾ݁ଶሻ‖ଶ ൅ ܿଶ்݁ߟ,

.ݏ ଶݓܣሺ					.ݐ ൅ ܾ݁ଶሻ െ ܻ ൒ ଶ݁ߝ െ ߟ			,	ߟ ൒ 0.
																			ሺ2ሻ 

where 	ܿଵ	, ܿଶ ൐ 0  are the pre-specified penalty factors, 
,ଵߝ ଶߝ ൐ 0	are constants, ߦ and  ߟ are slack vectors, and ݁ is 
column vector of ‘ones’ of appropriate dimension. Their dual 
problems are  

݉݅݊
ఈ

1
2
ߙ்ܩሻିଵܩ்ܩሺܩ்ߙ െ ߙ்ܩሻିଵܩ்ܩሺܩ்݂ ൅ ,ߙ்݂

.ݏ .ݐ 0 ൑ ߙ ൑ ܿଵ݁.
										ሺ3ሻ 

and  

݉݅݊
ఊ

1
2
ߛ்ܩሻିଵܩ்ܩሺܩ்ߛ ൅ ߛ்ܩሻିଵܩ்ܩሺܩ்݄ െ ,ߛ்݄

.ݏ .ݐ 0 ൑ ߛ ൑ ܿଶ݁.
										ሺ4ሻ 

where 	݂ ൌ ܻ െ ,ଵ݁ߝ ݄ ൌ ܻ ൅ ,ଶ݁ߝ and	ܩ ൌ ሾܣ	݁ሿ . The 
augmented vectors ଵݑ	 ൌ ሾݓଵ்		ܾଵሿ்  and ଶݑ		 ൌ ሾݓଶ

்		ܾଶሿ்  are 
determined by ݑଵ ൌ ሺܩ்ܩሻିଵ்ܩሺ݂ െ ሻߙ  and ݑଶ ൌ
ሺܩ்ܩሻିଵ்ܩሺ݄ ൅ ,ሻߛ  respectively. The final estimated 
regressor is constructed as  

݂ሺݔሻ ൌ
1
2
൫ ଵ݂ሺݔሻ ൅ ଶ݂ሺݔሻ൯ ൌ

1
2
ሺݓଵ ൅ ݔଶሻ்ݓ ൅

1
2
ሺܾଵ ൅ ܾଶሻ							ሺ5ሻ 

B. ε-Twin Support Vector Regression (ε-TSVR) 

Following the idea of TWSVM and TSVR, Shao et al. [13] 
proposed another twin type SVR termed as ε-twin support 
vector regression (ε-TSVR). It also finds two insensitive 
proximal linear function: ଵ݂ሺݔሻ ൌ ݔଵ்ݓ ൅ ܾଵ  and ଶ݂ሺݔሻ ൌ
ଶݓ
ݔ் ൅ ܾଶ.  Introducing the regularization terms 	

ଵ

ଶ
ሺݓଵ்ݓଵ ൅

ܾଵଶ), 
ଵ

ଶ
ሺݓଶ

ଶݓ் ൅ ܾଶ
ଶሻ, and the slack variables ߦ, ,∗ߦ ,ߟ  the ,∗ߟ

primal problems can be expressed as 

݉݅݊
௪భ,௕భ,క,క∗

1
2
ܿଷሺݓଵ

ଵݓ் ൅ ܾଵ
ଶሻ ൅

1
2
∗ߦ்∗ߦ ൅ ܿଵ்݁ߦ,

.ݏ .ݐ ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൌ ,∗ߦ
	 ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൒ െߝଵ݁ െ ߦ			,	ߦ ൒ 0.

																					ሺ6ሻ 

and 

݉݅݊
௪మ,௕మ,ఎ,ఎ∗

1
2
ܿସሺݓଶ

ଶݓ் ൅ ܾଶ
ଶሻ ൅

1
2
∗ߟ்∗ߟ ൅ ܿଶ்݁ߟ,

.ݏ .ݐ ሺݓܣଶ ൅ ܾ݁ଶሻ െ ܻ ൌ ,∗ߟ
	 ሺݓܣଶ ൅ ܾ݁ଶሻ െ ܻ ൒ െߝଶ݁ െ ߟ			,	ߟ ൒ 0.

																				ሺ7ሻ 

where  ܿଵ, ܿଶ, ܿଷ, ܿସ,  ଶ are positive parameters. Theߝ ଵ andߝ
main difference between TSVR and ε-TSVR is an extra 

regularization term 
ଵ

ଶ
ܿଷሺݓଵ்ݓଵ ൅ ܾଵଶሻ  in (6) (respectively 

ଵ

ଶ
ܿସሺݓଶ

ଶݓ் ൅ ܾଶ
ଶሻ  in (7)) so that the structural risk 

minimization principle is implemented. 
In order to get the solutions of (6) and (7), their dual 

problems need to be derived. By introducing the Lagrangian 
multiplies ߙ  and ߛ	 , the dual problems of ε-TSVR can be 
derived as follows, 

݉݅݊
ఈ

1
2
ܩ்ܩሺܩ்ߙ ൅ ܿଷܫሻିଵߙ்ܩ െ ܩ்ܩሺܩ்ܻ ൅ ܿଷܫሻିଵߙ்ܩ ൅ ሺ்݁ߝଵ ൅ ்ܻሻߙ,			

.ݏ .ݐ 0 ൑ ߙ ൑ ܿଵ݁.
ሺ8ሻ 
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and  

݉݅݊
ఊ

1
2
ܩ்ܩሺܩ்ߛ ൅ ܿସܫሻିଵߛ்ܩ ൅ ܩ்ܩሺܩ்ܻ ൅ ܿସܫሻିଵߛ்ܩ െ ሺ்ܻ െ ,ߛଶሻߝ்݁

.ݏ .ݐ 0 ൑ ߛ ൑ ܿଶ݁.
		ሺ9ሻ 

The final regressor ݂ሺݔሻ	is in the same form as (5), in which 
,ଵݑ   :ଶ are as followsݑ

uଵ ൌ ሾwଵ
୘ bଵ

୘ሿ୘ ൌ ሺG୘G ൅ cଷIሻିଵG୘ሺY െ αሻ																							ሺ10ሻ 
uଶ ൌ ሾwଶ

୘ bଶ
୘ሿ୘ ൌ ሺG୘G ൅ cସIሻିଵG୘൫Y ൅γ൯																				ሺ11ሻ 

III. PROPOSED WW-ߝ-TSVR METHOD 

Motivated by the above studies, wavelet transform based 
weighted ε-twin support vector regression (WW-ε-TSVR) is 
proposed in this section. Further, a pair of unconstrained 
convex minimizations in primal space will be given to obtain 
the solutions of the proposed regression model. 

A. Wavelet Transform Based Weighted Method 

In ε-TSVR, all samples are given the same weight, which 
is not suitable for many practical situations, and it also 
reduces the regression performance due to the impact of 
outliers. Therefore, it is necessary to give different weight to 
different sampling points in the training of regression model. 
Next, a method of choosing weights based on  wavelet 
transform [26] is introduced. Assuming 
ܻ ൌ ሺݕଵ, ⋯,ଶݕ ,  is a time series, the wavelet transform is	௟ሻ்ݕ
a good mathematical tool that can be used to extract its 
low-frequency component because of the time frequency 
localization properties of wavelets. First, perform k levels of 
the wavelet transform on sample signal Y, and then 
reconstruct only the low-frequency components to get 

௪ܻ ൌ ሺݕ௪ଵ, ⋯,௪ଶݕ , ௪௟ሻ்ݕ  , which is actually the profile of 
sample single Y. It can be assumed that the closer the sample 
point is to	ݕ௪௜, the greater the weight that should be given. 
Defining a variable݀௜ ൌ ߣ െ ௪௜ݕ| െ  ,represents the weight	௜|ݕ
where λ is a constant value, for example,	ߣ ൌ  ሺ݀௜ሻ. In	ݔܽ݉
addition, it should be noted that the method based on wavelet 
transform to determine weights is only suitable for time series 
signals, but for random sequences, 	݀௜ ൌ 1. 

