

Abstract— Design pattern is a set of solutions that is used to

solve software development common problems. The purpose of

design pattern utilization is to improve software quality.

Various design patterns have been proposed. One of them is

Patterns of Enterprise Application Architecture (PoEAA)

which are specified for enterprise application. However, there

are lacks of literature that discuss these patterns. This research

conducts a quantitative study to assess the impact of design

pattern on software maintainability. We use Academic

Information System of Institut Teknologi Sepuluh Nopember as

a case study. It is an enterprise software which has Anemic

Domain Model. We perform refactoring into the existing

systems using suitable PoEAA. We measure its maintainability

using C&K and three additional metrics, prior and after the

refactoring process. The measurement results are then

evaluated to obtain the impact. Based on the experiments, we

clearly observe that PoEAA utilization could significantly

restructure the anemic domain model of AIS. The

maintainability is increased especially in presentation layer.

PoEAA also eliminates duplicated methods in service and

repository layer of the existing version of AIS. However, there

are several drawbacks of the improvements.

Index Terms— academic information system, design

patterns, maintainability, software evolution, software metrics.

I. INTRODUCTION

esign pattern is used to improve software quality. The

most famous and well developed software design

patterns are Gang of Four (GoF) design patterns: Gamma,

Helms, Johnson, and Vlissides [1]. Research of software

design patterns in various fields is still conducted until

nowadays. There are several design patterns that have been

proposed, i.e., GoF 1994, Buschmann 1996, Sinha 1996,

Fowler 2002, Serial 2011, and so on [2]. Design pattern

consists of a set of solution which is used to solve software

development common problems. Thus, it shortens software

Manuscript received April 13, 2018; revised March 23, 2019. This work

was supported by The Directorate of Research and Community Service,

Ministry of Research and Higher Education of Indonesia (DRPM –

RISTEKDIKTI Indonesia) under the Contract Number:

86/Addendum/ITS/2017.

Siti Rochimah and Rizky J. Akbar are with the Department of

Informatics, Institut Teknologi Sepuluh Nopember, Surabaya Indonesia,

email: siti@if.its.ac.id, rizky@if.its.ac.id.

I Made B. Gautama is with the Department of Informatics, STIKOM

Bali, Indonesia, email: bhaskaragautama@gmail.com.

development, reduces costs, and improves the software

quality [3],[4]. Usually, design pattern cannot be used

directly into the source code because it takes the form of a

description or template. It is used to guide the software

development to produce a more reusable code.

This research uses Academic Information System (AIS) as

a case study. It is an AIS of Institut Teknologi Sepuluh

Nopember (ITS). It is an enterprise system that is operated

to ease long-term student academic administration. AIS is

often maintained due to changes in standard operating

procedure, as well as features addition or alteration.

Maintenance process is difficult because one change in

certain code affects other codes in several places. Doing this

process repetitively may increase structure complexity of the

software. Thus, the future maintenance process will be much

more difficult and likely impossible to do. High coupling

value causes this problem occurs. It indicates that the

software has low modularity. Thus, it affects maintainability

as well.

Refactoring is a technique to handle this problem. It

changes the internal structure without affects the external

function [5]. This research involves the application of design

patterns to lead the software refactoring. We use enterprise

software design patterns by Fowler [6]. The main reason of

utilizing those patterns is because AIS involves persistent

data. Applying design patterns aim to improve the software

maintainability.

 The AIS that is used in this research is the AIS that has

been replicated into an experimental environment. This

original AIS was first built without considering certain

design patterns. It was done without using any standards

and not all of the AIS is well managed [7]. Based on the

result of the previous research [8], AIS needs to be evolved.

AIS structure becomes more complex along with how often

the maintenance is conducted. It is one of the challenges in

software evolution which is called software erosion [9].

Thus, it needs a re-engineering to fix the problem. The

reengineering process utilizes design patterns to improve the

software maintainability. There are so many literature that

discusses design pattern, which may be used for references.

However, the impact of design patterns on software quality

attributes are still controversial [3],[10]. There are also lacks

of literature that studied enterprise design patterns

specifically. Hence, we conduct a quantitative research to

study the impact of enterprise design patterns on software

maintainability. We measure the software maintainability

using software quality metrics [5],[11]. We also investigate

Refactoring the Anemic Domain Model using

Pattern of Enterprise Application Architecture

and its Impact on Maintainability: A Case Study

Siti Rochimah, Member, IAENG, I Made B. Gautama, Rizky J. Akbar, Member, IAENG

D

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

mailto:siti@if.its.ac.id
mailto:rizky@if.its.ac.id
mailto:bhaskaragautama@gmail.com

the duplicated code which is an impact of Anemic Domain

Model of AIS. The purpose of this research is to produce

scientific evidence in which design patterns may improve the

software maintainability. The result of this study is expected

to help developer in determining appropriate patterns when

conducting reengineering on AIS.

II. BACKGROUND

A. Patterns of Enterprise Application Architecture

There is no big difference between GoF and enterprise

design pattern in definition and purpose. The difference lies

in which type of software it is suitable for use. There are also

distinct kinds of enterprise software. Thus, enterprise design

pattern offers multiple solutions instead of only one. All of

the patterns are about choices and alternatives [6].

According to Fowler, there are several factors that

indicate a software is an enterprise software.

 (1) Persistent data. In general, enterprise application

usually involves persistent data which are needed to be

around among multiple runs of the program and persist for

several years. Many changes may occur on this data along

with the use of the program. Structural changes may occur

to store new pieces of information without disturbing the old

data. The data will still persist even if the company decides

to use new software to manage their data.

 (2) Organize a lot of data. Enterprise software usually

uses large size of database, mostly relational database.

Moderate system has at least over 1 GB of data in ten

millions of records [6].

 (3) Many people access data concurrently. Enterprise

software usually used by many people, at least less than a

hundred. However, the number of people may increase

significantly on web-based software that communicates over

the internet.

 (4) A lot of user interfaces screen. Because of huge data

to work with, there is usually a lot of user interfaces screen

to handle the data. With many people access the data, they

need to be presented in many ways for many different

purposes.

 (5) Integrated with other enterprise software. Enterprise

application is usually integrated with other enterprise

applications to perform the job. They may be considered as

a different system although they are able to communicate

with common communication technology.

 (6) Differences in business process and conceptual

dissonance with the data. For example, a term “customer”

may be different for several department of a company. One

department thinks a customer is someone which has a

current agreement. Another department may think a

customer is someone who has ever been make an agreement

with the company, although not any longer.

 (7) Consist of complex business logic. Business logic may

be ‘illogic’ since every company has its own unique business

process.

B. Software Maintainability

Software maintainability is the degree in which the

software product can be easily modified [12], i.e.

understood, repaired, and enhanced. Modification may

include correction, improvement, or adaptation of the

software due to changes in environment, requirement, or in

functional specification.

There is a relationship between software maintainability

and software metrics. Li & Henry [13] have validated several

object-oriented software metrics. The research found that

there is a strong relationship between metrics and

maintenance effort in object-oriented software. The

maintenance effort can be predicted by using software

metrics for maintainability measurement purpose.

C. C&K Metrics

C&K metrics is a metric that suites for object oriented

design. It has been used to predict software maintainability

[13]. It predicts software complexity in general. C&K

metrics consist of six metrics which are shown in Table 1.

TABLE 1 C&K METRICS [13]

Metric Description

WMC Weighted Methods per Class. Sum of McCabe’s cyclomatic

complexity of all local methods in the class [11].

DIT Depth of Inheritance Tree. Inheritance level number of the

class, 0 for the root class.

NOC Number Of Children. Number of direct sub-classes that the

class has or number of immediate subclasses subordinated to

a class in the class hierarchy.

CBO Coupling Between Object classes. Count of the number of

other classes to which it is coupled.

RFC Response For a Class. Total number of local methods and the

number of methods called by local methods in the class.

LCOM Lack of Cohesion in Methods. Number of disjoint sets of

local methods, i.e., number of sets of local methods that do

not interact with each other, in the class.

We also use three additional metrics of Li & Henry to

predict software maintainability [13]. Those metrics are

presented in Table 2.

TABLE 2 ADDITIONAL METRICS [13]

Metric Description

NOM Number Of Methods. The number of local methods defined in

a class. Number of methods related to class’s complexity.

SIZE1 Lines of code or number of semicolons in a class.

SIZE2 Number of properties. This size metric is number of attributes

and number of local methods in a class.

D. Academic Information System

AIS is used to manage academic data, in this case, data of

ITS. AIS has been used as a case study in several studies [7],

[8],[14],[15]. It consists of six modules: (1) framework; (2)

domain; (3) learning; (4) equivalence; (5) curriculum; and (6)

assessment. AIS was developed using Java programming

language and Spring MVC for the web development. It also

used Eclipse Virgo and OSGI Framework. Tomcat is used

for the web server.

