
 

  
Abstract—Hyperspectral unmixing (HU) has been widely 

used to address the mixed-pixel problem in the quantitative 
analysis of hyperspectral remote sensing images, in which 
endmember extraction plays a very important role. In this paper, 
a two-stage algorithm is presented for endmember extraction. 
The first stage aims at finding pure endmembers that have pure 
pixel representations in the hyperspectral scene. At first, 
pure-pixel-based endmember extraction algorithms are 
exploited to find the spectrally pure pixels directly from 
hyperspectral images as initial pure pixel candidates, and then 
local spatial-spectral information is utilized to determine pure 
endmembers. The second stage aims at generating virtual 
endmembers (not necessarily present in the set comprised by 
input data samples). We extend the original nonnegative matrix 
factorization (NMF) unmixing model to incorporate endmember 
a priori information, and then use the extended NMF method to 
generate virtual endmembers. Experimental results with both 
simulated and real hyperspectral data sets have validated the 
effectiveness of our method and have demonstrated that the 
known endmember information is beneficial to the extraction of 
other unknown endmembers. 
 

Index Terms—Hyperspectral unmixing, endmember 
extraction, spatial information, nonnegative matrix 
factorization 
 

I. INTRODUCTION 
YPERSPECTRAL imaging has become one of the most 
powerful and fastest growing technique in remote 

sensing. Its benefits and advantages come from its use of as 
many as hundreds of narrow and contiguous spectral bands 
from the visible region through the infrared region. However, 
because of the limited spatial resolution of the sensors, e.g., 
NASA’s Airborne Visible/ Infrared Imaging Spectrometer 
(AVIRIS) has 20-m ground resolution when flown at high 
altitude (20km), more than one type of material can be present 
in a single pixel, these pixels are called mixed pixels, whereas 
pixels with only one type of material present are called pure 
pixels. The wide existence of mixed pixels is a common 
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problem associated with hyperspectral images [1], which 
makes it hard to apply the traditional pixel level methods in 
certain domains such as identification and detection of ground 
targets. Hyperspectral unmixing (HU) is a key technique of 
mixed pixel processing, it aims to decompose the mixed pixel 
into a set of pure constituent spectra (called endmembers 
signatures) and their corresponding fractional abundances [2]. 
HU involves two steps: endmember extraction and abundance 
estimation. Endmember extraction aims to identify the 
endmember signatures from hyperspectral data, and 
abundance estimation aims to infer the proportions of 
different endmembers in forming each pixel. Endmember 
extraction is a very challenging task due to the intrinsic 
complexity of remote sensing images and the lack of priori 
knowledge. 

In recent years, a number of endmember extraction 
methods have been developed, where many of them search for 
distinctive image pixels from hyperspectral scene as 
endmember signatures. These method usually implicitly 
assume that the input hyperspectral data set contains at least 
one pure pixel for each distinct material present in the scene. 
Therefore, a search procedure aimed at finding the most 
spectrally pure signatures in the input scene is feasible. 
Techniques include, among many others [2], the pixel purity 
index (PPI) algorithm [3], the N-FINDR algorithm [4], the 
vertex component analysis (VCA) algorithm [5], and the 
simplex growing algorithm (SGA) [6]. These algorithms 
exploit the geometrical fact that, under the linear mixing 
model, the observed pixel vectors in a given scene belong to a 
simplex set whose vertices correspond to the endmembers. 
Therefore, finding the endmembers is equivalent to identify 
the vertices of the referred to simplex. The well-known 
N-FINDR algorithm is based on a criterion that the volume of 
simplex formed by the purest pixels is maximum, and fulfills 
this criterion by inflating the simplex inside the data set. The 
original N-FINDR algorithm is implemented in the parallel 
mode, and the SGA algorithm is its sequential version. PPI 
and VCA are to orthogonally project data samples on a set of 
selected vectors so that the data samples whose orthogonal 
projections fall at the end (extreme) points of these selected 
vectors will be considered as endmember candidates. 

