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Classification of Power-line Insulator Condition
using Local Binary Patterns with Support Vector
Machines

Usiholo Iruansi, Jules R. Tapamo, and Innocent E. Davidson

Abstract—Damaged insulators may affect the mechanical and
electrical performance of an electric power grid, which can
lead to the flow of leakage currents through the line supports.
This increases electrical losses and voltage drop in the power
grid. It also poses a risk to human safety. Thus, it is crucial
to monitor and inspect the condition of insulators to detect
degradation or damage. However, the traditional method of
inspection is inadequate in meeting the growth and develop-
ment of the present electric power grid. Hence an automated
system such as the computer vision method is presently being
explored as a means to resolve this crisis safely, speedily and
accurately. This paper presents a method that distinguishes
between defectuous and non-defectuous power-line insulators.
Active Contour model is applied for insulator segmentation in
order to determine insulator region of interest. Local binary
pattern is used for feature extraction from the insulator region
of interest which is then fed to the support vector machine
classifier for classification. An accuracy of 94.1% was achieved
when morphological operation is used in combination with
active contour model for segmentation based on the ground-
truths. In addition, local binary patterns feature extraction
method outperformed gray level co-occurrence matrix when
used with support vector machines.

Index Terms—Active Contour Model, Local Binary Patterns,
Power-line Insulator, Support Vector Machines.

I. INTRODUCTION

Insulators in the electric power grid are materials used
to support electrical conductors, while preventing electric
current from flowing across them. Insulators are produced
from different kinds of materials namely polymer, glass and
porcelain. This study is based on polymeric insulators which
have a repetitive structure and distinctive circular shape. In
the electric power grid, the breakdown caused by insulator
defect has a major effect on the transmission and distribution
of electricity. Such effects include voltage drop, leakage
currents, and electrical losses to the power grid [1], [2].
Hence, there is a need for early detection of insulator defects
in order to reduce outages and optimize the performance of
the power system.

Power-line inspection is usually carried out manually,
either from the lines or from the ground or air using vehicle
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or helicopter respectively. When inspection of an insulator is
carried out directly from the lines, it endangers the inspector
since the lines are alongside the insulators. There is a high
potential difference between the lines generating an electric
and magnetic field in the region of lines at normal condition
and higher in the presence of defects [3]. With the traditional
method of inspection, on-site insulator condition is not only
expensive and time consuming, but challenging to monitor
and inspect long lines spanning long distances with difficult
terrain. In aerial surveillance such as the use of helicopter for
inspection, a trained inspector inside the helicopter is flown
around the transmission lines and uses a camera to track and
acquire images of the power grid components for further
analysis. This method is tedious, expensive and dangerous
to the pilot and the trained inspectors when the helicopter
is too close to the structures and components of the power
grid. The constant vibration and translational movement of
the helicopter can affect the sight control of camera and as
a result leads to image blurring [3], [4]. Thus an automated
system is used to carefully detect the condition of power-
line components such as the insulators. Unmanned Aerial
Vehicle (UAV) are also employed for power-lines inspection.
The UAV employs the principle of the helicopter because
of its ability to fly around power-lines. The problem with
the UAVs are similar to the helicopter means of inspection,
such as proximity and position control. Another approach to
power grid inspection is the use of a robot which can move
along the lines with its design to overcome barriers on the
lines. The main advantage of the robot is its proximity to
object of interest and its low vibration, which increases the
inspection accuracy and the quality of image acquisition re-
spectively. Therefore, a complete automation system requires
embedding computer vision into the robot. Computer vision
method has been recognized as a method for monitoring the
condition of insulator safely, speedily and accurately. Image
processing and computer vision methods are less expensive
because of the current technological development in the
field of digital imaging and the availability of inexpensive
cameras. Therefore, images captured with digital cameras
along the power-lines can be sent to the control room for
further analysis.

Insulators are a part of the electric power delivery system.
To assess the condition of an insulator, it is first extracted
from the context. This involves image segmentation using
Active Contour Model (ACM) Insulators are a part of the
electric power delivery system. To assess the condition of an
insulator, it is first extracted from the context. This involves
image segmentation using Active Contour Model (ACM) [5]
in order to identify the region of interest. Thereafter, features
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characterizing the condition of the insulator are considered
and are extracted using Local Binary Pattern (LBP) [6] and
fed into a Support Vector Machines (SVM) [7] to determine
the condition of the insulator.