The architecture of AIS is considered as Anemic Domain

Model which is mentioned by Fowler [16]. It is one of those

anti-patterns in object-oriented programming. Based on the

three principal layers, i.e. presentation, domain logic, and

data source, domain logic in Anemic Domain Model consist

of objects without its behavior but setters and getters. This is

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

what makes the domain model is considered as ‘anemic’.

Domain model in object-oriented design is supposed to hold

both data and behavior or process altogether. Thus, Anemic

Domain Model is considered as a procedural style design, so

that it is contradictory to the basic idea of object-oriented

design.

Four modules of AIS which are learning, equivalence,

curriculum, and assessment use a similar structure. It consists

of three packages, i.e. controller, service, and repository.

Controller package belongs to presentation layer as part of

Model-View-Controller (MVC) Pattern. Service package

consist of business logic. Repository package consist of

database transaction script. They use a shared domain model

which is domain module. Domain module consists of domain

model for other modules, so that it is called as an Anemic

Domain Model. Business logic is scattered around controller

and service package in each module. The impact is that the

emersion of numerous duplicated codes in service package

(laid on service layer) across modules. For instance, if a

process of calculating student grades is needed by all of five

modules, then each service in each modules will do the same

process. Fig. 1 shows the basic structure of those AIS

modules.

Controller

Service

Repository

Domain module

Controller

Service

Repository

Fig. 1. Basic Architecture of AIS.

III. RELATED WORK

This section discusses studies that have been done related

to the impact of design patterns on software maintainability.

In 2011, Ampatzoglou et al. investigated the reusability of

design patterns and software packages [17]. Based on

ISO/IEC 25010, reusability is one of maintainability sub-

attributes [12]. The study uses 100 open source projects with

27.461 classes as case studies. It involves eleven GoF design

patterns. They investigated a scenario where the desired

requirement is implemented as a design patterns. Classes that

should be used as a starting point for white-box reuse is

selected in order to optimize the reusability of the selected

classes. The investigation is to find out which unit is the most

reusable: a class, a pattern, or a package. They found that the

alternative to reuse the design pattern offers optimal

selection option in most of the cases. Although there are also

cases where the package alternative offers a more reusable

set of classes.

In the same year, Gonzalez-Sanchez et al. created an

object-oriented software model for Intelligent Tutoring

System using design patterns. They experienced project

development for three years using the proposed model.

Several aspects become their focus on the study such as

creating a common language among stakeholders, supporting

an incremental development, and adjustment to a highly

shifting development team. The study used GoF design

patterns to create the object-oriented software model. They

found that design patterns are useful to create a high-quality

software solution which is easy to maintain and extend. It

also improves their communication, collaboration, and

productivity whithin teamwork. With highly shifting

development team, design patterns make the knowledge

transfer becomes easier and faster. Design patterns also

allow them to create a common vocabulary among

stakeholders. The result is that they managed to improve the

maintainability by using design patterns.

In 2012, Nanthaamornphong and Carver conducted an

experiment to study whether design patterns improve

software maintainability and understandability. It involves

GoF design patterns and eighteen participants in a graduate-

level software engineering course. The experiment of

understandability is to create a new application, whilst the

experiment of maintainability is to replicate the existing

application. As a result, design patterns did not improve

either maintainability or understandability. They mentioned

that it is not always useful to use design patterns. They also

suggested that developer should study the impact of design

patterns before using them.

In 2014, Bernardi et al. proposed a framework to improve

the implementation of design patterns by using Model Driven

Development techniques along with Aspect Oriented

Programming (AOP). It involved GoF design patterns such

as Command, Composite, Strategy, and Singleton patterns.

They used two different implementations of Java system as

case studies. One system is implemented using their

proposed framework. Whilst the other system is implemented

using a traditional pattern-based approach. They aimed to

improve the modularity, internal code quality, and the

flexibility of design patterns. As a result, modularity of the

system is improved using design patterns in both cases.

However, AOP implementation of design patterns

significantly improved the modularity of the system with

respect to traditional object-oriented version.

All of those related works investigate the impact of design

patterns on maintainability. Most of the results prove that

design patterns are able to improve the maintainability of the

software. Although there are the result that shows design

patterns did not affects the maintainability and

understandability at all. That is why the impact of design

patterns on software quality attributes is still controversial

based on mapping study which is conducted by Ampatzoglou

et al. in 2013 [10]. Also, they only investigate the impact of

GoF design patterns. Thus, in this study we investigate

Patterns of Enterprise Application Architecture (PoEAA) to

find out to what extent the impact is on increasing the

maintainability.

IV. THE PROPOSED APPROACH

The research has five main phases: (1) preparation; (2)

measurement of existing system (that is the system which is

built without considering the use of design patterns

specifically, later it is called as non-pattern or NP version);

(3) refactoring; (4) measurement of refactored system (this is

the system which is built with considering the use of design

patterns, later it is called as pattern or PAT version); and (5)

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

evaluation. We present the research design as an activity

diagram in Fig. 2.

A. Preparation

Preparation phase determines several things related to the

research requirements and environment, i.e., which part of

the AIS to be used as a case study, which design patterns to

be utilized, and what quality measurements standards to be

applied. The existing version of AIS is categorized as

Anemic Domain Model [16] and considered as anti-pattern.

It is because Anemic Domain Model has no behavior but

setters and getters. It is contrary to object-oriented

programming concept where an object is supposed to have

both data and behavior. We choose parts of AIS based on

the problem which is mentioned in the previous section in

order to reduce the duplicated code, coupling, and increase

the cohesion. It may increase the maintainability as well.

Class diagram of the case study is shown on Fig. 3.

We use C&K metrics [18] and three additional metrics

[13] to measure the software maintainability. Those metrics

have been used widely [11],[13] and can be used to predict

maintainability in general. The metrics have been validated in

numerous datasets and techniques. Based on the explanation

of each metric, it may represent all of maintainability

attributes in ISO/IEC 25010.

B. Measurements

We measure the maintainability of existing AIS prior to

refactoring process (called NP version). We use the same

methods as NP version to measure PAT version of AIS.

Software maintainability is measured by C&K Metrics and

three additional metrics of Li & Henry [13]. We use Java

metric tool called Chidamber and Kemerer Java Metric [19]

and Eclipse Metric Plugin to get metric values. This tool

measures the system per class. C&K metrics and additional

Li & Henry metrics are described as follows.

1. Weighted Methods per Class (WMC)

WMC is the sum of McCabe’s cyclomatic complexity of

all local methods in the class. Assume a class is C1 with

methods M1, …, Mn in the class. Let c1, …, cn are the

complexity of the methods, such that the formula applies as

follows. WMC = n if all method complexities are considered

to be unity. Where n is the number of methods.

Preparation

Measuring
NP version

Refactoring

Measuring
PAT version

Evaluation

Define a
case study

AIS

Define quality
measurement

method
C&K Metrics

Quality
measurements

Software
refactoring

Other suitable
design patterns

No

Define a suitable
design pattern

PoEAA

Quality
measurements

Other PAT
version

Measurement
results (ALT)

Measurement
Results (PAT)

Evaluation

No

Fig. 2. Activity Diagram of The Proposed Approach.

Fig. 3. Class Diagram of The Case Study.

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

 (1)

2. Depth of Inheritance Tree (DIT)

DIT is the inheritance level number of the class, 0 for the

root class. This results in consequences as follows. The

deeper a class is in the hierarchy, the greater the number of

methods it is likely to inherit, making it more complex to

predict its behavior. Deeper trees constitute greater design

complexity, since more methods and classes are involved.

The deeper a particular class is in the hierarchy, the greater

the potential reuse of inherited methods.

3. Number of Children (NOC)

NOC is the number of direct sub-classes that the class has

or number of immediate subclasses subordinated to a class in

the class hierarchy. The greater the number of children, the

greater the reuse, since inheritance is a form of reuse. The

greater the number of children, the greater the likelihood of

improper abstraction of the parent class. If a class has a large

number of children, it may be a case of misuse of sub

classing. The number of children gives an idea of the

potential influence a class has on the design. If a class has a

large number of children, it may require more testing of the

methods in that class.

4. Coupling Between Object Classes (CBO)

CBO is the count of the number of other classes to which

it is coupled. Excessive coupling between object classes is

detrimental to modular design and prevents reuse. The more

independent a class is, the easier it is to reuse it in another

application.

5. Response For a Class (RFC)

RFC is the total number of local methods and the number

of methods called by local methods in the class. RFC = |RS|

where RS is the response set for the class.

 (2)

where {Ri} = set of methods called by method i and {M} =

set of all methods in the class.