Although the pure-pixel-based algorithms have been quite 
successful when pure pixel are present in the original 
hyperspectral image, for the case of highly mixed data, this 
assumption may be seriously violated. In order to deal with 
this important issue, other methods have been proposed that 
do not assume the presence of pure signatures in the input data. 
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Instead, these methods aim at generating virtual endmembers 
(not necessarily present in the set composed of input data 
samples and most likely without physically meaningful 
spectral signatures). Techniques in this category include 
volume minimization approaches inspired by minimum 
volume transform (MVT) algorithm [7], such as minimum 
volume simplex analysis (MVSA) [8], simplex identification 
via variable splitting and augmented Lagrangian (SISAL) [9], 
and the minimum-volume enclosing simplex (MVES) [10]. 

Nonnegative matrix factorization (NMF) based unmixing 
algorithm is another branch of non-pure-pixel-based 
algorithm. NMF was originally proposed for object 
recognition and has also attracted much attention [11]–[13]. It 
aims to decompose the observation matrix into a product of 
two nonnegative matrices, corresponding to the endmember 
matrix and abundance matrix, respectively. NMF-based 
techniques have no requirement for existence of pure pixels 
and seem to be very attractive for unmixing hyperspectral data. 
However, NMF is a non-convex problem that may fall into 
local minima and is strongly influenced by the initialization 
step. A typical solution is to impose the auxiliary constraints 
on the NMF model. Miao and Qi [14] introduced the 
minimum volume constraint into NMF model for 
unsupervised endmember extraction. Jia and Qian [15] 
proposed to force the smoothness of the endmember and the 
abundance. Wang et al. [16] set spectra signature dissimilarity 
as the constraint on endmembers. 

Apart from the aforementioned algorithms, there is another 
kind of unmixing algorithm that takes both spectral and 
spatial information into account to improve the quality of 
extracted endmembers, such as the automatic morphological 
endmember extraction (AMEE) algorithm [17], the 
spatial-spectral endmember extraction (SSEE) algorithm [18], 
the spatial purity based endmember extraction(SPEE) 
algorithm [19], the superpixel endmember detection 
algorithm [20], a region-based spatial preprocessing (RBSPP) 
approach [21], and spatial preprocessing (SPP) using a 
sliding-window approach [22]. The first four approaches are 
endmember extraction algorithms themselves, whereas the 
latter two approaches are preprocessing modules that can be 
applied prior to any other endmember extraction algorithm. 

As mentioned above, these algorithms either find pure 
pixels directly from remote sensing images as desired 
endmembers assuming the presence of at least one pure pixel 
of each endmember in the data or generate virtual pixels 
(signatures) as desired endmembers without pure-pixel 
assumption. However, what happens in real scene is that some 
widespread materials have pure pixel representations, while 
the other less wide-spread materials only have mixed pixel 
representations. Therefore, we consider integrating the 
pure-pixel-based methods and non-pure-pixel-based methods 
for improving the accuracy of endmember extraction.  

In this paper, we present a novel endmember extraction 
algorithm, which incorporate the pure-pixel-based 
endmember extraction procedure into the NMF unmixing 
scheme, referred to as the pure pixel identification based 
NMF (PPI-NMF) algorithm. The proposed PPI-NMF 
algorithm involves two stages. The first stage aims at finding 
the spectrally pure pixels directly from data set. We first 
perform the traditional pure-pixel-based endmember 

extraction algorithm to find pure pixel candidates, which 
contains pure pixels and/or “purest” mixed pixels. Then, local 
spatial information is utilized to refine the pure pixel 
candidates to pure endmembers. The second stage aims at 
producing virtual endmembers by performing the NMF-based 
unmixing method. In order to effectively use the extracted 
pure endmembers, we extend the original NMF unmixing 
model to incorporate endmember a priori information. 

The remainder of this paper is organized as follows. 
Section II introduces the linear mixture model and NMF 
briefly. Section III details the proposed algorithm. Results on 
synthetic and real-world data are reported in Sections IV. 
Finally, we present our conclusion in Section V. 

II. RELATED WORKS 
Before giving the derivation of our proposed approach, two 

basic concepts, linear mixture model and nonnegative matrix 
factorization are first introduced in this section. 