The paper is organized as follows. Section II discusses
previous related work. Section III presents the the proposed
method. Section I'V validates the proposed method. The paper
is concluded in section V.

II. RELATED WORK

Presently, there are research studies on power grid moni-
toring and inspection using infra-red and ultraviolet methods
[1]. This paper focuses on texture features using image
processing and computer vision, where there are scarcely
any previous studies.

Insulator fault detection was proposed by Gu et al. [8], but
the fault detected is ice or snow coverage on an insulator. It
assumes the snow is only gathered along the side or on top
of the insulator caps. The fault is said to change the size
and edges or boundaries of the insulator cap which is said
to be fixed and known. However, this method is based on
edge detector and the comparison of the intensities of each
extra regions covered by snow or ice with the shell and the
background. Comparison of intensity is not robust and for
faults such as cracks or broken parts in an insulator, extra
regions may not be detected. For instance, an insulator cap
with a crack or hole at the centre of the insulator cap may not
change the insulator cap size, thereby limiting this method
considerably.

For insulator fault detection, Mei et al. [9] and Ge et
al. [10] proposed insulator dirt detection for high resolution
images. Both methods employed colour model for dirt de-
tection. Colour model is not a robust method for cracks and
broken parts. The images in their study were captured at a
very close range showing just a single cap of an insulator.
In this study, the images show the complete insulator.

A simple method is proposed by Zhang et al. [11],
that uses colour thresholding for insulator recognition. This
method is not robust because it needs a well adjusted
threshold parameter which is a limitation.

Murthy and colleagues in [12] and [13], used Discrete
Wavelet Transform (DWT) for feature extraction with SVM
and Hidden Markov Model (HMM) for classification re-
spectively. Both methods produced credible results. HMM
outperformed SVM. Reddy et al. [14], [15] used Discrete
Orthogonal Stockwell Transform (DOST) for feature extrac-
tion and Adaptive neuro-fuzzy inference system (ANFIS) and
support vector machines (SVM) classification respectively.
DOST with SVM outperformed DOST with ANFIS [14],
DOST with SVM outperformed DWT with SVM, because
DOST has an advantage of maintaining the phase properties
of Stockwell transform and Fourier transform, Thus retaining
the ability to revert to the Fourier domain.

For the detection of insulator missing cap as defect,
Zhang et al. [1] used colour thresholding for segmentation;
texture feature sequence extraction using grey level co-
occurrence matrix (GLCM), thereafter a further splitting of
the insulator into ten parts. The method is limited by the
choice of the threshold and the static partitioning does not
incorporate differently sized insulators or partially visible
insulators. GLCM is invariant to rotation and requires one

parameter for directional computation. In this paper, the
feature extraction method adopted is Local binary patterns
(LBP) [6]. It is robust to the effect of illumination which
results in monotonic grey-scale changes, rotation invariant
and a very efficient texture operator [16]. However, LBP
has gained recognition in many applications (see [17] for
applications of LBP) because of its computational simplicity
and discriminative power. Prasad and Rao [4], used a local
binary pattern in combination with histogram Fourier (LBP-
HF). In this paper, our research is based on the use of only
LBP for feature extraction.

From this review, it is evident that an automated algo-
rithm which is fast, safe and accurate is vital for insulator
condition. This paper presents an automated algorithm for
classification of defectuous and non-defectuous power-line
insulators.

III. PROPOSED METHOD
A. Pre-processing

In order to reduce noise and improve the quality of images,
pre-processing step is required. Colour images in Red, Green
and Blue (RGB) representation are converted into grey scale
images as in Figure 1. Morphological operation is applied to
enhance images.

Insulator images are enhanced using the top-hat filter [18]
as shown in Figure 2. This effectively correct uneven illumi-
nation on a varying background. It extracts small elements
and details from the given insulator. This is the difference
between the given insulator image and its opening using a
disk shaped structuring element. The top-hat is defined as:

T(I)=I—(IoS) (1)

where [ is the insulator image in grey-scale, S is the
structuring element which is an open disk of radius 10, and
o denotes the opening operation which is the dilation of the
erosion of a set M by a structuring element .S, the opening
operation is defined as [M 0o S = (M © S) @ S]. The
symbols & and & denotes erosion and dilation respectively.

Fig. 1.

Greyscale image

The top-hat images obtained are further enhanced by
the application of morphological operation [19] known as
dilation as shown in Figure 3. The dilation of grey scale
images is the replacement of grey level values at any point
with the maximum intensity value covered by the structuring
element. This is defined as:

(Ig @ S)(u,v) =
2

max[Iy(u —u',v—2v") — S, v")|(u,v") € Dg
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Fig. 2. Top-hat filtering on insulator image in Figure 1

where [ is the image and Dy is the domain of the structuring
element S, and (u,v) are pixel coordinates.

