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Abstract—Cuckoo search (CS) algorithm is a novel heuristic 

algorithm, which can effectively solve the optimization 

problem by simulating the brood parasitism of some cuckoo 

species and combining with Lévy flight mechanism. However, 

it has also been shown to have certain weaknesses, especially 

falling into local optimums. Therefore, a novel CS algorithm 

with feedback control and local search mechanism (FLCS) is 

proposed in this paper. In the FLCS, feedback control is 

introduced to enhance the efficiency of search process, and 

local search mechanism is guided by the global optimal 

solution for improving the poor local search ability of CS 

method. To verify the performance of our approach, 21 test 

functions of different types are first employed. Then, the 

FLCS has been performed on the IEEE 30-bus power flow test 

case for optimal power flow (OPF) problem with valve point 

effect. The results indicate that the proposed FLCS method 

clearly has better performance than CS in the solution 

accuracy and convergence speed. In addition, the comparison 

results show that FLCS performs better than other 

evolutionary methods from literature for different functions. 

 
Index Terms—Cuckoo search algorithm, Feedback control, 

Local search mechanism, Test functions, Optimal power flow 

 

I. INTRODUCTION 

ANY practical problems can be transformed into the 

optimization problems of searching the global optimal 

solution, and optimization problems are becoming more and 

more important in many scientific research fields [1]. 

However, the optimization is also becoming increasingly 

complicated, such as the optimal power flow (OPF) 

problem, which increases the difficulty of problem solving.  

In the past decades, a number of evolutionary algorithms, 
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In the past decades, a number of evolutionary algorithms, 

such as particle swarm optimization (PSO) [2-4], 

differential evolution (DE) [5, 6], ant colony optimization 

(ACO) [7, 8], biogeography based optimization (BBO) [9], 

krill herd algorithm (KHA) [10], and artificial bee colony 

(ABC) [11], have been proposed for handling different 

optimization problems. 

Cuckoo search (CS) algorithm is a meta-heuristic 

optimization algorithm recently proposed by Yang [12], 

which is inspired by the breeding parasitic characteristics of 

cuckoo and combined with the Lévy flights behavior. The 

cuckoo will constantly evolve to reduce the possibility of 

the egg being abandoned to increase their survival rate. 

Generally, this algorithm is easy to be implemented but 

highly efficient. In order to improve the performance of the 

algorithm, several modified CS algorithm have been 

proposed to achieve better effect in various industries. Naik 

and Panda [13] proposed an adaptive cuckoo search (ACS) 

for face recognition. ACS method is a parameter free 

algorithm and can adaptively decide the step size, which is 

validated using 23 standard benchmark test functions and 

several famous face databases. Huang et al. [14] presented 

the novel hybrid algorithm named as teaching learning 

based cuckoo search to achieve high product quality, which 

combines the powerful search ability of Lévy flight with the 

fast convergence rate of teaching-learning process. Nguyen 

et al. [15] presented an adaptive cuckoo search algorithm 

(ACSA) to optimize network topology, and obtained the 

results on three different network systems showing the 

effectiveness of ACSA. For minimizing two objective 

functions of the short-term hydrothermal scheduling 

problem, Nguyen et al. [16] proposed the modified cuckoo 

search algorithm which applied a population classification 

mechanism and two modified updating methods. Li et al. 

[17] presented the self-adaptive cuckoo search (SACS); in 

which self-adaptive parameter is applied to strengthen the 

diversity of population and two novel search methods are 

used for improving the searching ability of CS method. 

Rakhshani et al. [18] proposed snap-drift cuckoo search 

(SDCS) based on the learning mechanism and information 

sharing strategy. Simulation results prove that SDCS has 

superior convergence rate and robustness through statistical 

analysis and comparison. 

Although a number of efforts have been made to 

strengthen the search capability and enhance convergence 

rate of CS, many further work needs to be done for 

improving the performance of CS method. It should be 
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noted that these improved algorithms mentioned above can 

improve CS method in a certain extent, but they cannot 

dynamically feedback the evolutionary search process, 

which is passive and mechanical. In order to remedy these 

weaknesses mentioned above, this paper proposes a novel 

cuckoo search method with feedback control and local 

search mechanism (FLCS) for optimization problems. On 

the one hand, the feedback control is able to enhance the 

efficiency of search process which can be regarded as a 

closed loop control process of population characteristics, 

and the population improvement rate as feedback is 

introduced into the CS algorithm, which can dynamically 

adjust the search process instead of using unalterable 

learning probability and thus make the reliability of the 

algorithm further improved. On the other hand, a local 

search mechanism based on the guidance of best solution is 

developed to increase local exploration capability. The new 

mutation operator can effectively balance the global search 

of Lévy flight mechanism. In this way, the FLCS method 

can obtain better search performance in the whole evolution 

process. To evaluate the effectiveness of FLCS, 21 

well-known test functions of three different types are 

adopted for simulation experiments under various different 

simulation conditions. And FLCS method has been used for 

solving the OPF problem of power system with two 

different objective functions. The statistical comparison of 

results indicates that the proposed method can significantly 

enhance solution accuracy and the convergence rate of CS. 