A. Linear Mixture Model(LMM) 
LMM, as the simplest and most widely used model for 

hyperspectral data analysis, assumes that the spectral 
signature of an image pixel can be represented by linear 
mixtures of a finite number of endmembers and the linear 
coefficient of each endmember is its abundance. Given a 
hyperspectral data set with P endmembers, an observed pixel 
x can be written as 
 x Ms e   (1) 
where M is an L×P matrix (m1, …, mi, …, mP), in which mi is 
an L×1 column vector representing the spectral signature of 
the ith endmember. s is a P×1 column vector(s1, …, si, …, sP)T 
for abundances. The last term e takes into account possible 
errors and sensor noises. Because spectral responses of 
endmmebers and their abundance in each pixel cannot be 
smaller than zero, nonnegativity constraint (i.e., s 0i  ) is 
generally imposed on abundance vector s. Moreover, 
sum-to-one constraint (i.e., 

1
s=1P ) are generally imposed 

on abundance vector s for physical consideration. 
Using matrix notation, the aforementioned mixing model 

for the N pixels in the image can be rewritten as 
 X MS E +   (2) 
where matrices L NR ×∈X , P NR ×∈S , and L NR ×∈E  represent 
the hyperspectral image, the abundance matrix and the error 
matrix, respectively. 

B. Nonnegative Matrix Factorization 
NMF is a matrix factorization algorithm that focuses on the 

analysis of data matrices whose elements are nonnegative. 
Given a nonnegative matrix L NR ×∈X , NMF aims to find two 
nonnegative matrices L PR ×∈M  and P NR ×∈S  whose product 
can well approximate the original matrix X: 
 X MS  (3) 
A comparison between models in (2) and (3) clearly shows 
the potential of applying NMF to a HU problem. 

One natural way to solve the NMF problem is to formulate 
an optimization problem by minimizing the Euclidean 
distance between X and MS (i.e., the difference between 
hyperspectral image data X and the reconstructed image MS). 
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Therefore, an objective function can be defined as follows 

 2

,

1min ( , )
2 Ff

M S
M S X MS   (4) 

where ||•|| represents the Frobenius norm. 
Although the minimization problem is convex in M and S 

separately, it is not convex in both simultaneously. In order to 
minimize it, Lee and Seung developed multiplicative update 
rules that are guaranteed to converge to local optima under the 
nonnegative constraints of two factorized matrices [13]. In 
this paper, we also use the multiplicative update rules for the 
NMF unmixings of X, which are given as follows: 
 . .T TM M XS MSS   (5) 

 . .T TS S M X M MS   (6) 
where (•)T is the transpose of the matrix, “.∗ ” and “./” are 
MATLAB notations, representing elementwise matrix multi- 
plication and division, respectively.  

III. THE PROPOSED METHOD 
Based on the analysis mentioned in Section I, the proposed 

PPI-NMF algorithm can be divided into the following steps: 1) 
identifying pure endmembers by performing traditional 
pure-pixel-based endmember extraction algorithm with 
spatial information; 2) generating virtual endmembers by the 
modified NMF algorithm. 

A. Identifying Pure Endmembers 
The pure-pixel-based endmember extraction algorithm 

aims to identify the spectrally pure pixels as the endmembers 
and performs well for the case of presence of pure signatures. 
When some of endmembers do not have pure pixel 
representations, it only finds the “purest” mixed pixels 
available in the scene as desired endmembers. This is to say 
that the endmembers extracted by pure-pixel-based 
endmember extraction algorithm contain both pure and mixed 
pixels, leading to degenerate the accuracy of endmembers. 

As shown in the spatial-spectral endmember extraction 
algorithm [17]–[22], spatial information can be used as a 
guide to effectively identify spectrally pure pixels. Generally, 
pure pixels are more likely to be present in spatially 
homogeneous areas, and the variance of pixels presented in 
the homogenous area is very small. In other words, if a 
candidate pixel locate in a homogeneous area covered by only 
one type material, it can be select as the pure endmembers for 
endmember extraction.  

 With the aforementioned design principle in mind, in this 
work we develop a pure pixels identification scheme which 
integrates spatial and spectral information into the process of 
endmember extraction.  