In Figure 2, it is observed that the insulator brightness
is not uniform along the insulator (not a single connected
component). Therefore, morphological dilation is applied to
enhance the brightness of the foreground (insulator) or to
have a single connected component as shown in Figure 3.

Fig. 3. Grey-scale morphological dilation on insulator image in Figure 2)

The output image of the dilated image is subtracted from
the original grey level insulator image for further analysis on
insulator segmentation as in Figure 4. The subtracted image
is defined as:

I, =1-1, 3)

Fig. 4. Subtraction of dilated image from the original grey-scale image

B. Insulator Segmentation and Region of Interest Extraction

1) Insulator Segmentation: Considering the properties of
an insulator which is a single connected component that
has a distinct repetitive circular sheds around its sheath, the
region-based is therefore required for insulator segmentation
since uniformity of within sub-region is of main interest [2].
Active Contour Model (ACM) has been extensively used
in image segmentation such as [2], [5], [20], [21], [22],
[23] with promising results. Therefore, region-based ACM
without edges is chosen in this paper based on [2] and [5].

ACM is based on Energy function expressed in-terms of
level set function ¢ defined as:

E(ky, k2, ) =
4
Al/(I—kl)zH(go)dx
Q

e [ (1= k(1 - H(g)dz
Q

u / |V H(p)|dz

where ¢ is the level set function, 2 is an open bounded
region with foreground €2;, background 3, A1, A2 and p
are fixed parameters with their settings as Ay = Ay = 1 and
1 = 1. The Heaviside step function H, and mean intensities
k1 and ko are defined as:

T(u)H (p(u))du
b — dalH () “
Jo H(p(u))du
T(uw)(1 — H(p(u)))du
k‘g((p) fQ ( )( (‘P( ))) (6)
Jo(1 = H(p(u)))du
1, ifp>0
H(p) = . (7
0, if p<O
0, if ¢ is at the boundary of the curve
@ =< >0, if ¢ is inside the curve (8)
< 0, if ¢ is outside the curve

From equation (4), the first term is a measure of the
variance of the background grey level in regards to pixel
intensity in the image, the second term is a measure of the
variance of the insulator (foreground) grey level based on the
measure of uniformity of pixel intensity in the image and
the third term expresses the length of the boundary of the
insulator in the image I. H(yp), is the Heaviside function of
the level set function. The Heaviside function determines the
insulator image and the background regions in the observed
image I.

Thus, to segment insulator from an image, equation (4) is
minimized with respect to k1, k2 and . With ¢ constant, the
mean grey values of k; and ky are computed with equation
(5) and (6) respectively. Also, with k; and ko constant using
calculus of variations for equation (4), the gradient decent
equation for the evolution of ¢ is derived as:

%f =d(p) [uv. (;g) — M= k1) + X (I = k2)*| 9)
where V.(Vy/|V|) is the curvature of the curve, that pro-
vides smoothing constraints during curve evolution thereby
minimizing the total curvature of the contour. The Dirac
measure is applied in order to work very close to the
minimization problem. The Dirac measure is defined as:

(10)
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Figure 5 shows the initial curve ¢ in an image I, where k;
and k- are the average intensities values inside and outside ¢
respectively and the length of the edge contour is evolved in
order to fit the boundary of the insulator such as in Figure 6.
At this point the curve becomes stationary and the interclass
variance is minimized and the segmented image is achieved
as shown in Figure 7.

Fig. 5. Initial curve C' of ACM implementation on Figure 4. (Best viewed
in colour)

Fig. 6. ACM curve on insulator boundary. (Best viewed in colour)

Fig. 7. Segmented image of Figure 6

Fig. 8. Insulator ROI, using the coordinates extracted from the segmented
insulator in Figure 7 to place a bounding box on insulator in Figure 1. (Best
viewed in colour)

2) Region of Interest: Insulator region of interest (ROI)
is extracted by first obtaining the coordinates and size of the
foreground pixels (insulator) from the segmented image, then
with same size of segmented image and the original grey
scale image, the coordinates and size from the segmented

Fig. 9. Extracted insulator ROI from Figure 8

image is mapped into the original grey scale image for
placing a minimum bounding box over the entire insulator,
thereafter extraction of the insulator ROI.