Moreover, FLCS algorithm is quite competitive and better 

than most other evolution algorithms by analyzing the 

experimental results. 

The rest of this paper is organized as follows: Section II 

introduces the basic CS. Our proposed FLCS is specifically 

illustrated in Section III. After that, in Section IV, abundant 

experimental tests have been carried out to verify the 

performance of the FLCS method. Section V demonstrates 

the effectiveness of FLCS though simulation studies on 

IEEE 30-bus power flow test case of power system. Finally, 

Section VI provide the conclusions. 

II. CUCKOO SEARCH ALGORITHM 

Cuckoo search (CS) algorithm is a meta-heuristic 

algorithm inspired by the breeding parasitic characteristics 

of cuckoo and combined with the Lévy flights behavior. It 

is worth mentioning that the host may find that the egg is 

not its own with a probability pa  [0, 1]. In this case, the 

host will abandon the invasive egg from the nest or form a 

new nest. [19]. To establish the mathematic model of the CS 

algorithm, we define three idealized assumptions: i) a 

cuckoo can only lay one egg in a random nest for one time; 

ii) the excellent nests with high-quality eggs will be 

retained to the next generation; iii) the available host nests 

are invariant during the whole searching process. 

In CS algorithm, a nest is regarded as a candidate 

solution. Let Xi (t) denote the ith solution (for i = 1, 2,…, 

NP) at t generation, represented as Xi = (xi
1
, xi

2
,…, xi

D
) in 

the D-dimension problem. In the initial process of the CS 

algorithm, the ith component is randomly generated in a 

certain range, as shown in (1). 

    min max min
[ ]

i
X t X rand D X X     (1) 

where rand[D] is a random value obeying uniform 

distribution in [0, 1] of D-dimension; Xmin and Xmax are the 

minimum and maximum boundaries, respectively. 

When producing the next solution Xi (t+1) of the ith 

individual, a Lévy flight can be performed as follows: 

      1
i i

X t X t L vy    é  (2) 

where  > 0 denotes the step size which should be 

associated with the scale of the optimized problem and 

usually taken as 1; the special symbol ⊕ denotes the entry 

wise multiplication. The Lévy flight follows the random 

walk, which can be defined according to the Lévy 

distribution as follows: 

    ,       1 3L vy u t   é  (3) 

This is a stochastic equation of heavy tailed probability 

distribution with an infinite variance [20]. The Lévy 

distribution is a random walk process with a heavy tail. In 

this form of walking, it may be short distance step and 

occasionally a long step. In the process of exploring a wide 

range of space, Lévy flight is more efficient than Brownian 

motion. 

In the iteration process, step size is an important factor 

reflecting the performance of CS method, which is given as: 

  

1

0.01
j

j best

j

u
stepsize v X

v

 
   

 
 



 (4) 

where  [ ]u t randn D   and  [ ]v randn D  are taken 

from a normal distribution. Then, a new solution vector is 

computed as follows: 

 * [ ]
i i j

v v stepsize randn D   (5) 

After producing the new solution vi, CS method will 

adopt the greedy strategy to select the better solution 

recorded as Xi according to their objective function values. 

The last operation in CS algorithm can be seen as the 

mutation strategy by discovering a new solution, which is 

formulated as: 

 
 

1 2
   , 

                                    , 

i r r a

i

i

X rand X X rand p

X otherwise
v

   





 (6) 

where Xr1 and Xr2 are two randomly selected solutions. If 

the objective function of vi is smaller than Xi, vi is regarded 

as the next generation solution, otherwise Xi would remain 

unchanged.  

III. THE IMPROVED FLCS ALGORITHM 

A. Feedback control 

In the standard CS algorithm, new solutions can evolve 

continuously, but this evolution is passive and mechanical. 

In order to adapt the algorithm proactively, it is necessary to 

introduce some methods of regulating evolution process. 

The search process of dynamic algorithm can be regarded 

as a closed loop control process, in which the population 

characteristics are the feedback quantity, the expected 

population characteristics are the reference quantity, and the 

evolutionary algorithm is the control strategy. 

For improving the convergence speed and optimization 

efficiency, Rechenberg proposed the famous 1/5 success 

theorem [21]. Generally, the objective value is improved 1 

times in the 5 variation. Therefore, the control parameters 
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of the algorithm should be dynamically adjusted with the 

success rate of new solutions, and the improvement rate is 

remained at 1/5. In the generation mechanism of the CS 

solution, there are two parameters controlling the 

characteristics of the offspring population: the step-size 

factor () and the discovery factor (pa). In summary, the 

improved rate can be chosen as feedback and 0.2 is the 

expected value; additionally, the step-size factor and the 

discovery factor are the control variables. 