B. Proposed WW-ε-TSVR Method 

A novel WW-ε-TSVR method is proposed in this 
subsection. By introducing matrix D, that represents the 
penalty for each sampling point, the proposed algorithm in 
linear form is obtained by solving the following pair of QPPs:  

min
௪భ,௕భ,క

1
2
൫ܻ െ ሺݓܣଵ ൅ ܾ݁ଵሻ൯

்
൫ܻܦ െ ሺݓܣଵ ൅ ܾ݁ଵሻ൯

൅
1
2
ܿଷሺݓଵ

ଵݓ் ൅ ܾଵ
ଶሻ ൅ ܿଵ்݁ߦ,																												

.ݏ ܻ					.ݐ െ ሺݓܣଵ ൅ ܾ݁ଵሻ ൒ െߝଵ݁ െ ߦ			,	ߦ ൒ 0.

														ሺ12ሻ 

       

and 

min௪మ,௕మ,ఎ

ଵ

ଶ
൫ܻ െ ሺݓܣଶ ൅ ܾ݁ଶሻ൯

்
൫ܻܦ െ ሺݓܣଶ ൅ ܾ݁ଶሻ൯

൅
ଵ

ଶ
ܿସሺݓଶ

ଶݓ் ൅ ܾଶ
ଶሻ ൅ ܿଶ்݁ߟ	,																											

.ݏ ଶݓܣሺ				.ݐ ൅ ܾ݁ଶሻ െ ܻ ൒ െߝଶ݁ െ ߟ			,	ߟ ൒ 0.

						ሺ13ሻ  

where ܿଵ , ܿଶ , ܿଷ , ܿସ, ଵߝ	  and ߝଶ  are user specified positive 
parameters, ݁  is column vector of ‘ones’ of appropriate 
dimension, and ܦ ൌ ݀݅ܽ݃ሺ݀ଵ, ݀ଶ,⋯ , ݀௟ሻ is a wavelet weight 
diagonal matrix. If  ܦ ≡  the proposed method degrades ,ܫ
into the original ε-TSVR. 
 WW-ε-TSVR finds two proximal functions  ଵ݂ሺݔሻ ൌ
ݔଵ்ݓ ൅ ܾଵ  and ଶ݂ሺݔሻ ൌ ଶݓ

ݔ் ൅ ܾଶ, and the final regressor 
݂ሺݔሻ,	which is in the same form as (5), is determined by the 
mean of these two proximal functions. Note that there are 

three terms in the objective function (12). The first term is the 
sum of squared distances from the shifted function ଵ݂ሺݔሻ	to 
the training points, and different weights are also given to 
each training sample base on the matric D. Therefore, 
minimizing it can cause the function ଵ݂ሺݔሻ	to be suitable for 
the training samples. The constraint requires the estimated 
function ଵ݂ሺݔሻ to be at a distance of at lease 	ߝଵ  from the 
training samples. The slack vector ߦ is introduced to measure 
the error wherever the distance is closer to 	ߝଵ. The second 
term is an extra regularization term, the structural risk is 
minimized in (12) due to this term. The third term of the 
objective function minimizes the sum of error variables, 
which attempts to over-fit the training points. For the 
optimization problem (13), we have the similar illustrations. 

Next, by introducing the addition function ሺ∙ሻା , the 
constraint problems (12) and (13) are converted into a pair of 
unconstrained problems and rewritten as 

݉݅݊
௨భ

ଵሻݑଵሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଵሻ்ݑܩ െ ଵሻݑܩ ൅

1
2
ܿଷݑଵ்ݑଵ ൅ ܿଵ்݁ ሺݑܩଵ െ ଵ݂ሻ	ା		ሺ14ሻ 

and  

݉݅݊
௨మ

ଶሻݑଶሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଶሻ்ݑܩ െ ଶሻݑܩ ൅

1
2
ܿସݑଶ்ݑଶ ൅ ܿଶ்݁ ሺ ଶ݂ െ  ሺ15ሻ		ା	ଶሻݑܩ

where ଵ݂ ൌ ܻ ൅ ,ଵ݁ߝ ଶ݂ ൌ ܻ െ ଶߝ ଵݑ , ൌ ሾݓଵ்		ܾଵሿ், ଶݑ   ൌ
ሾݓଶ

்		ܾଶሿ் ܩ , ൌ ሾܣ	݁ሿ for the linear case and ܩ ൌ
ሾܭሺܣ,  ݁ሿ for the nonlinear case. It can be seen that (14)	ሻ்ܣ
and (15) solve two smaller sized unconstrained minimization 
problems. However, it is worth mention that the ‘plus’ 
functions that exist on (14) and (15) are not differentiable. In 
order to solve this problem, these non-smooth ‘plus’ 
functions should be replaced by smooth approximate 
functions. Denoting ݌ሺ∙ሻ as a smooth function, (14) and (15) 
are modified as 

݉݅݊
௨భ

ଵሻݑଵሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଵሻ்ݑܩ െ ଵሻݑܩ ൅

1
2
ܿଷݑଵ்ݑଵ ൅ ܿଵ்݁ ଵݑܩሺ݌ െ ଵ݂ሻ	ሺ16ሻ 

and  

݉݅݊
௨మ

ଶሻݑଶሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଶሻ்ݑܩ െ ଶሻݑܩ ൅

1
2
ܿସݑଶ்ݑଶ ൅ ܿଶ்݁݌ ሺ ଶ݂ െ  ሺ17ሻ	ଶሻݑܩ

The solution of unconstrained in (16) and (17) can be 
sovled by computing their critical point i.e. ܮ׏ଵሺݑଵሻ ൌ 0 and 
ଶሻݑଶሺܮ׏ ൌ 0 . Next, the generalized derivative iterative 
approach and Newton iterative approach are applied to solve 
the solution directly. Before that, three popular smoothing 
functions are first introduced, each of which will be used to 
substitute into (16) and (17) in this work. The definitions of 
them are as follows: 

,ݔଵሺ݌ ଴ሻݔ ൌ
1
4
ଶݔ

|଴ݔ|
൅
1
2
ݔ ൅

1
4
 ሺ18ሻ																													଴|ݔ|

,ݔଶሺ݌ ሻߙ ൌ ݔ ൅
1
ߙ
logሺ1 ൅ ݁ିఈ௫ሻ																													ሺ19ሻ 

,ݔଷሺ݌ ሻߙ ൌ
ݔ ൅ ଶݔ√ ൅ ଶߙ4

2
																																							ሺ20ሻ 

C. Generalized Derivative Iterative Approach 

In this subsection, the generalized derivative iterative 
approach is used to solve the proposed primal unconstrained 
problems of (16) and (17). In fact, the generalized gradient of 
problems are as follows: 