3) Algorithm of Insulator Segmentation and Region of
Interest Extraction: Algorithm 1 gives the steps for insulator
segmentation and extraction of insulator ROL

Algorithm 1 Insulator Segmentation and ROI

Require: [ > Source Image
Ensure: E > Extracted Image of Insulator ROI
1: Convert the original colour image I into grey scale and Save result as
g
: Define a structuring element s of disk with radius 10
Apply Equation 1 on g and Save result as T’
Apply Equation 2 on 7" and Save result as Ty
Apply Equation 3 and Save result as I
: Initialize a level set function ¢
for n = 1 to maximum value of n do
Compute k1(p) and k2 () using equation 5 and 6 respectively
Compute ™11 by the discretization and linearization of equation

LRI NR LY

10: Check whether curve is stationary

11: if curve is stationary then

12: Escape from the for loop

13: end if

14: end for

15: Save segmented image as sIm

16: Extract coordinates of the ROI from sIm
17: Map the coordinates from sIm on g

18: Extract insulator ROI from g and save as F
19: Partition E and save into a folder F' (training set)
20: End

C. Feature Extraction using Local Binary Patterns

Local binary pattern is a feature extraction method that is
non-parametric. It is grey-scale implementation, invariant to
rotation and describes the spatial structure of the local texture
of an image [24]. In recent years, its application has increased
in image processing and computer vision due to its simplicity
in computation and changes to tolerance in monotonic illumi-
nation [17]. LBP has been used in many applications, such
as defect detection [25], fingerprint liveness detection[26],
[27], visual inspection [28] and biometrics [29].

The principle of the original version of LBP [30] is to
produce labels by using the middle value as a threshold
for converting its neighbouring pixels into binary numbers.
If pixels equal or greater than the threshold value, it is
referred to as one. Pixels less than the threshold value are
referred to as zero. Then, a histogram is generated which
is used as a texture descriptor. The disadvantage of the
initial form of the LBP, is that computation of features in
a local region of 3 x 3 fail to acquire the most important
features of textures in a large structure. Thus, the initial
LBP was modified to use neighbourhood of various sizes
[6]. The extended LBP adopts the circular neighbourhoods
and interpolates values bi-linearly at pixels coordinates that
are non-integer. This allows for any radius and number of
pixels in the neighbourhood.
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Fig. 10. Uniform patterns with number of transition less or equal to 2
(< 2) and the values inside the patterns correspond to their unique codes.
The white and black circles denotes bit values of 1 and 0O in the 8-bit output
of the operator [6].
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Non-uniform patterns with number of transition greater than 2

An additional development to the initial LBP is to use
a fundamental pattern called “Uniform” since they have a
circular structure that are uniform and have very few spatial
transition [6]. Figure 10 describes the uniform pattern which
functions as a template for micro-structures such as bright
spot (0), edges of varying negative and positive curvature
(1 — 7) and flat area or dark spots (8). Figure 11 shows
a non-uniform pattern. The Local binary pattern is defined
as a uniform pattern if the bitwise change in state from
0—to—1 or 1—to—0 of the binary bit pattern which has a
maximum of two-bitwise change in state when the pattern
of the bit is cross over circularly as shown in Figure 10.
For example, the pattern 00000001 and 00010000 have 1-
transitions and 2-transition respectively for uniform patterns.
Thus the patterns contains a maximum of two, 0—to—1 and
1—to—0 transitions. The pattern 10000100 is considered a
non-uniform pattern since it has a 3-bitwise change of state
(3-transition).

In this research investigation the uniform patterns are
used, because most natural images contains uniform pattern
[6], reduction in the length of the feature vector, invariant
to rotation and have produced better recognition in many
computer vision applications [31].

To compute the LBP histogram using uniform patterns,
the LBP histogram accumulates all non-uniform patterns
greater than 2—bitwise change of state into bin 0, and
every other bins of uniform patterns are accumulated in
a dedicated bin as shown in Table I for simplicity using
(8,1) neighbourhood, it gives a total of 256 patterns, 58
of which are uniform, which gives 59 different labels (see
Table I) [6]. A histogram is computed over all cells based on
the frequency of occurrence of each number and thereafter

normalized. The histogram of all cells concatenated, which
gives the feature vector that will be fed into the classifier.