The first step is to obtain the initial pure pixel candidates. 
This task is fulfilled using pure-pixel-based endmember 
extraction algorithms, such as PPI, VCA, NFINDR, and SGA. 
It should be noted, however, that the final sets of endmembers 
produced by first three algorithms in different runs are usually 
not consistent. One possible solution is to run the algorithm 
many times and choose the pure candidates according to their 
frequency of occurrence. 

The second step aims to identify pure endmembers from the 
initial pixel candidates obtained in the first step. As 
mentioned above, the spectral signatures of pixels from 

homogeneous ground objects presenting in adjacent areas are 
very similar, and vice versa. Therefore, whether a pixel 
locates at the spatially homogeneous area can be judged by 
the spectral similarity between itself and its spatial adjacent 
pixels inside the region delimited by the window with a size of 
k × k pixels. 

Several pointwise distances metric can be considered in 
order to compute the spectral similarity. In this paper, we have 
used the spectral angle distance (SAD) [1], which is a 
well-known metric for hyperspectral data processing. SAD 
can be used to measure the spectral similarity between two 
pixel vectors as follows: 

 ( )SAD , =arccos
⋅x x

x x
x x

i j
i j

i j

 (7) 

where xi and xj are two spectral vectors. It should be noted that 
SAD is given by the spectral angle formed by n-dimensional 
vectors (in radians). The low SAD scores mean high spectral 
similarity between the compared vectors. Therefore, we 
consider that the pixel locates at the spatially homogeneous 
area when the SAD of the pixel and its neighbors is less than 
the given threshold θ. 

In the final step, principal component analysis (PCA) is 
performed on homogeneous areas to discriminate pure from 
mixed. In general, if the homogenous pixels are pure, i.e., 
only one endmember exists in the homogenous area, the first 
principal component will be the dominant component 
whereas the other principal components come as a result of 
local spectral variability. Therefore, the first eigenvalue is 
much greater than the other eigenvalues. On the contrary, 
when the homogenous pixels are mixed, there exists more 
than one dominant component corresponding to several 
ground objects. As a consequence, pure homogeneous area 
can be determined in terms of the variance ratio contribution 
of the first principal component. 

Suppose C is the covariance matrix of mean-subtracted 
pixels in a homogenous area, the PCA of the spectra data can 
be denoted as follows: 
 [ , ] PCA( )E D C  (8) 
where D is a diagonal matrix whose diagonal elements are the 
eigenvalues of C sorted in descending order and E correspond 
to their eigenvectors. Assume there are k eigenvalues in the 
PCA of a homogeneous area, the variance ratio contribution 
of the first principal component (denoted by vrc) can be 
described as follows: 

 11

1
k
i ii

dvrc
d




 (9) 

where dii is the ith eigenvalue. 
According to the vrc defined in (9), the variance ratio 

contribution of the first principal component of pure and 
mixed homogeneous area obtained by pure-pixel-based 
endmember extraction algorithms have significant differences. 
Therefore, it is much easier to set the threshold and to 
determine pure endmembers by comparing the variance ratio 
contribution of the first principal component with the 
predefined threshold. In order to reduce the effects of noise 
and to average out the subtle spectral variability of a given 
class, pure homogeneous pixels are averaged to produce the 
final endmembers. 
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B. Generating Virtual Endmembers 
In this section, NMF framework is used to generate virtual 

endmembers which only have mixed pixel representations. 
Since pure endmembers have been extracted, we can expect to 
obtain better endmember extraction results by using such 
endmembers information for hyperspectral unmixing. In 
order to accomplish this goal, we extend the original NMF 
model to incorporate the endmember a priori information. 

(1) Cost Function 
We assume that p pure endmembers have been extracted in 

the process of pure endmember identification. To make full 
use these pure endmembers, we add a regularizer into NMF 
model. Suppose U = [u1, …, up, 0, …, 0] is an L × P matrix 
whose first p columns denote the pure endmember vectors and 
the rest of them are (P – p) zero column vectors. Then, we 
propose to solve the following optimization problem: 

 
2 2

,

1 1min  ( , )
2 2

s.t. 0, 0

F Ff λ
M S

M S X MS U MQ

M S

   

 
 (10) 

where λ ≥ 0 is a regularization parameter which weights the 
contribution of the pure endmembers, and Q is a P × P matrix 
defined as follows: 

 
I 0

Q
0 0
 
    

 (11) 

where I is the p × p identity matrix. 
The first term in (10) is the same as the reconstruction error 

in the NMF model in (4). The second term (i.e., regularizer) is 
proposed to make full use of the known endmembers 
information. In practical applications, if we confirm that some 
materials in the spectral library are known to exist in the 
hyperspectral scene, the matrix U in second term can be 
directly constructed using spectral signatures in the library. 