6. Lack of Cohesion in Methods (LCOM)

LCOM is the number of disjoint sets of local methods, i.e.,

number of sets of local methods that do not interact with

each other, in the class. For instance consider a class C with

two methods M1 , M2. Let {Ii} = set of instance variables

used by method Mi. {I1} = {a, b, c, d}, {I2} = {a, b, c, d, e},

then {I1} ∩ {I2} is nonempty, which in this case is 1 ({e}).

This results in consequences as follows. Cohesiveness of

methods within a class is desirable, since it promotes

encapsulation. Lack of cohesion implies classes should

probably be split into two or more subclasses. Any measure

of disparateness of methods helps identify flaws in the design

of classes. Low cohesion increases complexity, thereby

increasing the likelihood of errors during the development

process.

This study also uses three additional metrics of Li &

Henry [13]. We use NOM, SIZE1, and SIZE2 to predict the

maintainability of the systems.

1. Number of Methods (NOM)

NOM is a class interface increment metric. It serves well

as an interface metric because the local methods in a class

constitute the interface increment of the class. It is easy to

collect in most object-oriented programming language. The

number of local methods define in a class may indicate the

operation property of a class. The more methods a class has,

it indicates the more complex the interface of the class.

2. Line of code (LOC or SIZE1)

SIZE1 is one of two size metrics used by Li & Henry. It is

used to measure a procedure or function. Then, the

accumulated LOC of all procedures and functions is used to

measure a program. This metric is measured by counting the

number of semicolons in a class.

3. Number of properties (SIZE2)

SIZE2 is another one of two size metrics. It is calculated

by adding the number of attributes and the number of local

methods in a class as a number of properties.

Regarding to ISO/IEC 25010 on the maintainability sub

attributes, software metrics that used in this study need to be

mapped. Each metric represent the complexity of the

software. It may affects maintainability in general or the

entire sub attributes implicitly.

Mapping is conducted based on which are mentioned

explicitly in the literature. Changeability and Modification

stability are merged into Modifiability. Table 3 presents the

mapping results between the metrics and ISO/IEC 25010

Maintainability sub attributes.

TABLE 3 METRICS MAPPING

Metrics ISO/IEC 25010 Maintainability

C&K

Metrics

WMC Modularity, Reusability, Modifiability

DIT Reusability

NOC Reusability

CBO Modularity, Reusability, Modifiability, Testability

RFC Testability, Modifiability

LCOM Modifiability

Li &

Henry

Metrics

NOM Modifiability

SIZE1 Modifiability

SIZE2 Modifiability

We need to calculate the mean of metric values for all

classes which are involved. We also calculate the standard

deviation to decide whether mean values are acceptable or

not. It is because the value of measurement results is usually

not always normally distributed.

We use Median Absolute Deviation (MAD) which is also

called Absolute Deviation around the Median. It is a robust

statistic method to measure central tendency. Robust statistic

means it has good performance for a wide ranged and non-

normally distributed data. MAD is insensitive to the presence

of outliers compared to mean and standard deviation

methods. MAD is denoted as [20]:

 (3)

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

where:

 b = 1.4826 (a constant linked to the assumption of

normality of the data), M = median of the series, x =

population (data).

MAD is used to detect outliers. There are three thresholds

depending on the researcher’s criteria: 3 (very conservative);

2.5 (moderately conservative); 2 (poorly conservative). Thus

the data population which includes for further investigation is

as follows.

 (4)

C. Refactoring

At refactoring phase, we develop PAT versions by using

Domain Logic and Data Source Architectural Patterns

because there is a problem with domain model in the existing

version of AIS. There is a possibility that more than one

pattern are suitable to apply. Thus, there is a possibility we

produce more than one PAT version. We name it an

alternative version (written as ALT version in Fig. 2).

For Domain Logic Patterns, we use Domain Model

Pattern because AIS is already using domain model although

it is still anemic. In Data Source Architectural Patterns, we

utilize two patterns which are Active Record and Data

Mapper patterns since those patterns suit well with Domain

Model Pattern. So, there are two combinations of design

pattern which produce two PAT versions of AIS. The first is

Domain Model and Active Record Pattern, and the second

one is Domain Model and Data Mapper Pattern.

Domain Model and Active Record Pattern

Domain Model is an object model that contains both data

and behavior. While Active Record is an object that

represents a row in a database table or view and also contain

domain logic. Thus, the domain model class of this PAT

version contains data, behavior, and data access. We name

this version as PAT-AR version. Fig. 4 shows the

displacement flow of business logic and repository from each

module into domain module.

Business logic A

Business logic ...

Service

Repository A

Repository ...

Repository

Controller

Module X

Domain A

Domain ...

Domain

Domain Module
Business logic A

Business logic ...

Service

Repository A

Repository ...

Repository

Controller

Module Y

Fig. 4. Displacement Flow of Business Logic and Repository (PAT-AR).

Business logic A from module X and Y are merged into its

anemic domain in Domain Module. The same goes with

repository A from module X and Y are also merged with

domain A in Domain Module. By this process, now we have

domain A which is contains data, behavior, and data access.

It also eliminates class duplications in Service and Repository

layer. Fig. 5 shows the architecture of refactored AIS which

is PAT-AR version.

Controller

Module X

Controller

Module Y

Domain A

Domain B

Domain ...

Domain

Domain Module

Fig. 5. Architecture of PAT-AR Version.

Domain Model and Data Mapper Pattern

As domain model of existing AIS is anemic, we need to

displace business logic from services into domain module.

Fig. 6 shows the displacement flow of business logic from

service layer into domain model in the domain module.

Business logic A

Business logic B

Business logic C

Service

Repository A

Repository B

Repository C

Repository

Controller

Module X

Domain A

Domain B

Domain C

Domain

Data source A

Data source B

Data source C

Data Source

Domain Module

Business logic A

Business logic B

Business logic C

Service

Repository A

Repository B

Repository C

Repository

Controller

Module Y

Fig. 6. Displacement Flow of Business Logic and Repository (PAT-DM).

Controller

Module X

Controller

Module Y

Domain A

Domain B

Domain C

Domain

Data source A

Data source B

Data source C

Data Source

Domain Module

Fig. 7. Architecture of PAT-DM Version.

Business logic of Domain A from service layer in other

modules is merged into Domain A in domain module. The

same way happens with Domain B, and so on. Thus, it makes

the domain model is no longer anemic. However, there are

also duplicated codes in repository layer. To handle this

problem, we make a new layer in domain module, that is data

source layer which hold database transaction of domain

model. Service and repository layer in each module may still

contain other domain logic and database transaction. If the

module uses a unique logic which is only applied on that

module, it inherits the related domain model. The same

things applies to repository layer. It inherits the related data

source from domain module. The modul displacement

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

process results in a new architecture of refactored AIS as

shown in Fig. 7 above.

D. Evaluation

We use Percentage Change or Relative Change proposed

by Bennett & Briggs [21] to measure the extent of changes

in the evaluation phase.

(5)

where x represents the starting point of the change, which is

NP version in this case, and y represents PAT version of

AIS. The relative change is undefined or zero if the value of

x equals zero. The value of relative change can be a positive

or negative value. Positive value means that the change is

increased while negative value means that the change is

decreased. We analyse the changes based on the explanation

of each metric in the literature [18].

V. THE RESULTS

This section describes the results of this study. The results

are presented based on activity diagram of our proposed

approach. There are five phases in this section: (1)

preparation; (2) measurements of NP version; (3)

refactoring; (4) measurements of PAT versions; and (5)

evaluation. The first phase is supposed to be preparation.

However, the quality measurements method has been

discussed earlier in the previous section. Thus, we only

discuss about the case study in the subsection.

A. Preparation

We select some parts of the system as a case study since

the whole AIS is too big for the purpose of this study. Case

study selection is conducted by selecting one domain model

and is then investigated its relationships with other modules.

Fig. 3 shows the selected case study which is focused on MK

domain model. MK domain model is a courses model of AIS

with its attributes, setters and getters.

The basic structure or architecture of the selected case

study is the same as explained previously in Fig. 1. Table 4

maps the in-picture module names onto the actual module

names.
TABLE 4 MODULE NAME MAPPING

In-picture Module Name Actual Module Name

com.AIS.Modul.MataKuliah.* Curriculum

com.bustan.siakad.* Equivalence

com.its.sia.* Learning

com.sia.modul.domain Domain

MK domain model is associated with three modules which

are curriculum, equivalence, and learning modules. Each

module consists of controller, service, and repository

package. There are many duplicated codes on service and

repository layer on those three modules. Basically, the

service layer on each module is a business process and the

repository layer is a data transaction of MK anemic domain

model. Thus, they consist of the same code. Fig. 8 shows the

service layer and Fig. 9 shows the repository layer of MK in

each module.

Fig. 8. MK Service Classes.