He = > I[f(gr)=k,k=0,...,n—1 (1)
q,r

where, f(q,r) is the LBP labelled image, n denotes the
number of different labels generated with the LBP operator
and I(B) is defined as

1, if B is true

I{B} =
5} 0, if B is false

TABLE I
COMPUTATION OF UNIFORM LBP LABELS AND THE FINAL 59—BIN
HISTOGRAM, WITH “XX” REPRESENTING THE NON-UNIFORM PATTERNS

[ Decimal | Binary [ No of Transition [ Histogram |
XX XX > 2 0
0 00000000 0 1
1 00000001 1 2
2 00000010 2 3
254 11111110 1 57
255 11111111 0 58

D. Classification

1) Classification using Support Vector Machines: The
extracted feature vectors are fed into a SVM classifier [7]
in order to classify insulators into defectuous and non-
defectuous. SVM is a supervised learning technique [26]
used for regression and classification. A very useful property
of the SVM is that it minimizes the error of unknown
test samples for classification by constructing an optimal
hyperplane. When SVM is used for training, the optimal
hyperplane is defined by the one with the maximum distance
from the nearest training pattern, called support vectors.
Apparently, it can be deduced that the hyperplane with the
longest distance to the neighbouring data points of both
classes has the best separation. The generalization error of the
classifier increases as the margin or distance between these
parallel hyperplanes increases. For two classes that are not
separable, the optimal hyperplane maximizes the margin and
minimizes the misclassification errors. The balance achieved
between the misclassification error and margin is regulated
by a positive constant that has to be selected earlier.

Thus, for a set of Z training samples (v;,w;) where v;
€ RY and w; is the label (w; € (—=1,1)), a SVM classifier
determines the optimal hyperplane. The discriminant hyper-
plane is defined as:

z
flv) = Zaiwi.kz(v,vi) +0b (12)
i=1

where b is a scalar (bias), «; is formulated with constraints,
the sign of f(v) defines the class membership of v and
k(v,v;) is a kernel function. In this research work, a non-
linear kernel function known as radial basis function (rbf)
with a sigma value of 1 is used. The rbf kernel is defined as
k(v,v;) = exp(—||v — v;||?). v is the spread of Gaussian
cluster.
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2) Classification using K-Nearest Neighbour: Typically,
KNN is used to train a set of feature vectors or attribute
vectors with a given corresponding class label in order to
predict a class of an unknown instance x. An instance x
relates to a point in a n-dimensional space and can be
represented by an attribute vector [vy(z), va(z), ..., vn(2)],
where n is the number of attributes. In our case, KNN
uses the Euclidean distance to measure the distance between
instance x; and x;. The Euclidean distance is defined in [32],
[33], [34] as:

n

Y (i) = vm ()2

m=1

Given a new instance y, KNN uses the k-nearest instance
in the training set i.e. 1,9, ..., Tk, thereby returning the
result of classifying y as defined in equation 14.

k
cly) + arg max Z d(c, c(x;))

r=1

(14)

where c¢(y) is the class of the instance y, k is the number
of neighbours, C' and c represents the class variable and
d(c, c(x;)) is equal to 1, if ¢ is equal to ¢(x;) and 0 otherwise.

E. Algorithm for the classification of power-line insulator
condition

Algorithm 2 gives the steps involved in the classification of
power-line insulator condition using LBP with SVM.

Algorithm 2 Classification of a power-line Insulator Ins
using a Support Vector Machine, TSV M, trained with
training set T'rainSet of insulators

> Ins is the insulator image, T'Set is

the training set of insulator images
Ensure: condition > condition of the given insulator Ins

1: TSV M = TrainingSVM(T Set, T'SV M)
2: condition = SVMeclassify(T'SV M, Ins)
3: return condition > condition of the insulator Ins

Require: Ins, T'Set

Algorithm 3 trains a Support Vector Machine, T'SV M, using
a set of insulator images.

Algorithm 3 Training of a Support Vector Machine using a
training set, 7'Set insulators images

1: procedure TRAININGSVM(T Set)
for each image 1" € T'Set do
3 M =FeatureExtraction(7")

4: Feed M into T'SV M for training
5: end for
6

7

> Training set T'Set

return 'SV M
end procedure

> TSV M is the Trained classifier

Algorithm 4 computes the feature vectors using the image
of an insulator.