For the step size factor, according to the principle, there 

are three adjustment strategies: i) The improvement rate is 

greater than 0.2, which shows that the searching space is 

relatively smooth, and the algorithm can find a better 

solution with a larger probability. In order to enhance search 

efficiency and reduce the number of calculation of objective 

function, the step size should be properly increased. ii) The 

improvement rate is less than 0.2. It indicates that the 

searching space is more complex in such a situation and the 

possibility of discovering a better solution is relatively low. 

We should reduce the step size appropriately to strengthen 

the exploration in searching space. iii) The improvement 

rate exactly equals 0.2, which shows that the current step 

size is just to make the population improvement rate at the 

best value, and do not need to be adjusted. However, the 

probability that the improvement rate exactly equals 0.2 is 

very slim, which makes the parameters to be changed 

frequently in a larger range. For the stability of the dynamic 

parameters, we will change the improvement rate remained 

at 0.2 to the interval [0.2, 0.4]. The step size based on this 

principle can be described as: 
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where R is the improvement rate of new solutions, f is 

learning factor of step size. Similarly, the discovery 

probability is modified as follows: 
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where fp is the learning factor of discovery probability. In 

addition, it should be noted that the upper and lower limits 

should be determined before the start of the operation to 

prevent the overshoot of the parameter. 

B. Local search mechanism 

The basic principle of CS algorithm is to generate step 

length by Lévy flight, which helps to avoid falling into local 

optimum and achieve excellent global search capability. 

However, Lévy flight cannot make full use of the 

information of the local area so that the local search ability 

is poor, which is mainly due to the highly random jumps. 

For enhancing local search ability, and accelerating the 

convergence of CS method, a novel mutation mechanism is 

presented based on the guidance of best solution. It is worth 

noting that this local search mechanism is inspired by the 

cognitive learning mechanism of PSO method. In short, the 

new solution vector of every mutant according to the 

position of the best vectors achieved so far by the whole 

population of a particular generation by following the same 

direction of the best. The modified crossover operator is as 

follows:  

 
   

1 1 2 2
+ , 

                                                     , 

i r r gb i a

i

i

X R X X R X X rand p
v

X otherwise

   





 (9) 

where R1 and R2 are two uniform random variables between 

0 and 1; Xr1 and Xr2 are two randomly chosen solutions and 

Xgb is the best optimal solution in the entire population. 

Obviously, the guidance of the best solution is added to the 

original random mutation mechanism, which can make the 

new mutant vector learn to the optimal solution. As a result, 

the local exploration ability of CS algorithm is enhanced. 

The new mutation operator can effectively balance the 

global search of Lévy flight mechanism. Therefore, the 

search performance of FLCS will be better than the basic 

CS method. In fact, the combination of feedback control 

and local search mechanism can utilize the advantages of 

both local optimization and global optimization in the 

search process. 

FLCS procedure 

Begin 

Initialize the function evolution numbers FEs=1 

Generate a random population Xi, i=1, 2, …, NP, and set 

the initial parameters 

Evaluate fitness (F) for every individual and find the best 

individual Xgb 

While FEs < MaxFEs do 

for i=1 to NP do 

[ ]*
i i j

Dv v stepsize randn   

end 

for i=1 to NP do 

for j=1 to D do 

if rand < pa then 

   
. 1 1. 2. 2 . ..

+
i j r j r j gb j i ji j

X R X X R X Xv     

end if 

end for 

end for 

for i=1 to NP do 

Evaluate the fitness of vi 

if F(vi) < F(Xi) then 

Replace Xi with vi 

The number of improved individuals increase 1 

end if 

end for 

Calculate population improvement rate R 

Perform the feedback control mechanism to update the 

 and pa 

Update the best individual Xbest 

FEs=FEs+1 

End while 

End 

C. Bound handling mechanism 

In the standard CS algorithm, the control variables of 

solution vector change within a certain constraint. If the 

value of some control variables exceeds the constraint limit 

during the iteration process, CS algorithm will make these 

variables equal to their corresponding boundary values. 

However, this control mechanism may make the value of 

many control variables equal to the critical value. The 
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drawback is that the population diversity will reduce and 

the evolution may fall into the local optimum, if there are 

local optimal solutions at the boundary. In order to 

overcome the defect, a new bound handling mechanism is 

presented as follows: 

 

 

 
1

2

     if 

    if 

                            otherwise

i i i i i

i i i i i i

i

L F L X X L

X U F X U X U

X

   


    



 (10) 

where Li and Ui indicate the lower and upper critical values  

 

of the ith dimension; F1 and F2 are two random variables  

between 0 and 1. According to this mechanism, each of any 

solution is examined for the feasibility. If there is violation 

constraints, the solution will reset the feasible values for 

variables. It is worth mentioning that, the solution vector 

will not change overall, only change the control variables 

that violate their constraints [22]. 

By combining the feedback control and the local search 

mechanism, the pseudo code of FLCS is developed and 

shown in "FLCS procedure".  