ଵሻݑଵሺܮ׏	 ൌ ሺܩܦ்ܩ ൅ ܿଷܫሻݑଵ െ ܻܦ்ܩ ൅ ܿଵ݌்ܩ∗ሺݑܩଵ െ ଵ݂ሻ														 
and 

ଶሻݑଶሺܮ׏	 ൌ ሺܩܦ்ܩ ൅ ܿସܫሻݑଶ െ ܻܦ்ܩ െ ܿଶ݌்ܩ∗ሺ ଵ݂ െ  													ଶሻݑܩ

where ݌∗ሺ∙ሻ  is the sub-gradient of ݌ሺ∙ሻ . Computing 
ଵሻݑଵሺܮ׏ ൌ 0 ଶሻݑଶሺܮ׏ , ൌ 0 , defining ܳଵ ൌ ሺܩܦ்ܩ ൅ ܿଷܫሻ , 
ܳଶ ൌ ሺܩܦ்ܩ ൅ ܿସܫሻ	and denoting k as the k-th iteration, the 
following iterative scheme can be gotten: 
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ܳଵݑଵ
௞ାଵ ൌ 	ܻܦ்ܩ െ ܿଵ݌்ܩ∗ሺݑܩଵ

௞ െ ଵ݂ሻ																									ሺ21ሻ 
and 

ܳଶݑଶ
௞ାଵ ൌ ܻܦ்ܩ ൅ ܿଶ݌்ܩ∗ሺ ଶ݂ െ ଶݑܩ

௞ሻ																										ሺ22ሻ 
Next, three popular smoothing functions will be 

substituted into (21) and (22), respectively.  
The first smooth function ݌ଵሺݔ,  ଴ሻ that is differential isݔ

first considered here, where ݔ଴	is a non-zero real number. 
This function will be a better approximation of ‘plus’ 
function as long as |ݔ଴| is very close to |ݔ|. From (21) and 
(22), we can get 

ܳଵݑଵ
௞ାଵ ൌ 	ܻܦ்ܩ െ ܿଵ்ܩ ቆ

	ଵݑܩ
௞ െ ଵ݂

|଴ݔ|2
൅
݁
2
ቇ																							ሺ23ሻ 

and 

ܳଶݑଶ
௞ାଵ ൌ 	ܻܦ்ܩ ൅ ܿଶ்ܩ ቆ

ଶ݂ െ ଶݑܩ
௞

|଴ݔ|2
൅
݁
2
ቇ																							ሺ24ሻ 

Obviously, the solutions  ݑଵ	 and 	ݑଶ		depend on the choice 
of x଴, so that the vector |x଴| can be adjusted till it is close to 
หݑܩଵ

௞ െ ଵ݂ห| for (23) and close to ห ଶ݂ െ ଶݑܩ
௞ห	for (24). The 

further iterative procedures are obtained as follows: 
ଵݑ
௞ାଵ ൌ ሺܳଵ ൅

ܿଵ
2
1்݀ܩ

்ܩିଵ	ሻܩ1݌ ቀܻܦ ൅
ܿଵ
2
݀1
1݌

ଵ݂ െ
ܿଵ
2
݁ቁ											ሺ25ሻ 

and 
ଶݑ
௞ାଵ ൌ ሺܳଶ ൅

ܿଶ
2
2்݀ܩ

்ܩିଵ	ሻܩ1݌ ቀܻܦ ൅
ܿଶ
2
݀2
1݌

ଶ݂ ൅
ܿଶ
2
݁ቁ											ሺ26ሻ 

where ݀ଵ
௣భ ൌ ݀݅ܽ݃ሺหݑܩଵ

௞ െ ଵ݂ห
ିଵ
ሻ , 	݀ଶ

௣భ ൌ ݀݅ܽ݃ሺห ଶ݂ െ

ଶݑܩ
௞ห
ିଵ
ሻ to simplify our expression. 

Now let’s summarize the proposed smooth WW-ε-TSVR 
model as Algorithm 1: GWW-ε-TSVR1, where only the 
iterative algorithm for (25) is given here, and the iterative 
algorithm for (26) is similar. 

 
Algorithm 1: GWW-ε-TSVR1 
Input:  

· tol: the error tolerance for learning accuracy. 
· itmax: the maximum number of iterations. 
·	ܳଵ, ,ܩ ,ܦ ܿଵ,   ଵߝ
ଵݑ	·

௢௟ௗ ൌ ݁: initial approximation of ݑଵ. 
·	 ଵ݂ ൌ ܻ ൅ ,ଵ݁ߝ ଵݖ ൌ ܻܦ െ

௖భ
ଶ
݁ 

·	݇ ൌ 0 
Output:  

The optimal solution ݑଵ. 
Process: 

do { 

· 	݀ଵ
௣భ ൌ ݀݅ܽ݃ ቀ൫หݑܩଵ

௢௟ௗ െ ଵ݂ห ൅ ൯݁ߩ
ିଵ
ቁ, where ߩ ൐ 0  is 

a small positive number. 

· Solve ݑଵ
௡௘௪ ൌ ቀܳଵ ൅

௖భ
ଶ
ଵ்݀ܩ

௣భܩቁ
ିଵ
ଵݖሺ்ܩ ൅

௖భ
ଶ
݀ଵ
௣భ

ଵ݂ሻ

ݎݎ݁ · ൌ ଵݑ
௡௘௪ െ ଵݑ

௢௟ௗ 
ଵݑ ·

௢௟ௗ ൌ ଵݑ
௡௘௪ 

·	݇ ൌ ݇ ൅ 1 
} while (|݁ݎݎ| ൐ ݇ and ݈݋ݐ ൏  ሻݔܽ݉ݐ݅

 
The second smooth function introduced by this paper is 

,ݔଶሺ݌ ሻߙ ൌ ݔ ൅
ଵ

ఈ
ሺ1	݃݋݈ ൅  ሻሻ, where the parameterݔߙሺെ݌ݔ݁

ߙ ൐ 0 . Using the generalized derivative iterative approach, 
we can obtain 

ଵݑ
௞ାଵ ൌ ܳଵ

ିଵ்ܩ ቎ܻܦ െ
ܿଵ

1 ൅ expቀെߙሺݑܩଵ
௞ െ ଵ݂ሻቁ

቏												ሺ27ሻ 

and 

ଶݑ
௞ାଵ ൌ ܳଶ

ିଵ்ܩ ቎ܻܦ ൅
ܿଶ

1 ൅ expቀെߙሺ ଶ݂ െ ଶݑܩ
௞ሻቁ

቏												ሺ28ሻ 

The proposed smooth WW-ε-TSVR model of (27) is 
summarized Algorithm 2: GWW-ε-TSVR2 given in 
Appendix A.  

The third smooth function introduced by this paper is  

,ݔଷሺ݌ ሻߙ ൌ
௫ାඥ௫మାସఈమ

ଶ
. To simplify our expression, ݀ଵ

௣య ൌ

݀݅ܽ݃ሺ
ଵ

ඥሺீ௨భି௙భሻ.^ଶାସఈమ
ሻ, 	݀ଶ

௣య ൌ ݀݅ܽ݃ሺ
ଵ

ඥሺ௙మିீ௨మሻ.^ଶାସఈమ
ሻ , and 

its iterative formulation can be obtained as follows: 
ଵݑ
௞ାଵ ൌ ܳଵ

ିଵ்ܩ ቂܻܦ െ
ܿଵ
2
ቀ݁ ൅ ݀ଵ

௣యሺݑܩଵ
௞ െ ଵ݂ሻቁቃ														ሺ29ሻ 

and 
ଶݑ
௞ାଵ ൌ ܳଶ

ିଵ்ܩ ቂܻܦ ൅
ܿଶ
2
ቀ݁ ൅ ݀ଶ

௣యሺ ଶ݂ െ ଶݑܩ
௞ሻቁቃ													ሺ30ሻ 

The proposed smooth WW-ε-TSVR model of (29) is 
Algorithm 3: GWW-ε-TSVR3 shown in Appendix A.  