Algorithm 4 Feature extraction from a power-line Insulator
image Ins using using Local Binary Pattern

1: procedure FEATUREEXTRACTION(InS)
2 Convert Ins into grayscale and save it in g

3: Apply LBP operator on g and save result as L
4: Compute LBP histogram H from L
5.
6
7

> image Ins

Calculate the feature vector M from H
: return M > The Feature vector is M
end procedure

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

To the best of our knowledge there is presently no publicly
available dataset for insulator studies. Hence, the experiment
is based on our own dataset to evaluate the proposed method.
The experiment was conducted on polymeric insulator. The
dataset contains 600 insulator images of both defectuous
and non-defectuous insulators. The training set is made up
of 200 defectuous and 200 non-defectuous insulator images
(Figure 12). For the training set, a 10-fold cross validation
is applied. The test set is made of 200 insulator images with
100 defectuous and 100 non-defectuous insulator images that
are not partitioned.

Fig. 12. Dataset of non-defectuous and defectuous insulators.

B. Results

1) Pre-processing: Due to noises (such as shadows and
illumination) in the captured images during insulator image
acquisition, all insulator images were pre-processed before
further analysis. Morphological dilation was applied to in-
crease the brightness of the foreground (insulator) in order
to have single connected component as shown in Figure 3.

2) Segmentation: Figure 13 shows the results of the
segmented insulator images. It is observed that the ACM
curve fits on the boundary of the insulators in Figure 13(a)
and the binarized segmented images are shown in Figure
13(b). In Figure 13, it is observed that some background
pixels are inside the insulator (foreground), as a result post-
processing was employed to fill up the holes as shown in
Figure 14.
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Fig. 13. Some results of (a) implementation of ACM with curve on insulator
boundaries and (b) the segmented images. Best viewed in colour.

|

(a)

Fig. 14. Results of post-processing of (a) Figure 13 on row 3 column 2
and (b) row 4 column 2.

(b)
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Fig. 15. Some ground-truth images

In order to evaluate the segmentation method, segmented
insulator images created by experts were used. Some ground-
truth samples are presented in Figure 15. Since interest is
on the ROI of the insulator, the minimum bounding box
over the insulator is required. Therefore, the ground-truth
bounding box over the insulator (foreground) is considered
as the relevant object and the bounding box of the proposed
segmented insulator region is considered as the selected
object. Based on this explanation, a statistical criteria was

employed for performance analysis. Precision (Pr), Recall
(Re), Fl-score (F's) and Accuracy (Ac) [35], [36] and are
defined as

PT(%) = tps/(tps + fps) (15)
Re(%) = tps/(tps + fns) (16)
FS(%) = 2tp5/(2tps + fps + fns) 17

Ac(%) = (tps +tns)/(tps + tns + fps + fns) (18)

where the foreground represents the pixels inside the bound-
ing box or ROI and background represents the pixels outside
the ROI in both segmented images and ground-truth images.
All images are in binary for computation. True positive tpg
is the foreground in the segmented image that overlaps the
foreground in the ground-truth image. True negative tng is
the background in the segmented image that truly overlaps
the background in the ground-truth image. False positive fps
is the foreground in the segmented image that are detected
as background in the ground-truth image. False negative fn
is the background in the segmented image that are defined
as the foreground in the ground-truth image. Table II shows
the result of the performance analysis.

TABLE II
PERFORMANCE ANALYSIS

[ Method [ Precision | Recall | FI-Score | Accuracy |
Proposed 87.6% | 99.6% | 93.0% 94.1%
method

The extracted coordinate, length and width of the insulator
(foreground) image in the segmented image is used to define
the insulator ROI in the grey-scale image as shown in Figure
16 and 17. The red bounding box (denoted with a solid trian-
gle) represents the insulator ROI using the proposed method
of segmentation and green bounding box (denoted with a
solid rectangle) represents the ground-truth. It is observed in
Figure 16 that both the proposed method of segmentation and
the ground-truth overlap each other while in Figure 17 the
area of the proposed method is more than the ground-truth.
This means that there is an under-segmentation as a result
of the strong edge boundary from the insulator shadow. This
reduces the performance of segmentation. Furthermore, the
extracted coordinate, length and width are used to extract
the insulator ROI as shown in Figure 18 from the original
grey-scale image.

3) Feature Extraction: Due to the length of each insulator,
it was difficult to capture some smaller regions that are
defectuous, therefore each insulator image is partitioned into
smaller segment for enhanced classification performance.
Figure 19 shows an insulator image that has been partitioned.