Based on observation on the module it is found that

service layer of MK in equivalence and learning module are

identically similar. They are also similar with curriculum

module with one extra method and have a same method with

different name (findById and getById). The same thing

occurs in repository layer where each layer of those three

modules are similar. In maintenance process, if there are

changes in business process of MK domain, then all of those

service and repository classes should be changed.

Fig. 9. MK Repository Classes.

B. Measurements of NP Version

Measurement results of NP version of AIS are shown in

Table 5. It involves four modules of the architecture as

shown in Fig. 3. Classes in three modules: curriculum;

equivalence; and learning, consist of presentation

(controller), service, and repository layer.

Curriculum module consists of seven classes of

presentation layer, two classes of service layer, and two

classes of repository layer. Equivalence module consists of

four classes of presentation layer, two classes of service

layer, and two classes of repository layer. Learning module

consists of two classes of presentation layer, two classes of

service layer, and two classes of repository layer.

Each layer has a different characteristic, thus standard

deviation in some metrics are nearly equal or bigger than its

mean because the data are not normally distributed. So, we

consider to separating the measurement results based on the

layer.

C. Refactoring

AIS already uses domain model although still anemic.

Thus, we use Domain Model Pattern as its Domain Logic

Pattern. Domain model is an object model that incorporates

both data and behavior. We move MK business logic which

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

is located in service layer of curriculum, equivalence, and

learning module into the domain model. As shown on Fig. 8,

there are eight duplicated methods exist in those modules,

thus MK domain model consists of ten methods.

We create two PAT versions using two types of pattern,

i.e. Active Record Pattern and Data Mapper Pattern for the

Data Source Architectural Patterns because these patterns

work well with Domain Model Pattern. They move data

between objects and database while keeping them

independent. We create a new layer in domain module to

hold the database transaction which is data source layer. We

create a new class as MK data source in data source layer of

domain module. As shown on Fig. 9, there are six duplicated

methods exist in those modules, thus MK data source is

consist of seven methods. Controller packages in

presentation layer, which is part of MVC Pattern, connect

directly to the MK class in domain module.

Based on the displacement flow diagrams above, Service

and Repository layer from all three modules of AIS, i.e.

curriculum, equivalence, and learning module are merged

into its domain model in Domain Module. Fig. 10 shows the

class diagram of refactored AIS using Active Record Pattern

(PAT-AR version), whilst Fig. 11 shows another version of

class diagram of refactored AIS using Data Mapper Pattern

(PAT-DM version).

Measurements of PAT-AR Version

Table 6 shows the measurement results of PAT-AR

version of AIS. This version has 14 classes, which is less

than the number of classes in NP version (26 classes). Based

on the discussion in refactoring phase, the duplicated

methods are merged based on its layer and function.

Moreover, service layer is merged into domain model to

relieve the anemic model of the domain. In addition,

repository layer is also merged into domain model to

conform the Active Record Patterns. Thus, the number of

classes in this version is decreased. The class diagram of

PAT-AR version is illustrated in Fig. 10 below.

Three modules which are curriculum, equivalence, and

learning of this version only consist of presentation layer.

Curriculum module has seven controller classes, equivalence

module has four controller classes, and learning module has

two controller classes.

As mentioned in the previous section, the data on this

PAT-AR version of AIS are not normally distributed. For

example, standard deviation of LCOM metric is far larger

than its mean.

There are no duplicated methods in this version. It is

because service and repository layer, areas in which those

duplicated methods have a high probability to occur, have

already merged into domain model. Moreover, this version

utilizes design patterns where the domain object is no longer

anemic.

Measurements of PAT-DM Version

Table 7 shows the measurement results of PAT-DM

version of AIS. As seen on Fig. 11, this version has 16

classes which is less than the number of classes in NP version

(26 classes) and has two more classes compared with PAT-

AR version. Those two classes belong to data-source layer,

which is pulled out from domain model to conform the Data

Mapper Pattern.

Three modules that are curriculum, equivalence, and

learning of this version consist only the presentation layer.

Curriculum module has seven controller classes, whilst

equivalence module has four controller classes, and learning

TABLE 5 MEASUREMENT RESULTS OF NP VERSION

Module Class WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Curriculum

SatManMKController 7 1 0 15 40 7 5 126 9

MKController 7 1 0 17 45 7 5 142 10

SilabusController 17 1 0 32 105 38 15 344 26

EkuivalensiMKController 7 1 0 13 35 7 5 113 8

CapPembMKController 9 1 0 15 58 20 7 181 11

PrasyaratMKController 7 1 0 12 37 7 5 118 7

RPController 21 1 0 37 132 56 20 518 37

MKService 10 1 0 2 10 45 0 17 0

MKServiceImpl 11 1 0 8 55 11 10 100 13

MKRepository 7 1 0 1 7 21 0 13 0

MKRepositoryImpl 8 1 0 6 29 0 7 95 8

Equivalence

KatalogSatManController 15 1 0 28 145 31 14 521 25

CalonPDController 34 1 0 44 226 15 33 1381 47

EkuivalensiMKController 19 1 0 29 160 87 18 836 29

EkuivalensiPDController 19 1 0 40 196 67 18 1028 32

MKService 8 1 0 2 8 28 0 14 0

MKServiceImpl 9 1 0 5 43 14 8 85 11

MKRepository 6 1 0 1 6 15 0 12 0

MKRepositoryImpl 4 1 0 6 29 0 6 82 7

Learning

PembController 22 1 0 28 113 113 20 429 31

ManajemenKRSController 18 1 0 49 147 0 16 473 36

MKService 8 1 0 2 8 28 0 14 0

MKServiceImpl 9 1 0 10 57 14 8 100 12

MKRepository 6 1 0 1 6 15 0 12 0

MKRepositoryImpl 7 1 0 6 29 0 6 82 7

Domain MK 23 1 0 3 24 231 22 123 33

Sum 318 26 0 412 1750 877 248 6959 399

Mean 12.23 1 0 15.85 67.31 33.73 9.538 267.7 15.35

Std. Dev. 7.122 0 0 14.65 62.73 48.02 8.391 341.2 13.84

Maximum 34 1 0 49 226 231 33 1381 47

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

module has two controller classes. The new layer in domain

module, which is data-source layer, is the composite of

repository layer from each module.

There are no big different of the result summary between

this version and PAT-AR version. The overall data of these

results are also not normally distributed which is indicated by

the value of standard deviation compared to its mean. There

are also no duplicated methods in this version.

D. Evaluation

This section presents the extent of changes that occurs

between NP and PATs versions of AIS. The following tables

show the relative changes of metrics between NP and PATs.

These changes involve all classes regardless to its layer. We

investigate the relative changes of three values, i.e. sum,

mean, and maximum value of all metrics. The changes are

illustrated in Table 8, Table 9, and Table 10 respectively.

Almost all changes of sum value (ΔSum) is negative,

which indicates a decrease in total complexity of PATs

version. Complexity in general, which is represented by

metrics, is decreased because the number of classes also

decreased. Since PATs has a smaller number of classes, this

result from sum point of view is very reasonable and may not

represent the general impact of design pattern.

From mean point of view (ΔMean), most of the changes

are positive. This indicates that the complexity is increased in

PATs. However, this result may also not represent the

general impact since some of standard deviation values are

larger than its mean and the data is not normally distributed.

Relative change of metrics from maximum value (ΔMax)

point of view shows more varied results. Maximum value of

CBO, RFC, and SIZE1 are decreased, which means the

maximum complexity of all classes regardless to its layer is

decreased. However, the maximum value of LCOM is

increased on PATs. The increased value is almost double of

the NP version. Thus, the next step is to breakdown the

result based on its layer to conduct a deeper analysis.

Since some standard deviation values of measurement

results are bigger than its mean, we split the evaluation based

on the layer. NP version of AIS consists of four layers, i.e.

domain, presentation, service, and repository layer. Domain

and service layer are merged in PATs, thus it has three

layers, i.e. domain, presentation, and data-source layer. We

split the evaluation based on three layers because domain and

service layer of NP version can be compared with domain

layer of PATs, which is not vice versa.

Presentation Layer

Table 11 shows the relative change of metrics values on

presentation layer. The number of classes between NP and

PATs is the same, i.e. 13 classes. There is no standard

deviation value of this layer which is bigger than its mean.

Thus we assume that sum, mean, and maximum value may

represent the impact of design pattern on software

maintainability of AIS.

Fig. 10. Class Diagram of PAT-AR Version.

Fig. 11. Class Diagram of PAT-DM Version.

Measurement results of PAT-AR and PAT-DM are the

same on this layer. PAT in Table 10 represents both of those

pattern versions. From sum point of view, the total number

of metric is decreased by 1.83% in average. The same goes

from mean point of view which is also decreased by 1.83%.

It is clear to conclude that the complexity from NP to PAT

versions is decreased. The maximum value of metric is

decreased by 1.17% in average. The decreased values occur

in CBO, RFC, and SIZE1 metric.