D. Newton Iterative Approach 

In this subsection, Newton iterative method, which is a 
good mathematical tool commonly used to solve extreme 
problems, is used to solve the proposed algorithm. ݌ଶሺݔ,  ሻߙ
and ݌ଷሺݔ,    .ሻ mentioned above are discussed hereߙ

For the second smooth function ݌ଶሺݔ,  ሻ, the minimizationߙ
problems (16) and (17) are modified as 

min
௨భ

ଵሻݑଵሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଵሻ்ݑܩ െ ଵሻݑܩ ൅

1
2
ܿଷݑଵ

 ଵݑ்

൅ܿଵ்݁݌ଶሺݑܩଵ െ ଵ݂,  ሺ31ሻ																																									ሻߙ
and  

min
௨మ

ଶሻݑଶሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଶሻ்ݑܩ െ ଶሻݑܩ ൅

1
2
ܿସݑଶ

 ଶݑ்

൅ܿଶ்݁݌ଶሺ ଶ݂ െ ,ଶݑܩ  ሺ32ሻ																																									ሻߙ

The gradient vector ܮ׏ଵሺݑଵሻ	and ܮ׏ଶሺݑଶሻ of the (31) and 
(32) can be obtained as  

ଵሻݑଵሺܮ׏ ൌ ܳଵݑଵ െ ்ܩ ቈܻܦ െ
ܿଵ

1 ൅ exp൫െߙሺݑܩଵ െ ଵ݂ሻ൯
቉												ሺ33ሻ 

and  

ଶሻݑଶሺܮ׏ 	ൌ ܳଶݑଶ െ ்ܩ ቈܻܦ ൅
ܿଶ

1 ൅ exp൫െߙሺ ଶ݂ െ ଶሻ൯ݑܩ
቉											ሺ34ሻ 

Defining ݀ଵ
௣మ ൌ ݀݅ܽ݃ሺሺ1 ൅ ଵݑܩሺߙሺെ݌ݔ݁ െ ଵ݂ሻሻሻିଵሻ, and 

݀ଶ
௣మ ൌ ݀݅ܽ݃ሺሺ1 ൅ ሺߙሺെ݌ݔ݁ ଶ݂ െ ,ଶሻሻሻିଵሻݑܩ   (33) and (34) 

can be modified as follows: 
ଵሻݑଵሺܮ׏	 ൌ ܳଵݑଵ െ ܻܦ்ܩ ൅ ܿଵ்݀ܩଵ

௣మ݁																							ሺ35ሻ 

and 
ଶሻݑଶሺܮ׏	 ൌ ܳଶݑଶ െ ܻܦ்ܩ െ ܿଶ்݀ܩଶ

௣మ݁																							ሺ36ሻ 

Then, ׏ଶܮଵሺݑଵሻ		and  ׏ଶܮଶሺݑଶሻ  are as follows  

ଵሻݑଵሺܮଶ׏ ൌ ܳଵ ൅ ்݃ܽ݅݀ܩଵܿߙ ൭
exp൫െߙሺݑܩଵ െ ଵ݂ሻ൯

൫1 ൅ exp൫െߙሺݑܩଵ െ ଵ݂ሻ൯൯
ଶ൱ܩ				ሺ37ሻ 

and 

ଶሻݑଶሺܮଶ׏ ൌ ܳଶ ൅ ்݃ܽ݅݀ܩଶܿߙ ൭
exp൫െߙሺ ଶ݂ െ ଶሻ൯ݑܩ

൫1 ൅ exp൫െߙሺ ଶ݂ െ ଶሻ൯൯ݑܩ
ଶ൱ܩ				ሺ38ሻ 

Let’s define 

݀ଷ
௣మ ൌ ݀݅ܽ݃ ൭

exp൫െߙሺݑܩଵ െ ଵ݂ሻ൯

൫1 ൅ exp൫െߙሺݑܩଵ െ ଵ݂ሻ൯൯
ଶ൱ 

and 

݀ସ
௣మ ൌ ݀݅ܽ݃ ൬

ሺߙሺെ	݌ݔ݁ ଶ݂ െ ଶሻሻݑܩ
ሺ1 ൅ ሺߙሺെ݌ݔ݁ ଶ݂ െ ଶሻሻሻଶݑܩ

൰ 

then (37) and (38) can be modified as 
ଵሻݑଵሺܮଶ׏ ൌ ܳଵ ൅ 3்݀ܩଵܿߙ

 ሺ39ሻ																														,	ܩ2݌

and 
ଶሻݑଶሺܮଶ׏ ൌ ܳଶ ൅ 4்݀ܩଶܿߙ

 ሺ40ሻ																													.	ܩ2݌
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Next, Newton method can be applied to solve (31) and (32) 
by combining (33) to (40). This algorithm is termed as 
Algorithm 4: NWW-ε-TSVR2 in Appendix A, and its 
iterative procedure is as follows: 
ሺܳଵ ൅ ଷ்݀ܩଵܿߙ

௣మܩሻሺݑଵ
௞ାଵ െ ଵݑ

௞ሻ ൌ െ൫ܳଵݑଵ െ ܻܦ்ܩ ൅ ܿଵ்݀ܩଵ
௣మ݁൯			ሺ41ሻ 

and 
ሺܳଶ ൅ ସ்݀ܩଶܿߙ

௣మܩሻሺݑଶ
௞ାଵ െ ଶݑ

௞ሻ ൌ െ൫ܳଶݑଶ െ ܻܦ்ܩ െ ܿଶ்݀ܩଶ
௣మ݁൯			ሺ42ሻ 

For the third smooth function  ݌ଷሺݔ, ሻߙ ൌ
௫ାඥ௫మାସఈమ

ଶ
, the 

minimization problems (16) and (17) are modified as 

min
௨భ

ଵሻݑଵሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଵሻ்ݑܩ െ ଵሻݑܩ ൅

1
2
ܿଷݑଵ

 ଵݑ்

൅ܿଵ்݁݌ଷሺݑܩଵ െ ଵ݂,  ሺ43ሻ																																								ሻߙ
and  

min
௨మ

ଶሻݑଶሺܮ	 ൌ
1
2
ሺܻ െ ሺܻܦଶሻ்ݑܩ െ ଶሻݑܩ ൅

1
2
ܿସݑଶ

 ଶݑ்

൅ܿଶ்݁݌ସሺ ଶ݂ െ ,ଶݑܩ  ሺ44ሻ																																								ሻߙ

So the gradient vector ܮ׏ଵሺݑଵሻ	 and  ܮ׏ଶሺݑଶሻ		 can be 
obtained for the (43) and (44) as 