TABLE I  

DESCRIPTION OF THE UNIMODAL BENCHMARK TEST FUNCTIONS WITH D = 30 

Name Functions Range of search Optimum 

Sphere 2

1 0
( )

D

ii
f X x


  [100, 100]D  

1
0 0f   

Schwelfel_2.22 
2 1 1
( )

DD

ii if X xx
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2
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2

3 1 1
( ) ( )

D i

ji j
f X x
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3
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( ) max 1,i if X i Dx    [100, 100]D  

4
1 0f   
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-1 2 2 2

5 11
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D
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6 1
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D

ii
f X x
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6
0 0f   

Quartic 
4

7 1
( ) [0,1)

D

ii
f X ix random
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7
0 0f   
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2

8 1
( )

D

ii
f X ix
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8
0 0f   

Elliptic 
   6 2

9 1

1 1
( )= (10 )

D

ii

i D
f X x
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9

0 0f   

 

TABLE II  
DESCRIPTION OF THE MULTIMODAL BENCHMARK TEST FUNCTIONS WITH D = 30 

Name Functions Range of search Optimum 

Rastrigin    2

10 1
10 cos 2 10

D

i ii
f X x x
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0 0f   
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IV. RESULTS OF TEST FUNCTIONS  

A. Simulation setup 

In order to examine the performance of FLCS, 21 

widely used test functions displayed in Tables 1-3 are 

applied in this test. TABLE I consists of 9 unimodal test 

functions, which have only one peak in the search range. In 

TABLE II, f10-f15 are multimodal functions, which have a lot 

of local optimal values. However, the optimal value of the 

test function is only one. And f16-f21 in TABLE III are 

multimodal test functions with fixed dimension. The 

specific parameter values of those functions can be obtained 

from [13]. 

In this simulation experiment, the population size NP is 
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set to 30. The maximum function evolution numbers 

(MaxFEs) are set as: 150,000 for f1, f6, f8-f9, f11, f13-f15; 

200,000 for f2, f12; 300,000 for f7, f10; 500,000 for f3-f5 and 

10,000 for f16-f21. In order to ensure the reliability of the 

experimental results, all cases have been run 30 times 

independently. 

In order to analyze and compare experimental results, 

we have counted four indicators, which are the Best, Worst, 

Mean and standard deviation (Std.) of test function. The 

‘Best’ and ‘Worst’ indicate the minimum and maximum 

value by 30 independent run, respectively. The ‘Mean’ and  

‘ Std.’ indicate the average value and the standard 

deviation of 30 experimental results. 

B. Comparison between CS and FLCS 

To evaluate the performance of our proposed FLCS in 

optimization problem, we compare the basic CS and FLCS 

methods based on the test functions. TABLE IV presents 

the experimental results of the test functions given in 

TABLE I-II, and TABLE V reports the experimental results 

of the multimodal functions with fixed dimension in 

TABLE III .

TABLE III  

DESCRIPTION OF MULTIMODAL BENCHMARK TEST FUNCTIONS WITH FIXED DIMENSION 

Name Functions Range of search Optimum 

Six-Hump 
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TABLE IV  
PERFORMANCE EVALUATION OF THE BENCHMARK TEST FUNCTIONS DESCRIBED IN TABLE I-II 

F 
CS FLCS 

Best Worst Mean Std. Best Worst Mean Std. 

f1 3.6522E-18 1.9525E-17 8.2311E-18 3.6290E-18 1.8614E-142 5.9974E-140 2.1225E-140 3.2832E-140 

f2 1.9644E-14 7.4346E-13 4.1155E-13 1.3154E-13 2.9216E-114 6.0845E-113 3.2631E-113 2.4877E-113 

f3 8.5753E-08 9.8316E-07 4.0050E-08 3.3838E-08 1.1024E-77 5.3656E-74 8.9041E-75 2.8186E-74 

f4 8.0841E-05 6.7016E-04 3.2216E-04 3.3732E-04 4.4439E-28 9.6643E-26 5.7715E-26 4.2416E-26 

f5 2.3653E-05 7.5339E-04 3.4434E-04 5.0920E-04 3.3967E-09 4.0037E-08 1.0717E-08 2.7608E-08 

f6 8.9030E-13 5.1479E-12 3.0285E-12 1.1458E-12 9.2479E-33 6.4116E-32 2.5157E-32 5.4152E-33 

f7 1.5714E-02 7.3130E-02 3.5814E-02 3.5590E-02 1.8321E-03 7.6432E-03 2.7256E-03 2.4214E-03 

f8 6.2703E-14 6.6017E-13 1.9874E-13 1.3020E-13 1.7045E-144 7.3842E-142 2.8979E-142 1.3265E-142 

f9 7.4464E-10 8.1306E-09 2.8488E-10 4.1567E-10 1.3296E-135 3.9153E-131 1.4928E-132 2.0269E-132 

f10 2.0900E+01 3.5024E+01 2.6298E+01 7.5098E+00 3.6025E+01 5.3871E+01 3.2326E+01 6.9312E+00 

f11 4.1185E-02 5.9821E-01 2.1726E-01 8.3251E-02 7.9386E-15 8.9962E-14 8.3926E-15 2.3973E-15 

f12 6.9441E-06 7.1556E-02 2.6952E-02 3.4441E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f13 2.3108E-10 8.7666E-09 1.3017E-09 1.8781E-09 1.5705E-32 1.5705E-32 1.5705E-32 1.5458E-34 

f14 1.7168E-07 4.2237E-07 2.5127E-07 2.5657E-07 1.5705E-32 8.5859E-31 3.7125E-32 2.3846E-32 

f15 5.8723E-03 9.1539E-02 1.5179E-03 3.3989E-03 5.3453E-16 8.7025E-14 2.7816E-15 5.4855E-15 

 