The performance of the proposed model was compared
with the GLCM feature extraction implemented in [1].
GLCM is a texture feature extraction model. The most
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Fig. 16. Minimum bounding box identified as ROI. The red bounding box
(denoted with a solid triangle) represents proposed method of segmentation
and green bounding box (denoted with a solid rectangle) represents ground-
truth. Best viewed in colour

Fig. 17. The red bounding box (denoted with a solid triangle) represents
the proposed method of the segmentation and green bounding box (denoted
with a solid rectangle) represents the ground-truth. Best viewed in colour

Fig. 18. ROI extracted from Figure 1 using the bounding box coordinates
obtained from the insulator segmentation.

Fig. 19. Insulator partitioning of Figure 18.

popular used GLCM features (also known as Haralick fea-
tures) are: angular second moment (energy), contrast, sum
of squares (variance), correlation, inverse difference moment
(homogeneity), sum variance, sum average, entropy, sum
entropy, difference variance, difference entropy, maximum
correlation coefficient, information measure of correlation
1, and information measure of correlation 2. Computation
of these features are described in [37]. Features with better

performance are always selected from the fourteen Haralick
features when carrying out an experiment. In [1], seven
textural features were used. It computes the second order
statistics related to image properties by considering the
spatial relationship of pixels. It denotes how often different
combinations of grey levels co-exist in an image. It is created
by calculating how often a pixel with the intensity value
i occurs in a specific spatial relationship to a pixel with
the intensity value j in an image [38]. Given an image [
with G grey levels, distance d and angle 0, for a grey level
co-occurrence matrix [Py ¢(i, j)]o<i,j<c—1. The computation
of Haralick features is done using a normalized GLCM.
The (i,7)th normalized entry, [Py (i, )], of [Pae(i,7)] is
defined as [39]:

Pd,@(ivj)
| Pae |

where || Pag [|= 3075 255, P, ).

4) Classification: Tables III and X show the 10-fold
Cross-Validation (CV) and the condition of insulator test set
images for the proposed model and GLCM [1].

The performance analysis of the proposed method was
measured using equation (18). The accuracy of the proposed
model and that of GLCM [1] in combination with either
SVM or KNN with the testing set images are shown in
Table XI. Hence, a better performance is obtained when LBP
is used as a feature extraction method in combination with
either of the classifiers over GLCM.

Pao(i,j) = 19)

TABLE III
CONFUSION MATRIX FOR THE CV USING LBP wiTH SVM

\ | Defectuous | Non-defectuous |

Defectuous 200 0
Non-defectuous 0 200
TABLE IV

CONFUSION MATRIX FOR THE CV USING GLCM [1] wWITH SVM

\ | Defectuous | Non-defectuous |

Defectuous 188 12
Non-defectuous 9 191
TABLE V

CONFUSION MATRIX OF THE TEST SET USING LBP wWiTH SVM

\ | Defectuous | Non-defectuous |

Defectuous 94 6
Non-defectuous 23 77
TABLE VI

CONFUSION MATRIX OF THE TEST SET USING GLCM [1] WITH SVM

‘ | Defectuous | Non-defectuous |

Defectuous 87 13
Non-defectuous 27 73

In order to validate the accuracy of the methods, the
McNemar’s test introduced by Quinn McNemar in 1947
is used. The McNemar’s test is a statistical test used on
paired (matched) data on a dichotomous item. Considering

(Advance online publication: 27 May 2019)
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CONFUSION MATRIX FOR THE CROSS-VALIDATION USING LBP WITH

TABLE VII

KNN

| Defectuous | Non-defectuous |

CONFUSION MATRIX OF THE TEST SET USING LBP wITH KNN

Defectuous 200 0
Non-defectuous 0 200
TABLE VIII

l

| Defectuous | Non-defectuous |

CONFUSION MATRIX FOR THE CROSS-VALIDATION USING GLCM WITH

Defectuous 94 6
Non-defectuous 24 76
TABLE IX

KNN

| Defectuous | Non-defectuous |

CONFUSION MATRIX OF THE TEST SET USING GLCM WITH KNN

Defectuous 190 10
Non-defectuous 10 190
TABLE X

l

| Defectuous | Non-defectuous |

Defectuous 88 12
Non-defectuous 30 70
TABLE XI

ACCURACY OF GLCM AND LBP USING SVM AND KNN CLASSIFIERS

[ [ 10-fold validation ACC (%) | Testing ACC (%) |

GLCM+SVM 94.8% 80.0%
GLCM+KNN 95% 79.0%
LBP+SVM 100% 85.5%
LBP+KNN 100% 85.0%

the feature extraction methods with SVM classifier, let A
be the combination of GLCM with SVM algorithm and B
be the combination of LBP with SVM algorithm. Given the
following number of cases, Table XII shows that:
o Number of insulators estimated defectuous for A and
defectuous for B = a
e Number of insulators estimated non-defectuous for A
and defectuous for B = b
e Number of insulators estimated defectuous for A and
non-defectuous for B = ¢
e Number of insulators estimated non-defectuous for A
and non-defectuous for B = d