ଵሻݑଵሺܮ׏ ൌ ܳଵݑଵ െ ܻܦ்ܩ ൅
1
2
ܿଵ்ܩሺ݁ ൅ ݀ଵ

௣యሺݑܩଵ െ ଵ݂ሻሻ									ሺ45ሻ 

and 

ଶሻݑଶሺܮ׏	 ൌ ܳଶݑଶ െ ܻܦ்ܩ െ
1
2
ܿଶ்ܩሺ݁ ൅ ݀ଶ

௣యሺ ଶ݂ െ  ሺ46ሻ								ଶሻሻݑܩ

where the definition of ݀ଵ
௣య	and	݀ଶ

௣య  is the same as the 
Algorithm 3, then we get 

ଵሻݑଵሺܮଶ׏ ൌ ܳଵ ൅ 3்݀ܩଶܿଵߙ2
 ሺ47ሻ																															ܩ3݌

and 
ଶሻݑଶሺܮଶ׏ ൌ ܳଶ ൅ 4்݀ܩଶܿଶߙ2

 ሺ48ሻ																															ܩ3݌

where 

݀ଷ
௣య ൌ ݀݅ܽ݃ሺ

1

ሺඥሺݑܩଵ െ ଵ݂ሻ.ଶ൅ ሻଷߙ4
ሻ 

and 

݀ସ
௣య ൌ ݀݅ܽ݃ሺ

1

ሺඥሺ ଶ݂ െ ଶሻ.ଶ൅ݑܩ ሻଷߙ4
ሻ 

Combining (45)  with (48), we have 
ሺܳଵ ൅ ଷ்݀ܩଶܿଵߙ2

௣యܩሻሺݑଵ
௞ାଵ െ ଵݑ

௞ሻ ൌ 

െሺܳଵݑଵ െ ܻܦ்ܩ ൅
1
2
ܿଵ்ܩሺ݁ ൅ ݀ଵ

௣యሺݑܩଵ െ ଵ݂ሻሻሻ									ሺ49ሻ 

and 
ሺܳଶ ൅ ସ்݀ܩଶܿߙ2

௣యܩሻሺݑଶ
௞ାଵ െ ଶݑ

௞ሻ ൌ 

െሺܳଶݑଶ െ ܻܦ்ܩ െ
1
2
ܿଶ்ܩሺ݁ ൅ ݀ଶ

௣యሺ ଶ݂ െ  ሺ50ሻ									ଶሻሻሻݑܩ

This algorithm is summarized as Algorithm 5: NWW-ε- 
TSVR3 given in Appendix A. 

IV. EXPERIMENTAL RESULTS 

To demonstrate the performance of the proposed 
WW-ε-TSVR, we compare it with the popular TSVR and 
ε-TSVR in several datasets, including 5 types of artificial 
datasets and 5 benchmark datasets [31]. All computations are 
carried out on Windows 7 OS Intel Core i5-4210U CPU 
(2.4GHz) with 4GB RAM and MATLAB R2014a 
environment. In order to decrease the computational 
complexity in parameter selection, let ܿଵ=ܿଶ , ܿଷ=ܿସ,	and 
ଵߝ ൌ ଶߝ . Gaussian kernel function defined by 	݇ሺܽ, ܾሻ ൌ

ሺെ	݌ݔ݁
‖௔ି௕‖మ

ఘ
) is used to deal with nonlinear situations, 

where the vectors ܽ, ܾ ∈ ܴ௡ , and the parameter ߩ ൐ 0 . 
3-level discrete wavelet transform (DWT), and db2 wavelet  
are choose for the wavelet transform algorithm of all the 
following experiments. 

Some commonly used evaluation criterions [8] as shown in 
Table I are introduced before evaluating the performances of 

these methods. Without loss generality, let ݉ be the number 
of test samples, ݕ௜ be the real-value of sample ݔ௜, ݕො௜	be the 
prediction of  ݕ௜ , and തݕ	 ൌ ሺ∑ ௜௜ݕ ሻ/݉  be the mean of 
,ଵݕ	 ⋯,ଶݕ ,  ,௠. SSE represents the fitting precision, namelyݕ
the smaller is SSE, the fitter the estimation is, and small 
SSE/SST means good agreement between estimations and 
real-values, while the smaller SSE/SST is usually 
accompanied by an increase of SSR/SST [8]. 

TABLE  I 
PERFORMANCE METRICS AND THEIR CALCULATION 

Metric Calculation 

SSE ∑ ሺݕ௜ െ ො௜ሻଶݕ
௠
௜ୀଵ   

SSR ∑ ሺݕො௜ െ തሻଶ௠ݕ
௜ୀଵ   

SST ∑ ሺݕ௜ െ തሻଶ௠ݕ
௜ୀଵ   

SSE/SST ∑ ሺݕ௜ െ ො௜ሻଶݕ
௠
௜ୀଵ ∑ ሺݕ௜ െ തሻଶ௠ݕ

௜ୀଵ⁄   

SSR/SST ∑ ሺݕො௜ െ തሻଶ௠ݕ
௜ୀଵ ∑ ሺݕ௜ െ തሻଶ௠ݕ

௜ୀଵ⁄   

A. Artificial Datasets 

To test the regression performance of our proposed 
WW-ε-TSVR, five functions shown in Table II are used to 
generate all artificial datasets. The training data’s observed 
values are polluted by the form ݕ ൌ ݂ሺݔሻ ൅  ݎݎ݁ where ,ݎݎ݁
is an additive noise by adding ܷሾܽ, ܾሿ or ܰሺߤ, ,ଶሻ. ܷሾܽߪ ܾሿ 
represents the uniformly random variable in ሾܽ, ܾሿ  and 
ܰሺߤ, ଶሻߪ  represents the Gaussian random variable with 
means ߤ  and variance ߪଶ , respectively. To avoid biased 
comparisons, twenty independent groups of noisy samples 
for each kind of noise are generated randomly by Matlab 
toolbox, each of which includes 260 samples for training and 
500 samples for testing for each function. Besides, testing 
data points are uniformly sampled from the objective 
function without any noise. 

TABLE  II 
 FUNCTIONS DEFINITION USED FOR GENERATING ARTIFICIAL DATASETS 

Name Function definition Domain of definition

ଵ݂ሺݔሻ  ݊݅ݏሺݔሻ ⁄ݔ ݔ  ∈ ሾെ4ߨ,  ሿߨ4

ଶ݂ሺݔሻ ቚݔ
ଶ
ଷൗ ቚ  ݔ ∈ ሾെ2,1ሿ 

ଷ݂ሺݔሻ 0.2݅ݏ ݊ሺ2ݔߨሻ ൅ ଶݔ0.2 ൅ ݔ 0.3 ∈ ሾ0,2ሿ 

ସ݂ሺݔሻ 
4

|ݔ| ൅ 2
൅ cosሺ2ݔሻ ൅ sin	ሺ3ݔሻ ݔ ∈ ሾെ10,10ሿ 

ହ݂ሺݔሻ 
1.9[1.35+݁௫భsinሺ13ሺݔଵ െ 0.6ሻଶ) 
+ ݁ଷ௫మିଵ.ହsinሺ4ߨሺݔଶ െ 0.9ሻଶ)] 

ଵݔ ∈ ሾ0, 1ሿ,          
ଶݔ ∈ ሾ0, 1ሿ 

 
For simplicity and clarity, one run results of ε-TSVR and 

NWW-ε-TSVR2 on ଵ݂ሺݔሻ  to ସ݂ሺݔሻ  with ܰሺ0, 0.1ଶሻ are 
shown in Fig. 1,  and their SSE values are 0.4504 and 0.4100 
for ଵ݂ሺݔሻ, 0.9813 and 0.8127 for ଶ݂ሺݔሻ, 0.3464 and 0.0435 
for ଷ݂ሺݔሻ and 0.8765 and 0.7829 for ସ݂ሺݔሻ, respectively. It 
can be observed that our proposed algorithm has better 
approximates than  ε-TSVR. Table III shows the performance 
comparisons of our proposed GWW-ε-TSVR1, 
GWW-ε-TSVR2, GWW-ε-TSVR3, NWW-ε-TSVR2 and 
NWW-ε-TSVR3 with TSVR and ε-TSVR on artificial 
datasets for uniformly distributed noise over the interval [-0.2, 
0.2] with Gaussian kernel. Table IV shows the performance 
comparisons of our proposed methods for Gaussian noise 
with mean zero and standard deviation 0.1. It can be seen that 
our proposed five algorithms have similar generalization 
performance, but they all have better approximates than 
TSVR and ε-TSVR. Besides, Table III and Table IV also 
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NWW-ε-TSVR1 0.1710 ± 0.0664 0.0066 ± 0.0026 0.9936 ± 0.0377 0.04 