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

TABLE 8 RELATIVE CHANGES OF SUM VALUES

Metric
Version ΔSum

NP PAT-AR PAT-DM NPPAT-AR NPPAT-DM

WMC 318 234 248 -26.42% -22.01%

DIT 26 14 16 -46.15% -38.46%

NOC 0 0 0 0% 0%

CBO 412 354 358 -14.08% -13.11%

RFC 1750 1509 1535 -13.77% -12.29%

LCOM 877 927 916 5.70% 4.45%

NOM 248 213 219 -14.11% -11.69%

SIZE1 6959 6323 6370 -9.14% -8.46%

SIZE2 399 347 354 -13.03% -11.28%

-9.72% -8.85%

The sum of metric values is mostly decreased except for

DIT, NOC, and NOM. Total complexity of presentation

layer is decreased so that the maintainability is increased.

Average value or mean and maximum values of metrics also

mostly decreased. The biggest change occurs in CBO.

Presentation layer of NP version is related to several service

and domain layer. However, presentation layer of PAT

version only related to domain layer, which is reduced its

coupling between objects. Changes on other metric values

are not too significant because there are not many changes

occur in classes of presentation layer.

TABLE 9 RELATIVE CHANGES OF MEAN VALUES

Metric
Version ΔMean

NP PAT-AR PAT-DM NPPAT-AR NPPAT-DM

WMC 12.23 16.71 15.50 36.66% 26.73%

DIT 1 1 1 0% 0%

NOC 0 0 0 0% 0%

CBO 15.85 25.29 22.38 59.57% 41.20%

RFC 67.31 107.79 95.94 60.14% 42.54%

LCOM 33.73 66.21 57.25 96.30% 69.73%

NOM 9.54 15.21 13.69 59.50% 43.50%

SIZE1 267.65 451.64 398.13 68.74% 48.75%

SIZE2 15.35 24.79 22.13 61.51% 44.17%

67.67% 48.11%

Modularity of both PAT versions is increased. It is

indicated by the decreased value of WMC and CBO metric.

Both metric values are decreased by 0.5% and 3.9% in

ΔSum and ΔMean respectively. The maximum value of

WMC is unchanged because the methods in this layer remain

the same as NP version. The maximum value of CBO is

TABLE 7 MEASUREMENT RESULTS OF PAT-DM VERSION

Module Class WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Curriculum

EkuivalensiMKController 7 1 0 11 34 9 5 105 7

SatManMKController 7 1 0 14 40 7 5 124 9

SilabusController 17 1 0 30 105 38 15 338 26

CapPembMKController 9 1 0 14 58 20 7 176 11

PrasayaratMKController 7 1 0 12 38 7 5 118 7

MKController 7 1 0 16 45 7 5 138 10

RPController 21 1 0 35 132 56 20 507 36

Equivalence

EkuivalensiPDController 19 1 0 39 196 67 18 1000 32

KatalogSatManController 15 1 0 28 143 31 14 518 25

EkuivalensiMKController 18 1 0 29 159 83 18 814 29

CalonPDController 34 1 0 44 225 15 33 1364 47

Learning
ManajemenKRSController 18 1 0 45 148 0 16 444 31

PembController 22 1 0 28 114 113 20 424 31

Domain

Data source

MK 32 1 0 6 61 442 31 199 45

MKSource 7 1 0 1 7 21 0 13 0

MKSourceImpl 8 1 0 6 30 0 7 90 8

Sum 248 16 0 358 1535 916 219 6372 354

Mean 15.5 1 0 22.38 95.94 57.25 13.69 398.3 22.13

Std. Dev. 8.566 0 0 13.67 63.79 104.3 9.272 365.7 14.25

Maximum 34 1 0 45 225 442 33 1364 47

 TABLE 6 MEASUREMENT RESULTS OF PAT-AR VERSION

Module Class WMC DIT NOC CBO RFC LCOM NOM SIZE1 SIZE2

Curriculum

EkuivalensiMKController 7 1 0 11 34 9 5 105 7

SatManMKController 7 1 0 14 40 7 5 124 9

SilabusController 17 1 0 30 105 38 15 338 26

CapPembMKController 9 1 0 14 58 20 7 176 11

PrasayaratMKController 7 1 0 12 38 7 5 116 7

MKController 7 1 0 16 45 7 5 138 10

RPController 21 1 0 35 132 56 20 507 36

Equivalence

EkuivalensiPDController 19 1 0 39 196 67 18 1000 32

KatalogSatManController 15 1 0 28 143 31 14 518 25

EkuivalensiMKController 18 1 0 29 159 83 18 814 29

CalonPDController 34 1 0 44 225 15 33 1364 47

Learning

ManajemenKRSController 18 1 0 45 148 0 16 444 31

PembController 22 1 0 28 114 113 20 424 31

Domain

Data Source
MK 33 1 0 9 72 474 32 255 46

 Total 234 14 0 354 1509 927 213 6323 347

 Mean 16.71 1 0 25.29 107.8 66.21 15.21 451.6 24.79

 Std. Dev. 8.697 0 0 12.13 59.91 117.7 9.049 362.4 13.39

 Maximum 34 1 0 45 225 474 33 1364 47

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

decreased by 8.16% because in NP version, presentation

layer is connected with a domain model and several services.

However, in PAT versions, presentation layer only connects

with only domain model

TABLE 10 RELATIVE CHANGES OF MAXIMUM VALUES

Metric
Version ΔMax

NP PAT-AR PAT-DM NPPAT-AR NPPAT-DM

WMC 34 34 34 0% 0%

DIT 1 1 1 0% 0%

NOC 0 0 0 0% 0%

CBO 49 45 45 -8.16% -8.16%

RFC 226 225 225 -0.44% -0.44%

LCOM 231 474 442 105.19% 91.34%

NOM 33 33 33 0% 0%

SIZE1 1381 1364 1364 -1.23% -1.23%

SIZE2 47 47 47 0% 0%

11.04% 9.44%

TABLE 4 RELATIVE CHANGES OF METRICS ON PRESENTATION LAYER

Metric
Sum Mean Maximum

NP PAT ΔSum NP PAT ΔMean NP PAT ΔMax

WMC 202 201 -0.5% 15.54 15.46 -0.5% 34 34 0%

DIT 13 13 0% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 359 345 -3.9% 27.62 26.54 -3.9% 49 45 -8.16%

RFC 1439 1437 -0.14% 110.69 110.54 -0.14% 226 225 -0.44%

LCOM 455 451 -0.88% 35.00 34.69 -0.88% 113 113 0%

NOM 181 181 0% 13.92 13.92 0% 33 33 0%

SIZE1 6210 6070 -2.25% 477.69 466.92 -2.25% 1381 1364 -1.23%

SIZE2 308 301 -2.27% 23.69 23.15 -2.27% 47 47 0%

-1.83%

-1.83%

-1.17%

Reusability of both pattern versions is increased. It is

indicated by the decreased value of WMC and CBO metric.

The value of DIT and NOC are unchanged. WMC and CBO

are decreased by no more than 4%. Moreover, two other

metrics remain the same. Thus, the reusability is only

increased slightly.

Modifiability of both pattern versions is increased. It is

indicated by the decreased value of WMC, CBO, RFC,

LCOM, SIZE1, and SIZE2 metric. The value of NOM is

unchanged because the methods in this layer are also

unchanged. The maximum value of RFC is decreased

because the number of methods called by local methods in

the class of this layer is decreased. It only connects with one

domain model without services from other modules. The

maximum value of SIZE1 is decreased because there is a

change in how the class of this layer interacts with other

modules. Thus, it cuts several lines that contain a code to

connect with service layer.

Testability of both pattern versions is increased. It is

indicated by the decreased value of CBO and RFC metric by

3.9% and 0.14% respectively. The maximum value of both

metrics is also decreased by 8.16% and 0.44% respectively.

As this layer does not have any duplicated methods, both

of the pattern versions have no impact related to them.

However, pattern versions are able to improve the

maintainability to a small extent. The improvement is small

because there is not much change that occurs in this layer.

Some of the sum and mean values does not change. Any

decreased value is also no more than 4%. Moreover, most of

the maximum value does not change. In average, the

decreased complexity is only by 1.83% from NP to any

pattern versions. The situation is graphically depicted in Fig.

12 below.

Data-source Layer

The comparison of this layer involves only two versions

which are NP and PAT-DM. Technically, PAT-AR version

does not have a data-source layer because all of the database

transactions are located in domain model.

The number of classes between NP and PAT version of

this layer is not the same. NP version consists of six classes

while PAT version consists of only two classes. Number of

classes is decreased because of the duplicated code in the

existing version, which is mentioned earlier. Standard

deviation values of several metrics are also bigger than its

mean. Thus, relative change of mean value may not represent

the impact of design patterns.