(2) The Update Rules 
To solve the formulated optimization problem, we adopt 

the multiplicative update rule stated in [12]. When applied to 
(9), the update rules of our proposed approach can be 
formulated as follows: 
    . .T T T TλM M XS UQ MSS MQQ     (12) 

 . .                                      T TS S M X M MS   (13) 
In order to take care of sum-to-one constraint, we adopt a 

simple but effective method stated in [23]. We augment the 
data matrix X and the endmember matrix M by a row of 
constant denoted by 

     T T
N Pδ δ

X M
X M

1 1

   
       

  
 (14) 

where 1N(1P) is a N(P)-dimensional column vector of all 1s, 
and δ is a positive number to control the effect of the 
sum-to-one constraint on the abundance matrix S. As δ 
increases, the columns of S are forced to approach the 
sum-to-one constraint. In our experiments, we set δ to 10. 

(3) The Initialization and Stopping Conditions 
The initialization of the NMF procedure for unmixing can 

seriously affect the accuracy of the results. In this paper, VCA 
method [5] is used to generate the initial endmember matrix. 
After that, the initialization of the abundance matrix is 
estimated by the well-known fully constrained least square 
(FCLS) spectral unmixing algorithm [23]. 

 
 
Fig. 1.  Flowchart of the proposed PPI-NMF method. 
 

The procedure of NMF should be stopped when a 
stationary point is reached. Two stopping criteria are used in 
our implementation. The first one is the maximum iteration 
number which is set to 1000. The second one is the gradient 
difference of the objective function between the current and 
the previous iterations: 
    1 1, ,i i i if fεM S M S   (15) 

where ɛ is set to 10−4 in the experiments. Once either of these 
criteria is met, the optimization process terminates. 

(4) The process of the constrained NMF algorithm 
Based on the above statement and analysis, the procedure 

of the proposed NMF algorithm is summarized as follows. 
 

Algorithm 1: 
Data: Hyperspectral image X 
Initialization: Endmember matrix M, abundance matrix 
S, known endmember matrix U and auxiliary matrix Q. 
while stop conditions are not met do 

1. Augment X and M to X and M ; 
2. Update M by Equation (12); 
3. Update S by Equation (13). 

end 
Output: M and S 

 
C. The Proposed PPI-NMF Algorithm 
Based on the proposed pure pixel identification algorithm 

and the constrained NMF algorithm, a general flowchart of 
PPI-NMF is depicted in Fig.1. The input of the PPI-NMF 
algorithm is the whole hyperspectral image. At first, pure- 
pixel-based endmember extraction algorithm are performed 
to find the spectrally pure pixels as initial pure pixel 
candidates. Since the initial pure pixel candidates may contain 
both pure and mixed pixels, the spectral angle distance and 
principal component transform are then utilized to 
discriminate the pure from mixed in the candidate set, and 
these pure pixels are selected as the pure endmembers. Finally, 
a constrained NMF algorithm with pure endmember 
information is performed to generate the virtual endmembers. 
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IV. EXPERIMENTS AND ANALYSIS 
In order to validate the proposed PPI-NMF algorithm, a 

number of experiments were performed on synthetic data as 
well as the real hyperspectral data. We also compared it 
against several baseline HU algorithms, including VCA, SGA, 
SISAL and MVC-NMF. Since VCA, SGA, and SISAL are 
only designed for endmember extraction, which cannot 
estimate the abundances, FCLS is adopted to infer the 
abundance fractions. In the following, the combined process 
of VCA (SGA and SISAL) and FCLS are referred to as 
VCA+FCLS (SGA+FCLS and SISAL+FCLS). For our 
proposed PPI-NMF algorithm and MVC-NMF, SGA and 
FCLS are used to obtain initial endmember matrix and 
abundance matrix respectively. In addition, VCA and SGA 
algorithms are used to obtain initial pure pixel candidates in 
PPI-NMF algorithm, and the corresponding algorithms are 
marked as PPI-NMF (VCA) and PPI-NMF (SGA). 