NWW-ε-TSVR2 0.1646 ± 0.0722 0.0064 ± 0.0028 0.9951 ± 0.0328 0.06 

ସ݂ሺxሻ 

TSVR 1.0306 ± 0.2667 0.0018 ± 0.0005 1.0006 ± 0.0172 0.23 

ε-TSVR 0.9282 ± 0.1762 0.0016 ± 0.0003 0.9966 ± 0.0147 0.24 

GWW-ε-TSVR1 0.7722 ± 0.0863 0.0013 ± 0.0001 0.9968 ± 0.0114 0.11 

GWW-ε-TSVR2 0.8535 ± 0.0997 0.0015 ± 0.0002 0.9955 ± 0.0129 0.02 

GWW-ε-TSVR3 0.7865 ± 0.0938 0.0013 ± 0.0002 0.9965 ± 0.0120 0.04 

NWW-ε-TSVR1 0.8535 ± 0.0997 0.0015 ± 0.0002 0.9955 ± 0.0129 0.04 

NWW-ε-TSVR2 0.7857 ± 0.0900 0.0013 ± 0.0002 0.9964 ± 0.0119 0.08 

ହ݂ሺxሻ 

TSVR 0.7041 ± 0.1352 0.0006 ± 0.0001 1.0000 ± 0.0102 0.24 

ε-TSVR 0.6288 ± 0.1222 0.0005 ± 0.0001 0.9997 ± 0.0092 0.24 

GWW-ε-TSVR1 0.5677 ± 0.1021 0.0005 ± 0.0001 1.0027 ± 0.0064 0.10 

GWW-ε-TSVR2 0.5748 ± 0.1058 0.0005 ± 0.0001 1.0026 ± 0.0062 0.02 

GWW-ε-TSVR3 0.5468 ± 0.1015 0.0005 ± 0.0001 1.0026 ± 0.0063 0.03 

NWW-ε-TSVR1 0.5748 ± 0.1058 0.0005 ± 0.0001 1.0026 ± 0.0062 0.04 

NWW-ε-TSVR2 0.5467 ± 0.1016 0.0005 ± 0.0001 1.0026 ± 0.0063 0.07 

 
TABLE  IV 

PERFORMANCE COMPARISON ON ARTIFICIAL DATASETS FOR N[0, 0.12] 
Dataset Regressor SSE SSE/SST SSR/SST CPU sec.

ଵ݂ሺxሻ 

TSVR 0.2825 ± 0.1060 0.0053 ± 0.0020 1.0107 ± 0.0390 0.23 

ε-TSVR 0.2383 ± 0.0952 0.0044 ± 0.0018 1.0089 ± 0.0411 0.22 

GWW-ε-TSVR1 0.2243 ± 0.1102 0.0042 ± 0.0020 0.9914 ± 0.0264 0.06 

GWW-ε-TSVR2 0.2174 ± 0.1027 0.0040 ± 0.0019 0.9879 ± 0.0211 0.02 

GWW-ε-TSVR3 0.2314 ± 0.0828 0.0043 ± 0.0015 0.9883 ± 0.0212 0.02 

NWW-ε-TSVR1 0.2175 ± 0.1029 0.0040 ± 0.0019 0.9879 ± 0.0211 0.03 

NWW-ε-TSVR2 0.2174 ± 0.0979 0.0040 ± 0.0018 0.9880 ± 0.0215 0.04 

ଶ݂ሺxሻ 

TSVR 0.9222 ± 0.0812 0.0115 ± 0.0009 0.9864 ± 0.0297 0.21 

ε-TSVR 0.8814 ± 0.0604 0.0102 ± 0.0007 0.9930 ± 0.0299 0.22 

GWW-ε-TSVR1 0.8274 ± 0.0584 0.0096 ± 0.0007 0.9846 ± 0.0234 0.09 

GWW-ε-TSVR2 0.8253 ± 0.0524 0.0095 ± 0.0006 0.9839 ± 0.0249 0.02 

GWW-ε-TSVR3 0.8649 ± 0.0717 0.0100 ± 0.0008 0.9844 ± 0.0245 0.02 

NWW-ε-TSVR1 0.8251 ± 0.0522 0.0095 ± 0.0006 0.9839 ± 0.0249 0.03 

NWW-ε-TSVR2 0.8269 ± 0.0548 0.0095 ± 0.0006 0.9850 ± 0.0250 0.04 

ଷ݂ሺxሻ 

TSVR 0.2000 ± 0.0464 0.0077 ± 0.0018 0.9916 ± 0.0475 0.23 

ε-TSVR 0.1830 ± 0.0440 0.0071 ± 0.0017 0.9907 ± 0.0570 0.23 

GWW-ε-TSVR1 0.1263 ± 0.0487 0.0049 ± 0.0019 1.0046 ± 0.0521 0.10 

GWW-ε-TSVR2 0.1221 ± 0.0492 0.0047 ± 0.0019 1.0047 ± 0.0489 0.02 

GWW-ε-TSVR3 0.1201 ± 0.0477 0.0046 ± 0.0018 1.0045 ± 0.0513 0.02 

NWW-ε-TSVR1 0.1221 ± 0.0492 0.0047 ± 0.0019 1.0047 ± 0.0489 0.04 

NWW-ε-TSVR2 0.1217 ± 0.0462 0.0047 ± 0.0018 1.0057 ± 0.0510 0.06 

ସ݂ሺxሻ 

TSVR 0.8332 ± 0.1269 0.0014 ± 0.0002 1.0046 ± 0.0111 0.21 

ε-TSVR 0.8148 ± 0.1311 0.0014 ± 0.0002 1.0011 ± 0.0122 0.23 

GWW-ε-TSVR1 0.7778 ± 0.1462 0.0013 ± 0.0003 1.0020 ± 0.0100 0.09 

GWW-ε-TSVR2 0.7811 ± 0.1427 0.0013 ± 0.0002 1.0006 ± 0.0095 0.02 

GWW-ε-TSVR3 0.7732 ± 0.1384 0.0013 ± 0.0002 1.0018 ± 0.0098 0.03 

NWW-ε-TSVR1 0.7811 ± 0.1427 0.0013 ± 0.0002 1.0006 ± 0.0095 0.03 

NWW-ε-TSVR2 0.7753 ± 0.1395 0.0013 ± 0.0002 1.0018 ± 0.0097 0.07 

ହ݂ሺxሻ 

TSVR 0.4367 ± 0.1106 0.0003 ± 0.0001 0.9990 ± 0.0079 0.22 

ε-TSVR 0.4117 ± 0.0929 0.0003 ± 0.0001 0.9997 ± 0.0085 0.22 

GWW-ε-TSVR1 0.3778 ± 0.0591 0.0003 ± 0.0000 1.0007 ± 0.0063 0.09 

GWW-ε-TSVR2 0.3835 ± 0.0673 0.0003 ± 0.0001 1.0006 ± 0.0064 0.02 

GWW-ε-TSVR3 0.3768 ± 0.0647 0.0003 ± 0.0001 1.0006 ± 0.0063 0.03 

NWW-ε-TSVR1 0.3835 ± 0.0673 0.0003 ± 0.0001 1.0006 ± 0.0064 0.04 

NWW-ε-TSVR2 0.3768 ± 0.0637 0.0003 ± 0.0001 1.0006 ± 0.0063 0.07 

 