TABLE V  

PERFORMANCE EVALUATION OF THE BENCHMARK TEST FUNCTIONS DESCRIBED IN TABLE III  

F 
CS FLCS 

Best Worst Mean Std. Best Worst Mean Std. 

f16 -1.0316 -1.0316 -1.0316 7.3536E-06 -1.0316 -1.0316 -1.0316 6.0809E-16 

f17 0.3979 0.3980 0.3979 2.6376E-05 0.3979 0.3979 0.3979 5.2537E-13 

f18 3.0000 3.0003 3.0001 8.1270E-05 3.0000 3.0000 3.0000 1.9943E-15 

f19 -3.8628 -3.8628 -3.8628 3.4805E-06 -3.8628 -3.8628 -3.8628 1.2691E-15 

f20 -3.3219 -3.3040 -3.3148 1.2387E-02 -3.3220 -3.3220 -3.3220 5.9386E-11 

f21 -10.5327 -10.4791 -10.5049 9.0847E-03 -10.5364 -10.5364 -10.5364 2.3387E-12 
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We can see that FLCS outperforms CS in terms of the 

solution quality in 20 out of 21 functions. Only the test 

results of f10 have no obvious difference between FLCS and 

CS, but FLCS is able to achieve a more reliable solution. 

Additionally, it can be seen that FLCS and CS have no 

significant difference for the fix low-dimensional functions 

in TABLE V. 

In order to show the evolutionary process of FLCS more 

directly, some convergent curves of representative test 

functions are plotted and shown in Figs. 1-2. It can be seen 

that FLCS method converges faster than CS on these 

unimodal and multimodal test functions. However, the 

advantage is not obvious on these functions with fixed 

dimension. From the comparative analysis, we could 

conclude that FLCS algorithm significantly outperforms CS 

method not only in solution quality but also in convergence 

rate. 

C. Comparison with other algorithms 

The FLCS algorithm is compared with seven other 

well-known evolutionary algorithms in Table 6 on functions 

f1–f7 and f10–f14. These algorithms include GL-25 [23], 

SaDE [5], CDE [24], MOBBO [25], MLBBO [26], OLCS 

[27] and HLXDE [28]. The results of GL-25 and SaDE are 

obtained from [29]. In order to make a rigorous comparison,  

 

Fig. 1. Convergence graphs of CS and FLCS for six representative test functions 

 

for GL-25, SaDE, CDE, MOBBO, MLBBO, OLCS and 

HLXDE methods, all the parameters are set as the same 

used in their original literature. All algorithms are carried 

out at D = 30 and NP =100, and the comparison results are 

presented in TABLE VI. 

From the results of 12 functions, it can be seen that 

FLCS method obtains the optimal solutions on 7 test 

functions. Especially, FLCS algorithm achieves better 

results than SaDE on all compared functions. GL-25 gets 

the optimal result on f1 among the 8 methods; CDE 

algorithm can obtain the best results on two functions f5 

and f11. Compared with MOBBO, FLCS method wins on 

12 functions except on f6, for which both algorithms obtain 

the same results. For MOBBO and OLCS, each one only 
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performs better than FLCS on two functions. Although 

LXDE outperforms FLCS on two functions and gets the 

equivalent results on two other functions, FLCS achieves 

better performance on eight functions. Summarizing the 

above statements, we can draw a conclusion that FLCS is 

highly competitive to the above-mentioned well-known 

evolutionary algorithms, which has superior search ability 

to find the optimal solution.

 

TABLE VI  

COMPARISON OF FLCS WITH SOME STATE-OF-THE-ART ALGORITHMS (NP =100, D=30) 

F GL-25 SaDE CDE MOBBO MLBBO OLCS HLXDE FLCS 

f1 

 