Fig. 12. Relative Change of Metrics on Presentation Layer.

Table 12 shows the relative change of metrics values on

data-source layer. We consider using sum value because of

the duplicated code. Six classes of NP version basically

consist of two distinct classes, i.e. interface and its

implementation. Other classes are the duplication of those

two classes. If we assume that there are a hundred of

duplicated classes (App A) with a metric value of each class

is 10. Then two refactored classes (App B) based on a

hundred of classes with metric values are 10 and 12

respectively. So, the comparison of mean value between App

A and App B is 10:11, which means App A is better than

App B even though App A has a bunch of duplicated classes,

which are more difficult to maintain. If there is a change in

App A, then all of hundred classes need to be changed also.

However, in App B, we only need to manage those two

classes without other duplicated classes. So, we use sum and

maximum value to evaluate this layer.

Most of the sum values are decreased more than a half

which means the complexity is decreased. However, there is

an increased maximum value of RFC metric. It is because of

the service layer of NP version which previously is used to

communicate with several duplicated repository classes, yet

later is focused on only one class of PAT version. As a

result, methods in a single data-source layer class of PAT

version are received more calls from domain layer.

From sum point of view, the total number of metric is

decreased by 64.22% in average. Thus, we conclude that the

NP to PAT-AR

NP to PAT-DM

PAT-AR to

 PAT-DM

Sum Mean

Max

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

complexity of PAT version on data-source layer is less than

NP version. It means the maintainability of NP version on

this layer is less than PAT version. The maximum value of

metric is decreased by 2.29% in average. It indicates that less

effort is needed to maintain the most complex classes in PAT

version compared to NP version.

TABLE 5 RELATIVE CHANGE OF METRICS ON DATA-SOURCE LAYER

Metric
Sum Mean Maximum

NP PAT ΔSum NP PAT ΔMean NP PAT ΔMax

WMC 38 15 -60.53% 6.33 7.5 18.42% 8 8 0%

DIT 6 2 -66.67% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 21 7 -66.67% 3.50 3.5 0% 6 6 0%

RFC 106 37 -65.09% 17.67 18.5 4.72% 29 30 3.45%

LCOM 51 21 -58.82% 8.50 10.5 23.53% 21 21 0%

NOM 19 7 -63.16% 3.17 3.5 10.53% 7 7 0%

SIZE1 296 103 -65.20% 49.33 51.5 4.39% 95 90 -5.26%

SIZE2 22 8 -63.64% 3.67 4 9.09% 8 8 0%

-64.22%

7.33%

-2.29%

There is one maximum value that is increased, i.e. RFC.

However, sum and maximum value itself is decreased in

average. PAT is less complex than NP in data-source layer.

Thus, PAT has a higher maintainability compared to NP

version.

Modularity of PAT version is increased. It is indicated by

the decreased value of WMC and CBO metric. The sum

values of those metrics are decreased by 60.53% and 66.67%

respectively. There are no changes occur in the maximum

value of those metrics.

Reusability of PAT version is increased. It is indicated by

the decreased value of WMC, DIT, and CBO metric. NOC

value does not change because there are no child classes

involved in both NP and PAT version. Thus, zero percent

change does not affect the reusability, unless if the change is

positive.

Modifiability of PAT version is increased. It is indicated

by the decreased value of WMC, CBO, RFC, LCOM, NOM,

SIZE1, and SIZE2 metric. The maximum value of RFC is

increased because class in PAT version contains more

methods than NP version. However, the total number of

classes in PAT version is less than NP version. That explains

why the sum value is decreased.

Testability of PAT version is increased. It is indicated by

the decreased value of CBO and RFC. Both metrics are

decreased by 66.67% and 65.09% respectively.

Figure 13. Relative Change of Metrics on Data Source Layer.

In NP version, this layer consists of 19 methods and 12 of

them are duplicates. Thus, 63.15% of the method in this

version is duplicates. PAT version of this layer is also able to

reduce the duplicated methods to a great extent as in domain

layer. PAT version is also able to improve the maintainability

to a great extent. It is because the duplicated methods are

eliminated. Moreover, the decrease in complexity which

represented by the metric values is decreased by more than

50%. It is a great improvement since duplicated methods

require more time and effort in doing maintenance. The

situation is graphically depicted in Fig. 13.

Domain Layer

This layer is the comparison between domain and service

layer of NP version and domain layer of PATs version.

Domain and service layer of NP version consist of six service

classes and one domain class. Four of those six service

classes are duplicated service classes. The other two are

interface class and its implementation. Domain layer of PATs

version consists of one class only. There is different number

of classes, so we cannot compare them by its mean. We use

the relative change of sum and maximum value as in the

data-source layer evaluation. We use sum and maximum

value because the class in PAT version is basically a

composite of classes from NP version.

Table 13 shows the relative change of metrics from NP to

PAT-AR on this layer. From sum point of view, the total

number of metric is decreased by 27% in average. There is

one metric value that increased, i.e. LCOM metric. The

increased value occurs because we merge the anemic

domain, service, and repository into one class. High value of

LCOM means classes should probably be splitted into two

or more subclasses. The maximum value of metric is

increased by 88.4% in average. It indicates that more effort

is needed to maintain the most complex classes in PAT-AR

version compared to NP version. However, there is only one

class that needs to be handled in PAT-AR version.

Meanwhile there are seven classes in NP version. That

explains why the sum value is decreased.

TABLE 6 RELATIVE CHANGE OF METRICS ON DOMAIN LAYER (PAT-AR)

Metric

Sum Mean Maximum

NP
PAT-

AR
ΔSum NP

PAT-

AR
ΔMean NP

PAT-

AR
ΔMax

WMC 78 33 -57.69% 11.14 33 196.15% 23 33 43.48%

DIT 7 1 -85.71% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 32 9 -71.88% 4.57 9 96.88% 10 9 -10%

RFC 205 72 -64.88% 29.29 72 145.85% 57 72 26.32%

LCOM 371 474 27.76% 53 474 794.34% 231 474 105.19%

NOM 48 32 -33.33% 6.86 32 366.67% 22 32 45.45%

SIZE1 453 255 -43.71% 64.71 255 294.04% 123 255 107.32%

SIZE2 69 46 -33.33% 9.86 46 366.67% 33 46 39.39%

-27.00%

411.01%

84.40%

Table 14 shows the relative change of metrics from NP to

PAT-DM on this layer. The relative change between these

versions is similar from the previous comparison. The sum

values are decreased by 35.31% with one increased value of

metric that is LCOM. In PAT-DM version, we merge anemic

domain and service into one class. The maximum value of

NP to PAT-DM

Sum

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

metric is increased by 63.4% in average. More effort is

needed to maintain the most complex classes in PAT-DM

version compared to NP version. However, PAT-DM

version also consist of one class only.

TABLE 7 RELATIVE CHANGE OF METRICS ON DOMAIN LAYER (PAT-DM)

Metric

Sum Mean Maximum

NP
PAT-

DM
ΔSum NP

PAT-

DM
ΔMean NP

PAT-

DM
ΔMax

WMC 78 32 -58.97% 11.14 32.00 187.18% 23 32 39.13%

DIT 7 1 -85.71% 1 1 0% 1 1 0%

NOC 0 0 0% 0 0 0% 0 0 0%

CBO 32 6 -81.25% 4.57 6 31.25% 10 6 -40%

RFC 205 61 -70.24% 29.29 61 108.29% 57 61 7.02%

LCOM 371 442 19.14% 53 442 733.96% 231 442 91.34%

NOM 48 31 -35.42% 6.86 31 352.08% 22 31 40.91%

SIZE1 453 199 -56.07% 64.71 199 207.51% 123 199 61.79%

SIZE2 69 45 -34.78% 9.86 45 356.52% 33 45 36.36%

-35.31%

352.81%

63.40%

Based on both tables, it is concluded that from sum point

of view, most of the metric values are decreased. There is

one increased metric value namely LCOM. This metric is

increased significantly because the domain logic from service

layer of NP version is moved into one class along with a

bunch of setter and getter. Thus, the communication from

classes in other layers is focused on this domain. Most of the

maximum value are also increased which mean that the

maximum complexity of the class is increased. Maximum

value of CBO is decreased because coupling from those

duplicated classes is now focused only on domain model in

domain layer of PATs version.

As discussed earlier, the amount of effort needed to

maintain the most complex classes in NP version is less than

any of pattern version. However, the amount of effort to

maintain the whole classes of NP version is more than any of

PAT versions. The results indicates that PAT-DM version is

better than PAT-AR version.

Modularity of both PATs is increased. It is indicated by

the decreased value of WMC and CBO metric. The sum

value is decreased in both of pattern versions. In PAT-AR

version, the value is decreased by 57.69% and 71.88%

respectively. In PAT-DM version, the value is decreased by

58.97% and 81.25% respectively. The maximum values of

WMC are increased in both pattern versions, thus it requires

more time and effort to maintain the most complex class.