In the experiments, two metrics are used to evaluate the 
performance of different methods. The first metric is SAD, 
which is defined in (7), it is usually adopted to evaluate the 
similarity between true and extracted endmembers. The 
second metric used in this work is the root mean square error 
(RMSE) between the original and a reconstructed version of 
the hyperspectral scene. The RMSE is often used to compare 
the accuracy of the abundance estimation. It is defined as 
follows: 

 
1

2 21 ˆRMSE =i N
 − 
 

S Si i  (15) 

where Ŝi is the reference abundance matrix for ith endmember. 
Generally speaking, the smaller the RMSE is, the more the 
estimation approximates the truth. 

A. Experiments with Synthetic Data 
We first evaluate and analyze the proposed method on 

synthetic data. To generate the synthetic data, a set of spectral 
signatures are chosen from the United States Geological 
Survey (USGS) digital spectral library [24]. The selection of 
endmember signatures is arbitrary as long as they are linearly 
independent. To simulate possible errors and sensor noise, 
zero-mean Gaussian noise is added to synthetic data. The 
signal-to-noise ratio (SNR) is defined as 

 10
( )SNR 10log
( )

T

T
E
E

x x
ε ε

  (16) 

where ε is the noise vector, and E(·) stand for mathematical 
expectation operator. The default setting of SNR is 30 on the 
synthetic data. 

The synthetic image was generated in a similar way as in 
[14] through the following procedure. 
(1). The synthetic image contains 64 × 64 pixels, which is 

divided into units of 8 × 8 small panels. The pixels 
within each panel are pure and have the same type of 
ground cover, randomly selected as one of the 
endmember signatures. 

(2). Fifty dB zero-mean Gaussian noises are added to the 
pixels in each panel to simulate local spectral variability. 

(3). A simple 9 × 9 low-pass filter is used to generate mixed 
data. 

(4). (8 – p) spectral signatures are chosen as the virtual 
endmember signatures. To remove pure pixels, we 
replace all the pixels in which abundances of the virtual 

endmembers are larger than the given mixing level 
(denoted by purity, which is the highest abundance of 
the virtual endmembers) with a mixture made up of all 
endmembers of equal abundances. 

(5). Zero-mean Gaussian noises are added to the whole 
image to simulate contributions from ambient and 
instrumental sources. 

In all the experiments, the parameters of PPI-NMF are set 
as θ = 3, k = 5 and λ = 30. The parameters in all the other 
methods implemented in this paper follow their original work. 

Experiment 1: The first experiment aims to validate the 
effectiveness of the proposed pure pixel identification method 
(hereafter called PPIM). As stated above, PPIM is to identify 
the pure endmember signatures. Accordingly, the 
performance of PPIM is investigated by comparing with two 
pure-pixel-based endmember extraction algorithms (VCA 
and SGA). In the experiment, synthetic scene contains eight 
endmembers, including six pure endmembers and two virtual 
endmbmers. The purity is fixed to 0.8. The SNR is changed 
from 5 to 55 dB with 10dB in steps (SNR = 5, 15, . . . , 55 dB). 
Two parameters θ and k are set to 3 and 5, respectively. In the 
experiment, we only compare the SADs between the 
reference signatures and the endmembers which have pure 
pixel representations in synthetic image. Since VCA generally 
produces different sets of final endmembers at separate runs, 
we run VCA algorithm 50 times and choose the ones which 
have the lowest SADs with reference signatures.  

Fig. 2 shows the average SAD (in degrees) between the 
reference USGS mineral spectra and their corresponding 
endmember pixels produced by VCA (red color in the figure), 
SGA (green), PPIM with VCA (blue), and PPIM with SGA 
(yellow) at different noise levels. As observed from Fig. 2, the 
performance of all endmember extraction algorithms degrade 
as the noise level increases. When SNR takes higher values 
(SNR ≥ 15dB), the proposed PPIM algorithm can identify the 
six pure pixels and match well with reference spectra, and 
shows the best performance overall. In addition, PPIM with 
VCA and PPIM with SGA outperform the VCA and SGA, 
respectively. At this point, it should be noted that the PPIM 
could not identify the pure endmembers when SNR = 5dB. 