Mean 2.87E-120 1.48E-18 1.07E-28 1.70E-09 2.11E−31 1.19E-07 4.66E-43 7.71E-54 

Std. 7.31E-120 9.28E-19 7.65E-29 9.30E-09 1.25E−31 1.89E-07 8.83E-43 5.23E-54 

f2 
Mean 2.56E-38 3.16E-15 4.21E-21 2.74E-05 1.58E−21 3.27E-07 1.56E-29 8.95E-39 

Std. 9.90E-38 1.34E-15 1.85E-21 1.48E-04 7.25E−22 2.35E-07 1.44E-29 6.43E-39 

f3 
Mean 2.47E-01 4.02E-20 1.64E-34 3.25E-02 1.42E−20 5.62E-08 4.38E-32 2.39E-50 

Std. 4.82E-01 4.89E-20 9.18E-34 4.50E-02 1.70E−20 5.92E-08 1.16E-31 3.47E-50 

f4 
Mean 4.04E-02 8.01E-10 6.48E-22 2.43E−02 5.28E−08 7.13E-07 2.99E-16 4.28E-32 

Std. 2.46E-02 3.49E-10 1.18E-21 6.74E−03 1.02E−07 3.50E-07 4.23E-16 2.85E-32 

f5 
Mean 2.12E+01 7.97E-02 0.00E+00 6.32E +01 5.34E−21 1.62E +01 6.64E-01 3.09E-11 

Std. 7.93E-01 5.64E-01 0.00E+00 8.33E +01 1.10E−20 4.51E-01 1.51E+00 1.52E-11 

f6 
Mean 1.86E-31 3.01E+04 1.87E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Std. 3.53E-31 1.07E+03 1.05E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 
Mean 1.80E-03 6.21E-03 1.27E-03 9.79E-04 2.33E−03 2.23E-04 3.74E-03 1.20E-03 

Std. 5.64E-04 1.42E-03 7.37E-04 8.00E-04 1.04E−03 1.52E-04 1.04E-03 3.71E-04 

f10 
Mean 2.47E+01 2.49E+05 2.17E+05 5.45E-05 0.00E+00 8.88E-16 0.00E+00 5.56E+01 

Std. 6.49E+00 5.48E+03 4.92E+03 2.99E-04 0.00E+00 1.72E-15 0.00E+00 2.27E+01 

f11 
Mean 1.03E-12 3.08E-10 5.28E-15 9.74E-08 6.10E−15 1.69E-04 6.15E-15 7.99E-15 

Std. 3.05E-12 8.70E-11 1.67E-15 5.97E-09 6.49E−16 1.14E-04 1.79E-15 3.15E-16 

f12 
Mean 1.24E-08 1.39E+05 9.42E+04 5.08E-03 1.73E−03 7.54E-10 1.80E-03 0.00E+00 

Std. 3.91E-08 3.66E+03 2.46E+03 1.05E-02 4.00E−03 5.33E-10 4.74E-03 0.00E+00 

f13 
Mean 1.03E-02 4.48E-20 1.79E-30 3.46E-03 2.35E−32 1.02E-02 3.45E-03 1.57E-32 

Std. 3.27E-02 3.10E-20 1.50E-30 1.89E-02 3.98E−32 3.90E-03 1.89E-02 3.63E-47 

f14 
Mean 4.20E-03 4.83E-18 9.42E-29 6.33E-13 5.64E−32 5.17E-02 1.35E-32 1.35E-32 

Std. 7.40E-03 3.96E-18 8.40E-29 3.44E-12 3.38E−32 1.10E-02 0.00E+00 4.52E-48 

 

 

Fig. 2. Convergence graphs of CS and FLCS for three representative test functions 

V. OPTIMAL POWER FLOW 

In power systems, optimal power flow (OPF) is an 

important tool for planning and operation of the whole 

system. The primary purpose of OPF is to make the chosen 

goal to achieve the optimal state by adjusting the available 

control variables, meanwhile satisfy all the operating 

constraints [30, 31]. The objective function can be fuel cost, 

power losses, voltage deviations and so on, among which 

fuel cost is generally considered to be the most basic and 
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important objective function. OPF is a multi-variable, 

multi-constraint, and nonlinear optimization problem, 

which is widely used for planning and controlling of the 

electric system and has important research significance. 

A. Problem formulation 

The mathematical model of OPF problem is mainly 

composed of the objective functions and various constraints. 

In this paper, this objective is to minimize the fuel cost of 

all generating units which can be described as: 

 2

1

1
min ( )

NG

i i Gi i Gi

i

f x a b P c P


    (11) 

 
2 1 1 1

[ , , , ]
T

G GNG G GNG NT C CNC
x P P V V T T Q Q  (12) 

where f1 is the fuel cost for all generators; x is a column 

vector of control variables; PGi is the active power of the ith 

generator; ai, bi and ci are fuel cost coefficients of the ith 

generator which can be obtained from [32]; VG, T and QC 

respectively represent generator voltage, transformer ratio 

and reactive power compensation; NG, NT and NC are the 

number of generators, transformer branches and shunt 

compensators, respectively. 