However, pattern versions only consist of one class

respectively. So, they still require less time and effort in

maintaining their class compared to all classes in NP version.

Reusability of both PATs versions is increased. It is

indicated by the decreased value of WMC, DIT, and CBO

metric. NOC metric remains unchanged in pattern versions.

It is because there are no changes which involve child classes

in all three versions.

Modifiability of both pattern versions is still unclear

whether it is increasing or decreasing. Although WMC,

CBO, RFC, NOM, SIZE1, and SIZE2 metric values are

decreased, there is an increasing value which is LCOM

metric. As mentioned earlier, lack of cohesion means the

class should probably be splitted into two or more

subclasses. Since we follow the pattern, we cannot split that

class. It is not safe to conclude that modifiability is increased

just because most of the metric values related to modifiability

are decreased. We cannot measure the impact of LCOM

metric on other metrics related to modifiability. Thus, future

experiment is needed to make the impact more clearly.

Testability of both PATs versions is increased. It is

indicated by the decreased value of CBO and RFC metric. In

PAT-AR version, the value is decreased by 71.88% and

64.88% respectively. In PAT-DM version, the value is

decreased by 81.25% and 70.24% respectively. The

maximum value of RFC is increased in both versions by

26.32% and 7.02% respectively. RFC is increased because

the total number of methods in a class is greatly increased.

However, since any of pattern versions has only one class,

the total complexity by RFC metric is still less than NP

version.

Figure 14. Relative Change of Metrics on Domain Layer.

In NP version, this layer consists of 26 methods and 16 of

them are duplicates. Thus, 61.54% of the method in this

version is duplicates. Any of the pattern versions managed to

reduce that value down to zero. Based on the case study,

PATs versions are able to eliminate the duplicated methods

to a great extent regardless of how many they are. On

modularity, reusability, and testability sub-attribute, PATs

versions are able to improve them to a great extent. The total

metric values are decreased by more than 50% of the original

complexity. Moreover, there are no more duplicated

methods to work with. However, because the modifiability

sub-attribute is still unclear, we conclude that the

maintainability of pattern versions in this layer is increased to

a certain extent. The situation is graphically depicted in Fig.

14 above.

VI. ANALYSIS AND DISCUSSION

We analyze the relative change of each metric based on

viewpoints of the metrics. The discussion is divided based on

its layer.

A. WMC

Table 15 shows the relative change of WMC metric. On

presentation and data-source layer, most of the relative

change of this metric is negative which mean that the

complexity is decreased. More effort is required if this value

gets bigger and vice versa. It shows that the effort to

maintain the PATs version is less than NP version. Also,

PATs version is less application specific than NP version,

NP to PAT-AR

NP to PAT-DM

PAT-AR to

PAT-DM

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

thus increasing the possibility of reuse.

On domain layer, sum of the metric is decreased.

However, maximum value of the metric is increased. In

general, there are fewer classes to maintain in PATs version

and it is free from duplicated code. However, fewer classes

in PATs version have a higher complexity.

The results conclude that the number and complexity of

methods that involved is become a predictor. It predicts the

time and effort and is required to develop and maintain the

class. Large number of methods makes a greater potential

impact on children. Children are inheriting all the methods

which defined in the class. Classes with large numbers of

methods limit the possibility of reuse.

TABLE 8 RELATIVE CHANGE OF WMC METRIC

Layer Sum Mean Max

Overall -22.01% 26.73% 0%

Presentation -0.5% -0.5% 0%

Data-source -60.53% 18.42% 0%

Domain -58.97% 187.18% 39.13%

B. DIT

Table 16 shows the relative change of DIT metrics. There

is no change that occurs in presentation layer because the

case study does not contain children classes, thus the depth

of its inheritance tree is the same. The complexity of the

class’ behavior and the potential of the inherited methods to

be reused are not change.

The same goes for data-source and domain layer. We

cannot add up the DIT metric of all classes. So, there are no

changes that occur in all three layers.

TABLE 9 RELATIVE CHANGE OF DIT METRIC

Layer Sum Mean Max

Overall -38.46% 0% 0%

Presentation 0% 0% 0%

Data-source -66.67% 0% 0%

Domain -85.71% 0% 0%

C. NOC

Table 17 shows the relative change of NOC metric. As

mentioned earlier, there is no children class in the case study.

Thus, there is no change to this metric value. Thus, the reuse

and testing requirement of the method of all layers does not

change.

TABLE 10 RELATIVE CHANGE OF NOC METRIC

Layer Sum Mean Max

Overall 0% 0% 0%

Presentation 0% 0% 0%

Data-source 0% 0% 0%

Domain 0% 0% 0%

D. CBO

Table 18 shows the relative change of CBO metric. Most

of the values are decreased except the maximum value of

data source layer. It means that the PATs version is more

modular than NP version. There are more independent

classes in PATs version. It makes the classes of PATs

version is likely easier to reuse it in another application. The

maintenance of PATs version is easier to do because the

sensitivity to change in other parts of the design is higher.

In order to improve modularity and promote

encapsulation, inter-object class couples should be kept to a

minimum. The larger the number of couples, the higher the

sensitivity to changes in other parts of the design, and

therefore maintenance is more difficult. A measure of

coupling is useful to determine how complex the testing of

various parts of a design are likely to be. The higher the

inter-object class coupling, the more rigorous the testing

needs to be.

TABLE 11 RELATIVE CHANGE OF CBO METRIC

Layer Sum Mean Max

Overall -13.11% 41.20% -8.16%

Presentation -3.9% -3.9% -8.16%

Data-source -66.67% 0% 0%

Domain -81.25% 31.25% -40%

E. RFC

Table 19 shows the relative change of RFC metric. On

presentation layer, all of the relative changes are negative. It

means that the complexity of the classes in PATs version is

lower than NP version. The testing and debugging of PATs

version are less complicated. It is because the tester does not

need much effort to understand the code.

On data source and domain layer, the relative change of

sum values are decreased which means the complexity of all

classes is decreased. However, the maximum complexity of

all classes is increased. Although testing and debugging

involves fewer classes, some of them are more complicated

than NP version.

The results conclude that if a large number of methods can

be invoked in response to a message, the testing and

debugging of the class becomes more complicated since it

requires a greater level of understanding required on the part

of the tester. The larger the number of methods that can be

invoked from a class, the greater the complexity of the class.

A worst case value for possible responses will assist in

appropriate allocation of testing time.

TABLE 12 RELATIVE CHANGE OF RFC METRIC

Layer Sum Mean Max

Overall -12.29% 42.54% -0.44%

Presentation -0.14% -0.14% -0.44%

Data-source -65.09% 4.72% 3.45%

Domain -70.24% 108.29% 7.02%

F. LCOM

Table 20 shows the relative change of LCOM metric.

Most of the relative change in presentation and data-source

layer is decreased while the maximum values are not change.

It means the cohesiveness on PAT version is higher than NP

version. Lack of cohesion increases the complexity of the

software. It increases the probability of errors during the

development phase. Thus, the complexity of PATs version is

lower than NP version.

On domain layer, the relative change of LCOM is

increased. It seems that PATs version is lack of cohesiveness

and the complexity is increased. The increased value of

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

LCOM on domain layer of PATs version indicates the

classes should probably be split into two or more subclasses.

However, based on object-oriented programming principal,

domain model should contain data and its behavior. So, it is

very reasonable that the complexity from setter and getter

class to the class which has data and behavior is increased.

Moreover, there are no standard of how much metric value is

considered to be high or low.

TABLE 13 RELATIVE CHANGE OF LCOM METRIC

Layer Sum Mean Max

Overall 4.45% 69.73% 91.34%

Presentation -0.88% -0.88% 0%

Data-source -58.82% 23.53% 0%

Domain 19.14% 733.96% 91.34%

G. NOM

Table 21 shows the relative change of NOM metric. On

presentation layer, there is no change of this metric. The

number of method from NP to PATs version remain the

same. Thus, there is no change in class complexity.

On data-source layer, the relative change of sum value is

decreased. It means PATs version has fewer methods than

NP version. The number of methods is decreased because we

have eliminated the duplicated classes and methods.

On domain layer, the relative change of sum value is also

decreased because of the duplicated methods and classes.

Maximum value of the metric is increased. However, we

have only one class in domain layer without duplication

despite the complexity is increased.

TABLE 14 RELATIVE CHANGE OF NOM METRIC

Layer Sum Mean Max

Overall -11.69% 43.50% 0%

Presentation 0% 0% 0%

Data-source -63.16% 10.53% 0%

Domain -35.42% 352.08% 40.91%

H. SIZE1

Table 22 shows the relative change of SIZE1 metric. Size

(LOC) of classes in presentation and data-source layer is

decreased. It is caused by the duplicated classes which have

been removed in PATs version. The more LOC the class has,

then the bigger the effort to maintain the class.