 
 

Fig. 2.  SAD-based spectral similarity scores between extracted endmembers 
and ground-truth USGS signatures in the first experiment. 
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This is mainly due to the fact that PPIM could not find the 
pure homogenous area in such worse condition. However, 
such low values of SNR are not often encountered in practice. 
On the other hand, as the case of SNR = 5 shown from Fig. 2, 
the average SAD values between true endmembers and 
estimated endmembers produced by VCA and SGA are very 
high. In other words, these estimated endmembers could be 
far away from the true endmembers, and cannot be applied in 
practice. As a result, we can conclude that PPIM has the 
potential to identify the pure endmember in different noise 
conditions. 

Experiment 2: The third experiment is designed to evaluate 
the robustness of our proposed PPI-NMF algorithm with 
regard to different noise levels. In synthetic scene, there are 
six pure endmembers and two virtual endmembers, the purity 
is fixed to 0.7. SNR is varied from 5 to 55 dB with 10dB in 
steps.  Figs. 3(a) and (b) show the average SADs and average 
RMSEs between true and estimated endmembers, and 
between true and estimated abundances, respectively. 

As expected, the performance of all the algorithms degrade 
as the noise level increases. It indicates that noise is an 
important factor to consider in unmixing tasks, as a low noise 
level generally leads to improved unmixing accuracy. One 
can also see from figures that in most cases the proposed 

PPI-NMF gives the best performance in terms of both SAD 
and RMSE. When SNR takes lower values (SNR ≥ 25dB), the 
performance of PPI-NMF is marginally better than SISAL 
and pure-pixel-based endmember extraction algorithms 
(VCA and SGA) in terms of SAD. Interestingly, although 
both MVC-NMF and PPI-NMF are based on the NMF 
framework, PPI-NMF performs better than MVC-NMF. This 
phenomenon occurs mainly because our proposed PPI-NMF 
have used the endmember a priori information for unmixing. 
This is a very important feature as it reveals that endmember a 
priori can assist NMF-based unmixing algorithms to produce 
more realistic unmixing results in nature.  

Experiment 3: The third experiment aims to study the 
robustness of our proposed PPI-NMF algorithm to various 
mixing levels. The mixing level is controlled by the parameter 
purity in data generation. In the experiment, there are eight 
endmembers, including four pure endmembers and four 
virtual endmembers, the purity is varied from 0.55 to 0.95 
with an internal of 0.1. SNR is set to 30 dB. Figs. 4(a) and (b) 
illustrate the unmixing performance with different mixing 
levels. 

From the Fig. 4, one can observe that the proposed 
PPI-NMF algorithm gives the best performance in most cases. 

 
(a) 

 

 
(b) 

 
Fig. 3.  Experiment results with different SNR. (a) SAD. (b) RMSE 

 
(a)  

 

 
(b)  

 
Fig. 4.  Experiment results with different mixing levels. (a) SAD. (b) RMSE 
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As the purity decreased, the performance of all the algorithms 
degrade, whereas the NMF-based unmixing algorithms 
(MVC-NMF and PPI-NMF) perform better than others for the 
case of purity < 0.75. For higher values of purity, particularly 
purity > 0.95, almost all the endmembers have the pure pixel 
representations in synthetic image. This result leads to an 
important conclusion that PPI-NMF is not specific for 
unmixing highly mixed data, it can also produce reliable 
unmixing results when applied to hyperspectral images 
containing pure pixels. As the last remark, although both 
PPI-NMF and MVC-NMF seem to be not sensitive to the 
mixing level, i.e. purity, our proposed PPI-NMF performs 
better than MVC-NMF in terms of SAD and RMSE. 