However, the fuel cost curve has non-derivable points 

with considering valve point effects of generator in practical 

application for better reflecting the real situation. Thus the 

OPF optimization problem becomes a non-convex complex 

problem and the value of fuel cost increased, which cannot 

be solved by traditional optimization methods. When 

considering valve-point effect, the quadratic cost functions 

at buses 1 and 2 should be added a rectifying sinusoidal 

section as follows: 

   2 min

sin
i i i Gi i Gi i i Gi Gi

a b P c P d e P Pf       (13) 

where di and ei indicate the parameters of the ith generator 

related to the valve point effect. Therefore, the total 

function considered valve point effect can be described as: 
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Fig. 3. Fuel cost function with and without valve point effect 

The fuel cost function with and without considering the 

valve-point effect is depicted in Fig. 3. It can be seen that 

the optimization problem becomes more difficult to solve 

when the simulation is more accurate, and the fuel cost will 

be larger than that without valve point effect. Compared 

with the traditional algorithm, the intelligent evolutionary  

algorithms can better solve these optimization problems 

because the fuel cost curve is not continuous differentiable. 

In addition, OPF is a large-scale nonlinear problem 

requiring satisfying various constraint conditions, which 

include equal constraints and unequal constraints. The equal 

constraints of OPF problem are a set of power flow 

equations of active power and reactive power. The unequal 

constraints represent various operating constraints on 

system variables which can be taken from [32]. 
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Fig. 4. System structure diagram of IEEE 30-bus system 

 
TABLE VII  

THE COST COEFFICIENTS FOR BASIC FUEL COST FUNCTION 

Bus 
Cost coefficients 

a b c 

1 0.00 2.00 0.00375 

2 0.00 1.75 0.01750 

5 0.00 1.00 0.06250 

8 0.00 3.25 0.00834 

11 0.00 3.00 0.02500 

13 0.00 3.00 0.02500 

 
TABLE VIII  

THE COST COEFFICIENTS WITH VALVE POINT EFFECT 

Bus 
Cost coefficients 

a b c d e 

1 150.00 2.00 0.0016 50.00 0.0630 

2 25.00 2.50 0.0100 40.00 0.0980 

B. Experimental results of OPF problem 

In this paper, the program is compiled in MATLAB 

R2014a environment, and simulation experiment on IEEE 

30-bus system is carried out to test the effectiveness of 

FLCS method for OPF problem. The maximum iteration 

numbers are all set as 200 for the two different objective 

functions, and the population size NP is set as 30 in this 

simulation experiment. For testing the robustness of the 

proposed method, both of CS and FLCS algorithm perform 

30 independent runs for solving the OPF problem. The 

system structure diagram of IEEE 30-bus system can be 

seen in Fig 4. 

This system includes 4 transformers, 9 reactive power 

compensation device and 41 branches. The 9 shunt 
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capacitors are connected at buses 10, 12, 15, 17, 20, 21, 23, 

24 and 29; the 4 transformers are at lines 6–9, 6–10, 4–12 

and 28–27 [14]. In addition, the system has 6 generators at 

buses 1, 2, 5, 8, 11 and 13, where bus 1 indicates the slack 

bus. The generator fuel cost coefficients of 30-bus system 

are given in TABLE VII-VIII. It should be explained that 

the cost coefficients are different at buses 1 and 2 when 

valve loading effects are considered, however the cost 

coefficients at other buses are unchanged. The maximum 

and minimum values for the control variables can be seen in 

TABLE IX. 
TABLE IX  

THE LIMITS OF THE CONTROL VARIABLES 

Variables Min Max Variables Min Max 

P1(MW) 50 200 T12(p.u.) 0.90 1.1 

P2(MW) 20 80 T15(p.u.) 0.90 1.1 

P5(MW) 15 50 T36(p.u.) 0.90 1.1 

P8(MW) 10 30 QC10(p.u.) 0.00 0.05 

P11(MW) 12 40 QC12(p.u.) 0.00 0.05 

P13(MW) 0.95 1.1 QC15(p.u.) 0.00 0.05 

V1(p.u.) 0.95 1.1 QC17(p.u.) 0.00 0.05 

V2(p.u.) 0.95 1.1 QC20(p.u.) 0.00 0.05 

V5(p.u.) 0.95 1.1 QC21(p.u.) 0.00 0.05 

V8(p.u.) 0.95 1.1 QC23(p.u.) 0.00 0.05 

V11(p.u.) 0.95 1.1 QC24(p.u.) 0.00 0.05 

V13(p.u.) 0.95 1.1 QC29(p.u.) 0.00 0.05 

T11(p.u.) 0.90 1.1    

 

Fig. 5. Convergence curve without valve point effect of CS and FLCS 

 