Total line of code in domain layer also decreased because

of the duplicated classes. However, maximum LOC of one

class is increased because domain model class of PATs

version contains both data and behavior instead of a bunch of

setter and getter only.

TABLE 15 RELATIVE CHANGE OF SIZE1 METRIC

Layer Sum Mean Max

Overall -8.44% 48.79% -1.23%

Presentation -2.25% -2.25% -1.23%

Data-source -65.2% 4.39% -5.26%

Domain -56.07% 207.51% 61.79%

I. SIZE2

Table 23 shows the relative change of SIZE2 metric. The

change in sum value of presentation and data-source layer

are decreased and there are no changes in its maximum

value. It means the total number of methods and number of

attributes in PATs version is decreased, thus the complexity

is also decreased.

TABLE 16 RELATIVE CHANGE OF SIZE2 METRIC

Layer Sum Mean Max

Overall -11.28% 44.17% 0%

Presentation -2.27% -2.27% 0%

Data-source -63.64% 9.09% 0%

Domain -34.78% 356.52% 36.36%

On domain layer, total number of methods and number of

attributes is decreased. However, maximum value of the

metric is increased because of the domain model in PATs

version consist of both data and behavior.

VII. THREATS TO INTERNAL VALIDITY

This study uses AIS of ITS as a case study. It contains

anemic domain models that cause code duplications in

service and repository layer. Without the existence of those

duplicated codes, the patterns usage may not improve the

maintainability to the extent of the results of this study. We

may also need other methods to evaluate if there are no

duplicated codes in both versions and the standard deviation

value is bigger than its mean.

VIII. CONCLUSION AND FUTURE WORK

This is a quantitative study to assess the impact of PoEAA

on software maintainability. We use AIS of ITS as a case

study. AIS is considered as an Anemic Domain Model

because the domain model does not contain its behavior.

There are five phases which are used in this study. We use

nine software metrics to measure the complexity and to

predict the software maintainability. There are two design

patterns that are used in this study. We use Domain Model as

its Domain Logic Pattern. We apply Active Record as well as

Data Mapper as its Data Source Architectural Pattern. In the

evaluation phase, we calculate the relative change of each

metric and evaluate it based on its layer and viewpoints of

the metrics.

We compare the measurement results of NP and PATs

version based on three layers, i.e. presentation, domain, and

data-source. The result is that PoEAA could fix the anemic

domain model of AIS. In general, the complexity is

decreased as an indicator that the maintainability is increased

especially in presentation layer. PoEAA also eliminates the

duplicated methods in service and repository layer of NP

version of AIS. However, there are several drawbacks as

follows.

1) While duplicated classes are eliminated, the maximum

complexity value of related layer is increased. The

increased complexity occurs in several classes of PATs

version.

2) There is lack of cohesion in domain layer of PATs

version. The value of LCOM metric is increased, which

mean the complexity is increased. However, the

increased value is reasonable since domain layer holds

both data and behavior instead of setter and getter only.

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

In future work, we need to strengthen this evidence by

conducting an experiment which involve volunteers to

maintain AIS. Thus, we can investigate the correlation

between the value of software maintainability metrics and the

software maintenance activities.

ACKNOWLEDGMENT

Thanks to the parties who have assisted the

implementation of this research.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Pearson Education,

1994.

[2] J. Gonzalez-Sanchez, M. E. Chavez-Echeagaray, R. Atkinson, and W.

Burleson, “Affective computing meets design patterns: A pattern-

based model for a multimodal emotion recognition framework,” in

EuroPLoP ’11 Proceedings of the 16th European Conference on

Pattern Languages of Programs, 2012.

[3] M. Ali and M. O. Elsih, “A Comparative Literature Survey of Design

Patterns Impact on Software Quality,” in Proceeding of the

International Conference on Information Science and Applications

(ICISA), 2013, pp. 1–7.

[4] A. Christopoulou, E. A. Giakoumakis, V. E. Zafeiris, and V. Soukara,

“Automated refactoring to the Strategy design pattern,” Inf. Softw.

Technol., vol. 54, no. 11, pp. 1202–1214, 2012.

[5] T. Muraki and M. Saeki, “Metrics for Applying GOF Design Patterns

in Refactoring Processes,” in Proceedings of the 4th international

workshop on Principles of software evolution - IWPSE ’01, 2002, p.

27.

[6] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford,

Patterns of Enterprise Application Architecture. Addison Wesley,

2002.

[7] S. Rochimah, U. L. Yuhana, and A. B. Raharjo, “Academic

Information System Quality Measurement Using Quality Instrument :

A Proposed Model,” in 2014 International Conference on Data and

Software Engineering, ICODSE 2015 - Proceeding, 2014, pp. 1–6.

[8] S. Rochimah, H. I. Rahmani, and U. L. Yuhana, “Usability

characteristic evaluation on administration module of Academic

Information System using ISO/IEC 9126 quality model,” in 2015

International Seminar on Intelligent Technology and Its Applications,

ISITIA 2015 - Proceeding, 2015, pp. 363–368.

[9] F. Handani and S. Rochimah, “Relationship Between Features

Volatility And Software Architecture Design Stability In Object-

Oriented Software : Preliminary Analysis,” in 2015 International

Conference on Information Technology Systems and Innovation,

ICITSI 2015 - Proceeding, 2015, pp. 1–5.

[10] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state

of the art on GoF design patterns: A mapping study,” J. Syst. Softw.,

vol. 86, no. 7, pp. 1945–1964, 2013.

[11] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, “A methodology to

assess the impact of design patterns on software quality,” Inf. Softw.

Technol., vol. 54, no. 4, pp. 331–346, 2012.

[12] ISO/IEC 25010, “Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - System

and software quality models.” 2011.

[13] W. Li and S. Henry, “Object-Oriented Metrics that Predict

Maintainability,” J. Syst. Softw., vol. 23, no. 2, pp. 111–122, 1993.

[14] U. L. Yuhana, I. Saptarini, and S. Rochimah, “Portability

characteristic evaluation Academic information System assessment

module using AIS Quality Instrument,” in ICITACEE 2015 - 2nd

International Conference on Information Technology, Computer, and

Electrical Engineering Proceedings, 2016, pp. 133–137.

[15] Sugiyanto, S. Rochimah, and Sarwosri, “The improvement of software

quality model for academic websites based on multi-perspective

approach,” J. Theor. Appl. Inf. Technol., vol. 86, no. 3, pp. 464–471,

2016.

[16] M. Fowler, “Anemic Domain Model,” 2003. [Online]. Available:

https://martinfowler.com/bliki/AnemicDomainModel.html. [Accessed:

06-Jul-2017].

[17] A. Ampatzoglou, A. Kritikos, G. Kakarontzas, and I. Stamelos, “An

empirical investigation on the reusability of design patterns and

software packages,” J. Syst. Softw., vol. 84, no. 12, pp. 2265–2283,

2011.

[18] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object

Oriented Design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–

493, 1994.

[19] D. Spinellis, “Tool writing: A forgotten art?,” IEEE Softw., vol. 22, no.

4, pp. 9–11, 2005.

[20] Leys, C. et al., "Detecting Outliers: Do not Use Standard Deviation

around the Mean, Use Absolute Deviation around the Median,"

Journal of Experimental Social Psychology, 49(4), pp.764–766, 2013.

[21] Bennett, J. & Briggs, W., Using and Understanding Mathematics: A

Quantitative Reasoning Approach (3rd ed.), Boston: Pearson. 2005.

Siti Rochimah is currently a senior lecturer in Department of Informatics

Institut Teknologi Sepuluh Nopember, Surabaya Indonesia, and serves as

Head of Software Engineering Laboratory. Her areas of expertise are

software evolution, software quality, and software engineering in general.

She completed his doctorate degree from Universiti Teknologi Malaysia in

2010. She became a Member of IAENG in March 2013.

I Made B. Gautama is currently a junior lecturer in Department of

Informatics, STIKOM BALI Indonesia. He was one of the best alumnus of

Graduate Programme, Department of Informatics Institut Teknologi Sepuluh

Nopember, Surabaya Indonesia. His areas of expertise are software

evolution, software quality, and software engineering in general. He

completed his master degree in 2018.

Rizky J. Akbar is currently a lecturer in Department of Informatics Institut

Teknologi Sepuluh Nopember, Surabaya Indonesia. His areas of expertise

are programming, design pattern, and software architecture. He completed

his master degree from Ritsumeikan University Japan in 2014. He became a

Member of IAENG in 2014.

IAENG International Journal of Computer Science, 46:2, IJCS_46_2_16

(Advance online publication: 27 May 2019)

__