Experiment 4: The fourth experiment aims at testing the 
performance of different algorithms for synthetic data sets 
with different numbers of (pure and virtual) endmembers. 
Therefore, we created a set of synthetic scenes and changed 
the number of endmembers from 4 to 20 with an internal of 2. 
For each scene, the number of pure endmembers is equal to 
the number of virtual endmembers. The purity is fixed to 0.7, 
and SNR is set to 30 dB. Fig. 5(a) and (b) show the results of 
average SADs and average RMSEs with different number of 
endmembers. 

As we can see from the Fig. 5 that the performance of all 

algorithms degrade as the number of endmembers increased. 
However, in most cases, PPI-NMF performs best in terms of 
SAD, which is then followed by MVC-NMF, VCA and SGA, 
SISAL performs worst. In addition, the results shown in Fig. 
5(b) demonstrate that PPI-NMF and SISAL with FCLS 
perform best from the abundance estimation viewpoint in 
terms of RMSE. In general, the experiment results indicate 
that incorporating the pure pixel identification procedure into 
NMF framework can improve unmixing accuracy once more. 

B. Experiments with Real Hyperspectral Data 
The real hyperspectral image data used in this experiment 

is the scene of the Cuprite mining district in western Nevada, 
USA, captured by the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) in 1997, available online in 
reflectance units after atmospheric correction [25]. This scene 
has been widely used to validate the performance of 
hyperspectral unmixing algorithms. This data set consists of 

 
(a)  

 
(b)  

 
Fig. 5.  Experiment results with different number of endmembers. (a) SAD. 
(b) RMSE 

 
 

Fig. 6.  Real hyperspectral image data. (a) Cuprite image acquired by 
AVIRIS in 1997. (b) The region of interest used in the experiment. 
 
 

 
(a)                                     (b)                                    (c) 

 

 
(d)                                     (e)                                    (f) 

 

 
(g)                                     (h)                                    (i) 

 

 
(j)                                     (k)                                    (l) 

 
Fig. 7.  Ground truth endmember signatures. (a) Alunite. (b) Andradite. (c) 
Buddingtonite. (d) Kaolinite1. (e) Kaolinite2. (f) Muscovite. (g) Nontronite. 
(h) Pyrope. (i) Sphene. (j) Dumortierite. (k) Chalcedony. (l) 
Montmorillonite. 
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224 spectral bands, with a spatial resolution of 20 m and 
spectral resolution of 10 nm, covering wavelength from 
0.4μm to 2.5μm. In our experiment, we considered a 200 × 
200 sub-image of the hyperspectral scene as our region of 
interest, as shown in Fig. 6. 

Prior to the analysis, several bands (1–2, 104–113, 
148–167, and 221–224) were removed due to water 
absorption and low SNR in those bands, leaving a total of 188 
reflectance channels to be used in the experiment. Since the 
number of endmembers must be known prior to endmember 
extraction, the VD [26] method was also used for this purpose. 
The number of endmembers is defined as 12 according to [14], 
and ground truth endmember signatures are shown in Fig. 7. 

The SAD values between the ground truth endmember 
signatures and the estimated ones extracted by different 
unmixing algorithms are shown in Table I. For convenience of 
comparison, the best performance is denoted by bold font. As 
observed from Table I, PPI-NMF with VCA, i.e., PPI-NMF 
(VCA) has the highest number of best-performance cases. 
According to the average SAD values, PPI-NMF (SGA) 
slightly performs better than PPI-NMF (VCA), then followed 
by SGA, VCA, SISAL and MVC-NMF. 

V. CONCLUSION 
In this paper, we have presented a two-stage unmixing 

scheme which can extract both pure and virtual endmembers 
in real application. At first, the traditional pure-pixel-based 
endmember extraction algorithms are employed to search for 
pure pixel candidates directly from hyperspectral images. 
After that, the local spatial-spectral information is utilized to 
identify pure endmembers from pure pixel candidates. In 
order to make full use of the known pure endmembers, we 
extend the original NMF unmixing model to incorporate a 
prior information, and then perform it to generate virtual 
endmembers. The proposed method is general in nature and 
can be extended to other NMF-based methods with various 
constraints in the estimation models. A series of experiments 
on both synthetic and real hyperspectral data show that the 
proposed PPI-NMF algorithm is a promising endmember 
extraction algorithm. 
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