B. Real Work Benchmark Datasets 

For further evaluation, two time series UCI datasets and 
five non-time series UCI datasets, which are all commonly 
used in testing machine learning algorithms, are tested. Being 
PM2.5 Data Dataset is a kind of time series dataset, in which 
the hourly data set contains the PM2.5 data of US Embassy in 
Beijing, meanwhile, meteorological data from Beijing 
Capital International Airport are also included. The number 
of attributes is seven including dew point, temperature, 
pressure, combined wind direction, cumulated wind speed 

(m/s), cumulated hours of snow and cumulated hours of rain. 
The time period of this dataset is from Jan. 1st, 2010 to Dec 
31st, 2014. To test the proposed algorithm, three groups of 
data were selected from Being PM2.5 Data Dataset. Each 
group has 2,000 data from about 84 days in different years 
(from 2011 to 2014). Istanbul stock exchange dataset is 
another time series UCI datasets, which includes returns of 
Istanbul stock exchange with seven other international 
indexes from Jun. 5, 2009 to Feb. 22, 2011. Note that cross 
validation experiments cannot be adopted in time series, 
otherwise the feature of time series will be destroyed. 
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Therefore, the odd number examples are selected for training, 
and the even number examples are selected for testing. As for 
non-time series UCI datasets, five UCI datasets: Servo, 
Wisconsin breast cancer datasets, Auto-Mpg, Concrete 
compressive strength and Combined cycle power plant are 
tested. Due to the large number of samples in combined cycle 
power plant dataset, 1 sample out of every 12 is taken. A 
more detailed description of these non-time series UCI 
datasets is shown in Table V. To avoid biased comparisons, 
the optimal values are computed by using standard ten-fold 
cross-validation on the training data. It’s important to note 
that these datasets are not time-sequence, so D ≡ I. The 
performance of time series datasets and non-time series 
datasets listed in Table VI and Table VII respectively show 
the superiority of the proposed algorithms based on 
generalized derivative iterative approach and Newton 
iterative approach. In Table VI, our proposed five iterative 
WW-ε-TSVR algorithms all derive the smallest SSE and 

SSE/SST among the popular TSVR and ε-TSVR because of 
introducing the wavelet transform based weight ܦ . It has 
been seen that in Table VII our WW-ε-TSVR gives the better 
performance than TSVR, the similar performance to ε-TSVR 
because both our method and the ε-TSVR all consider 
minimizing structural risks. As for the computation time, it is 
obviously that our method needs less CPU time than others, 
indicating that our proposed iterative methods are the 
efficient algorithm for regression. 

TABLE V 
 THE  DESCRIPTION FOR UCI DATASETS 

Datasets No. of samples No. of features 

Servo 167 1 

Wisconsin B.C. 194 32 

Auto-Mpg 398 7 

Concrete CS 1030 8 

CombinedCPP 798 4 

 
TABLE  VI 

PERFORMANCE COMPARISON ON TIME SERIES UCI DATASETS 
Dataset Regressor SSE SSE/SST SSR/SST CPU sec.

Beijing 
PM2.5 
(2011) 

TSVR 7.2172 0.4365 0.9117 0.66 
ε-TSVR 6.7495 0.4083 0.8459 0.69 

GWW-ε-TSVR1 6.6496 0.3983 0.8659 0.44 
GWW-ε-TSVR2 6.6592 0.3988 0.8664 0.30 
GWW-ε-TSVR3 6.6499 0.3983 0.8656 0.11 
NWW-ε-TSVR1 6.6592 0.3988 0.8664 0.20 
NWW-ε-TSVR2 6.6504 0.3983 0.8660 0.64 

Beijing 
PM2.5 
(2012) 

TSVR 7.8362 0.4151 0.8084 0.60 
ε-TSVR 7.5562 0.4003 0.7428 0.57 

GWW-ε-TSVR1 7.4564 0.3923 0.7628 0.37 
GWW-ε-TSVR2 7.4569 0.3923 0.7622 0.07 
GWW-ε-TSVR3 7.4565 0.3923 0.7626 0.10 
NWW-ε-TSVR1 7.4569 0.3923 0.7622 0.20 
NWW-ε-TSVR2 7.4564 0.3923 0.7628 0.22 

Beijing 
PM2.5 
(2013) 

TSVR 24.7274 0.3797 0.7595 0.71 
ε-TSVR 24.1335 0.3706 0.7117 0.64 

GWW-ε-TSVR1 24.0334 0.3626 0.7217 0.30 
GWW-ε-TSVR2 24.0457 0.3628 0.7220 0.07 
GWW-ε-TSVR3 24.0321 0.3626 0.7216 0.10 
NWW-ε-TSVR1 24.0457 0.3628 0.7220 0.18 
NWW-ε-TSVR2 24.0323 0.3626 0.7217 0.23 

Beijing 
PM2.5 
(2014) 

TSVR 24.6978 0.5347 0.7271 0.59 
ε-TSVR 23.3219 0.5049 0.6645 0.53 

GWW-ε-TSVR1 23.2226 0.4949 0.6845 0.32 
GWW-ε-TSVR2 23.2614 0.4957 0.6857 0.25 
GWW-ε-TSVR3 23.2232 0.4949 0.6844 0.16 
NWW-ε-TSVR1 23.2614 0.4957 0.6857 0.20 
NWW-ε-TSVR2 23.2236 0.4949 0.6845 0.24 

Istanbul 
Stock 

Exchange 

TSVR 9.4095 0.7771 0.7113 0.19 
ε-TSVR 8.5706 0.7079 0.6400 0.16 

GWW-ε-TSVR1 8.4709 0.6979 0.6600 0.06 
GWW-ε-TSVR2 8.4618 0.6971 0.6582 0.01 
GWW-ε-TSVR3 8.4728 0.6980 0.6602 0.02 
NWW-ε-TSVR1 8.4618 0.6971 0.6582 0.03 
NWW-ε-TSVR2 8.4714 0.6979 0.6601 0.04 

 
TABLE  VII 

PERFORMANCE COMPARISON ON NON-TIME SERIES UCI DATASETS 
Dataset Regressor SSE/SST SSR/SST CPU sec. 