TABLE XII
CONTINGENCY TABLE

A
Defectuous | Non-defectuous
B Defectuous a b
Non-defectuous c d

The McNemar’s test uses data from the two discordant
entries b and ¢ from Table XII, where n is the total number of
matched pairs (n = a+b+c+d). The McNemar’s test is used
to determine whether the null hypothesis H, is accepted or
rejected. The [, states that there is no significant difference
between the two algorithms and alternative hypothesis H,
states that there is a significant difference between both
algorithms. The McNemar’s test is computed using Equation
20.

o (b—cl—1)°
N b+c (20)
where x2 is chi-squared distribution with one degree of
freedom (DoF).

Therefore, the computed chi-square value (x?) using Equa-
tion 20 is 13.04. A P value of 0.05 (5%) is used for
the significant test. However, if it is greater, then the null
hypothesis H, is rejected. The P value of 0.05 for 1 DoF
in the chi-square (x?) distribution table is 3.841. Since the
computed X2 > 3.841, H, is rejected. Therefore, it means
that the accuracy of the two algorithms (A and B) are
statistically different.

C. Discussion

In the classification phase, SVM with radial basis function
kernel was used. A Cross Validation (CV) process was per-
formed in order to predict or optimize the model parameter
(regularization parameter and kernel width) to fit the training
set. A k-fold cross-validation randomly partitions the training
set into k-equal sized subset, whereby a single subset was
retained as a test set and all other subsets were used as the
training set. Then the cross-validation process is repeated
based on the number of fold (k) times, with the k subset
used once as the validation set. Thereafter averaging the k
results of all folds to obtain a single result. The number of
fold is varied from 2 to 10 and the accuracy was computed
using equation 18. The result is shown in Figure 20.

102 , : ‘ : . : : .

Owerall accuracy (%)

Kfold CV

Fig. 20. Accuracy on cross-validation using SVM

In Figure 20, the accuracy of both methods (LBP, GLCM)
increases from k = 2 to k = 10. If 5% is considered as
the threshold of the error rate (l-accuracy(%)), then it can
be stated that a better fitting model to the training set was
achieved from k = 8 to 10 for both methods. There was an
increase in both methods because of the principle of k-fold
CV. For example, at k = 2, it partitions the training set into
2 equal sizes, i.e 50:50, which means it trains with one part
of the 50 and test with the other part of 50. For k = 10, it
partitions the training set into 10 equal sizes, i.e 20:80, and
used the 80 for training while the 20 for testing. Comparing
both cases of k = 2 and k = 10, it means that more images will

(Advance online publication: 27 May 2019)
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be used for training for k = 10 than k = 2, as a result having
a better chance to identify unknown image. The classifiers
performed best for k = 10 and worst for k = 2.
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Fig. 21. Accuracy on testing set using SVM and KNN

Figure 21 shows the overall accuracy when the training
set was varied from 100, 200, 300, 400, along side the
test set from 500, 400, 300, 200 respectively for SVM and
KNN classifier using LBP and GLCM as feature extraction
methods. Each pair (training set and test set) amount to
600 images in all cases of varying the size of the dataset.
The increasing training set size increases the accuracy and
decreases the error rate. It can be observed in Figure 21, that
there is a sharp rise in the training set when increased from
100 to 300. When, the training set is increase above 300,
a gradual increase is noticed. At this point forward, there
is a reduced error rate which may stay approximately same
within this region and this region is where the model per-
formed best. Both classifiers performed well with a training
set above 300 samples (Figure 21), but LBP in combination
with SVM has the highest performance (85.5%) compared
to others using a training set of 400 samples.

V. CONCLUSION

In this paper, classification of power-line insulator condi-
tion have been investigated and presented. The segmentation
method was evaluated using manually create ground-truth
by experts. Also comparison of LBP and GLCM feature
extraction method are presented. It is shown that LBP
outperformed GLCM with the use of the same classifier.
From the experiment, it is evident that the LBP is statistically
robust, more stable and less prone to noise.

In future, other methods of feature extraction should be
implemented and compared with our proposed method that
have been established as a baseline. Consideration of the
integration of insulator condition in real-time system should
be established.
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