Fig. 6. Convergence curve with valve point effect of CS and FLCS 

The optimal results of CS and FLCS algorithm are given 

in TABLE X. As seen in TABLE X, the minimum fuel cost 

without considering valve point effect is 800.4233$/h 

obtained from the FLCS method, which is better than the 

basic CS algorithm and other two algorithms. When the 

chosen objective function is fuel cost minimization with 

valve-point effect, the optimal result by the FLCS algorithm 

is 930.1713$/h, which is also the best solution among the 

four algorithms in Table 10. In addition, the convergence 

curves of the fuel cost function for two test cases are shown 

in Figs 5-6. 
TABLE X  

SIMULATION RESULTS FOR IEEE 30-BUS SYSTEM 

Control 

variables 

Basic fuel cost function 
Fuel cost function with 

valve point effect 

FLCS CS FLCS CS 

P1(MW) 177.4957 175.2733 199.5891 196.9777 

P2(MW) 48.59783 48.99473 50.79088 51.7458 

P5(MW) 21.35871 20.54202 15.00002 15.0000 

P8(MW) 20.94908 22.50384 10.00027 10.0000 

P11(MW) 11.99756 12.71854 10.00000 10.0000 

P13(MW) 12.02936 12.39165 12.00000 12.0000 

V1(p.u.) 1.0822 1.0851 1.0289 1.0384 

V2(p.u.) 1.0637 1.0640 1.0065 1.0097 

V5(p.u.) 1.0323 1.0325 1.0266 0.9507 

V8(p.u.) 1.0372 1.0397 0.9834 0.9675 

V11(p.u.) 1.0939 1.0446 0.9503 1.0958 

V13(p.u.) 1.0470 1.0132 1.0994 1.0412 

T11(p.u.) 1.0600 1.0500 1.0000 1.0400 

T12(p.u.) 0.9100 0.9200 1.1000 0.9200 

T15(p.u.) 0.9700 0.9800 0.9400 0.9800 

T36(p.u.) 0.9700 1.0100 0.9600 0.9800 

QC10(p.u.) 0.0070 .0.0270 0.0370 0.0055 

QC12(p.u.) 0.0160 0.0330 0.0500 0.0000 

QC15(p.u.) 0.0300 0.0160 0.0050 0.0000 

QC17(p.u.) 0.0500 0.0460 0.0180 0.0320 

QC20(p.u.) 0.0350 0.0230 0.0450 0.0070 

QC21(p.u.) 0.0500 0.0170 0.0040 0.0390 

QC23(p.u.) 0.0320 0.0450 0.0200 0.0320 

QC24(p.u.) 0.0490 0.0420 0.0010 0.0110 

QC29(p.u.) 0.0220 0.0370 0.0500 0.0500 

Fuel cost 
($/h) 

800.4233 800.9886 930.1713 931.1146 

 

Fig. 7. Comparative distribution of the values without valve point effect  

 

Fig. 8. Comparative distribution of the values with valve point effect 
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Comparative distribution of the values of basic fuel cost 

function and fuel cost function with valve point effect are 

shown in Fig.7 and Fig.8, respectively, which manifests that 

the result uniformity of the proposed FLCS is better 

compared with CS. 

Furthermore, the statistical results of average, best, 

worst objective values and standard deviation from the 30 

independent trials obtained by the different methods are 

illustrated in TABLE XI. The Standard deviation, which has  

 

been compared with the MSA [30] and EADPSO [33] 

methods reported in the literature make it clear that the 

distribution of the results of FLCS was more concentrated 

in a smaller range than that of CS, MSA and EADPSO. 

Moreover, statistical analysis is made to check the 

robustness of the proposed FLCS and other methods.  

All analysis and comparison show that the modified 

FLCS is suitable for OPF control. Its performance is better 

than that for original CS algorithm. 

TABLE XI  

COMPARISON FOR OPTIMIZED OBJECTIVES 

Algorithms 
Basic fuel cost function Fuel cost function with valve point effect 

Trials Best Worst Mean Std. Trials Best Worst Mean Std. 

FLCS 30 800.4233 800.6515 800.5431 0.0626 30 930.1713 930.5488 930.3688 0.1047 

CS 30 800.9886 801.7661 801.3836 0.2180 30 931.1146 931.9706 931.5957 0.3156 

MSA [30] 30 800.5099 - - - 30 930.7441 - - - 

EADPSO 
[33] 

50 800.2276 800.3274 800.2625 0.0303 50 930.7454 931.1094 930.8800 0.0926 

 

VI. CONCLUSION 

In this paper, the novel cuckoo search algorithm based 

on the feedback control and local search mechanism (FLCS) 

is proposed for solving the global optimization problem. In 

the FLCS algorithm, the presented feedback control 

mechanism can enhance the efficiency of searching process, 

which can be modeled as a closed loop control process of 

population characteristics. In addition, in order to enhance 

the local tendency and accelerate the convergence of CS, a 

novel mutation mechanism is presented based on the 

guidance of best solution, which can effectively balance the 

global search of Lévy flight mechanism. Moreover, the 

bound handling mechanism can prevent the solution out of 

bounds or too many solutions on the boundary. In order to 

examine the performance of FLCS method, 21 widely used 

test functions are applied in the simulation experiment. A 

variety of test cases are carried out based on 21 test 

functions. Moreover, the FLCS method has been applied to 

OPF problem of power system for proving its effectiveness 

and applicability. The experimental results indicate that 

FLCS algorithm clearly outperforms the basic CS not only 

in solution quality but also in convergence speed. Moreover, 

the comparison results also demonstrate that FLCS 

algorithm is highly competitive to those well-known 

evolutionary algorithms and obtains the optimal solutions 

for different cases. 
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