Servo 

TSVR 0.1778 ± 0.1069 1.0310 ± 0.3332 0.09 

ε-TSVR 0.1722 ± 0.0914 0.9987 ± 0.3160 0.09 

GWW-ε-TSVR1 0.1722 ± 0.0914 0.9987 ± 0.3161 0.02 

GWW-ε-TSVR2 0.1723 ± 0.0914 0.9988 ± 0.3162 0.01 

GWW-ε-TSVR3 0.1722 ± 0.0914 0.9987 ± 0.3160 0.01 

NWW-ε-TSVR1 0.1723 ± 0.0914 0.9988 ± 0.3162 0.01 

NWW-ε-TSVR2 0.1722 ± 0.0914 0.9987 ± 0.3161 0.02 

Wisconsin B.C. 
TSVR 1.0208 ± 0.3496 0.4764 ± 0.3204 0.07 

ε-TSVR 0.9634 ± 0.2953 0.4217 ± 0.2731 0.07 

GWW-ε-TSVR1 0.9634 ± 0.2953 0.4217 ± 0.2731 0.02 
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GWW-ε-TSVR2 0.9631 ± 0.2948 0.4209 ± 0.2725 0.01 

GWW-ε-TSVR3 0.9634 ± 0.2953 0.4217 ± 0.2731 0.01 

NWW-ε-TSVR1 0.9631 ± 0.2948 0.4209 ± 0.2725 0.01 

NWW-ε-TSVR2 0.9634 ± 0.2953 0.4217 ± 0.2731 0.01 

Auto-Mpg 

TSVR 0.2640 ± 0.0813 0.8471 ± 0.1540 0.43 

ε-TSVR 0.2490 ± 0.0551 0.8370 ± 0.1473 0.41 

GWW-ε-TSVR1 0.2490 ± 0.0551 0.8370 ± 0.1473 0.14 

GWW-ε-TSVR2 0.2491 ± 0.0551 0.8370 ± 0.1474 0.04 

GWW-ε-TSVR3 0.2490 ± 0.0551 0.8369 ± 0.1472 0.05 

NWW-ε-TSVR1 0.2491 ± 0.0551 0.8370 ± 0.1474 0.08 

NWW-ε-TSVR2 0.2490 ± 0.0551 0.8370 ± 0.1472 0.10 

Concrete CS 

TSVR 0.1362 ± 0.0342 0.9280 ± 0.0742 3.26 

ε-TSVR 0.1393 ± 0.0313 0.9081 ± 0.0748 3.18 

GWW-ε-TSVR1 0.1393 ± 0.0313 0.9081 ± 0.0748 1.93 

GWW-ε-TSVR2 0.1394 ± 0.0313 0.9080 ± 0.0748 0.40 

GWW-ε-TSVR3 0.1393 ± 0.0313 0.9081 ± 0.0748 0.55 

NWW-ε-TSVR1 0.1394 ± 0.0313 0.9080 ± 0.0748 1.05 

NWW-ε-TSVR2 0.1393 ± 0.0313 0.9081 ± 0.0748 1.32 

CombinedCPP 

TSVR 0.0712 ± 0.0166 0.9484 ± 0.0489 1.25 

ε-TSVR 0.0668 ± 0.0143 0.9417 ± 0.0493 1.46 

GWW-ε-TSVR1 0.0668 ± 0.0143 0.9417 ± 0.0493 0.76 

GWW-ε-TSVR2 0.0667 ± 0.0143 0.9413 ± 0.0493 0.17 

GWW-ε-TSVR3 0.0668 ± 0.0143 0.9417 ± 0.0493 0.24 

NWW-ε-TSVR1 0.0667 ± 0.0143 0.9413 ± 0.0493 0.43 

NWW-ε-TSVR2 0.0668 ± 0.0143 0.9417 ± 0.0493 0.55 

 

V. CONCLUSION 

In this paper, an improved wavelet transform based 
weighted ε-TSVR formulation (WW-ε-TSVR) in primal 
space for the regression of time series is proposed, where the 
wavelet weight matrix is introduced to give different 
penalties for the samples located in different places. 
Although the proposed algorithm is based on ε-TSVR, unlike 
ε-TSVR, it not only adds a weighted matrix D into QPPs, but 
also introduces a ‘plus’ function to convert the algorithm into 
a pair of unconstrained minimization problems. To further 
solve these unconstrained minimization problems in primal 
space, generalized derivative iterative approach and Newton 
iterative approach depending on differential smooth 
functions are proposed. Unlike solving the quadratic 
programming problem by using external optimization 
toolbox, five iterative algorithms including GWW-ε-TSVR1, 
GWW-ε-TSVR2, GWW-ε-TSVR3, NWW-ε-TSVR2 and 
NWW-ε-TSVR3 can be easily coded in MATLAB. The 
experimental results on several artificial and UCI datasets 
show that our proposed method gives similar or better 
generalization performance with TSVR and ε-TSVR, but 
what is important is that it has greatly reduced the 
computation time. Moreover, how to select the optimal 
hyperparameters is a difficult problem and should be 
addressed in the future. 

APPENDIX A 

 
Algorithm 2: GWW-ε-TSVR2 
Input:  

· tol: the error tolerance for learning accuracy. 
· itmax: the maximum number of iterations. 
·	ܳଵ, ,ܩ ,ܦ ܿଵ, ,ଵߝ   ߙ
ଵݑ	·

௢௟ௗ ൌ ݁: initial approximation of ݑଵ. 
·	 ଵ݂ ൌ ܻ ൅ ,ଵ݁ߝ ଵݎ ൌ ܳଵିଵ்ܩ 
·	݇ ൌ 0 

Output:  
The optimal solution ݑଵ. 

Process: 
do { 
·	݀ଵ

௣మ ൌ ݀݅ܽ݃ሺሺ1 ൅ exp	ሺെߙሺݑܩଵ
௢௟ௗ െ ଵ݂ሻሻሻିଵሻ 

· Solve ݑଵ
௡௘௪ ൌ ܻܦଵሺݎ െ ܿଵ݀ଵ

௣మ݁ሻ 
ݎݎ݁ · ൌ ଵݑ

௡௘௪ െ ଵݑ
௢௟ௗ 

ଵݑ ·
௢௟ௗ ൌ ଵݑ

௡௘௪ 
· ݇ ൌ ݇ ൅ 1 
} while (|݁ݎݎ| ൐ ݇ and ݈݋ݐ ൏  ሻݔܽ݉ݐ݅

 
Algorithm 3: GWW-ε-TSVR3 
Input:  

· tol: the error tolerance for learning accuracy. 
· itmax: the maximum number of iterations. 
·	ܳଵ, ,ܩ ,ܦ ܿଵ, ,ଵߝ   ߙ
ଵݑ	·

௢௟ௗ ൌ ݁: initial approximation of ݑଵ. 
· ଵ݂ ൌ ܻ ൅ ,ଵ݁ߝ ଵݎ ൌ ܳଵିଵ்ܩ, ଵݖ ൌ ܻܦ െ

௖భ
ଶ
݁ 

· ݇ ൌ 0 
Output:  

The optimal solution ݑଵ. 
Process: 

do { 

·	݀ଵ
௣య ൌ ݀݅ܽ݃ሺሺሺݑܩଵ

௢௟ௗ െ ଵ݂ሻ. ^2 ൅ ଶሻିߙ4
భ
మ	ሻ		 

· Solve ݑଵ
௡௘௪ ൌ ଵݖଵሾݎ െ

ଵ

ଶ
ܿଵ݀ଵ

௣యሺݑܩଵ
௢௟ௗ െ ଵ݂ሻሿ 

ݎݎ݁ · ൌ ଵݑ
௡௘௪ െ ଵݑ

௢௟ௗ 
ଵݑ ·

௢௟ௗ ൌ ଵݑ
௡௘௪ 

· ݇ ൌ ݇ ൅ 1 
} while (|݁ݎݎ| ൐ ݇ and ݈݋ݐ ൏  ሻݔܽ݉ݐ݅

 
Algorithm 4: NWW-ε-TSVR2 
Input:  

. tol: the error tolerance for learning accuracy. 
· itmax: the maximum number of iterations. 
· ܳଵ, ,ܩ ,ܦ ܿଵ, ,ଵߝ   ߙ
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