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Abstract—Convolutional Neural Network (CNN) classifier is
a very popular classifier used to solve many problems, including
image classification and object recognition. The CNN classifier
usually improved by designing a deeper and bigger classifier
which needs more memory and computational power to run
the classifier. In this paper, we analyze and optimize the use of
small and shallow CNN classifier on CIFAR dataset. Karpathy
ConvNetJS CIFAR10 model was used as a base network of our
classifier and extended by adding max-min pooling method.
The max-min pooling is used to explore the negative and
positive response of the convolution process which in theory
will be trained the classifier more effectively. We choose several
different configurations to analyze the effectiveness of the
classifier by combining the training algorithm, batch normal-
ization configuration, weights initialization methods, dropout
regularization configuration, and heavy data augmentation. To
ensure that the classifier we designed is still small and shallow
CNN classifier, we limit the maximum number of layers in
our CNN classifier to 15 layers. Experiments on CIFAR10 and
CIFAR100 dataset shows that by compacting the kernel on each
layer, the classifier can achieve good accuracy and comparable
with another state-of-the-art classifier with a relatively same
number of layers with an error rate of 6.99% on the CIFAR10
dataset and 29.41% on the CIFAR100 dataset.

Index Terms—shallow CNN classifier, max-min pooling, deep
convolutional neural network, CIFAR dataset

I. INTRODUCTION

ONVOLUTIONAL Neural Network (CNN) classifier

is very famous classifier used for many applications
including image classification [1]-[7], video analysis [8]-
[13], text analysis [14]-[16], and sound analysis [17]-[20].
The era of CNN was started when Krizhevsky et al. [2]
won the ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) in 2012 with large margin compared with hand-
crafted features approaches. After Krizhevsky et al. CNN ap-
proach, the researcher starts developing a bigger and deeper
CNN classifier to achieve better evaluation score. Some of
the CNN architectures approaches, including VGGNet [3],
[21], inception network [4], [5], residual network (ResNet)
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[6], and DenseNet [7]. The disadvantages of all modern
CNN architectures are the huge number of parameters of the
classifier which leads to huge memory required to perform
training and testing of the classifier. Many parameters of
modern CNN architecture are inactive due to the use of the
regularization method (such as dropout), bad weights initial-
ization, or because of the use of ReLU (Rectified Linear Unit)
activation function. The ReLU activation function is widely
used in the modern CNN architectures and proved to be very
effective, but in the other hand, the ReLLU activation function
also disrupted the flow of gradient in the backpropagation
process which will make many parameters of the classifier
inactive. Blot et al. [22] proposed a new pooling method by
exploring either negative and positive response of the output
of the convolution process called max-min pooling. Blot et al.
[22] proved that the max-min pooling method can reduce the
problems that appear when using ReLU activation function
and produces a better accuracy compared with the classifier
that uses ReLU activation function.

In this paper, we investigated several shallow CNN ar-
chitecture for image classification on CIFAR dataset. The
classifier is designed by exploiting either negative or positive
output of convolution process by using max-min pooling
method [22]. Our contributions can be listed as follows.

o We proposed a CNN architecture that exploiting either
negative or positive respond of convolution output. The
proposed classifier designed using max-min pooling
method with additional normalization layer to reduce
the number of parameters of the classifier. By using
additional normalization layer, the number of parame-
ters in the classifier is reduced half compared with the
classifier using original max-min pooling method.

o We investigated several different CNN configuration for
initial experiments and choose one of the configurations
as the main CNN architecture for our proposed classi-
fier.

o We investigated the effects of different weights ini-
tialization, regularization, and heavy data augmentation
method using the main CNN architecture chosen in the
initial experiments.

The rest of the paper organized as follows. Section 2 de-
scribes related work on CNN classifier development. The
design aspect of our proposed CNN architecture which based
on Karpathy ConvNet]S CIFAR10 model is discussed in
section 3. Experiments on CIFAR10 and CIFAR100 dataset
are discussed in section 4, 5, and 6. In the last section, we
summarize and conclude the experiments.

(Advance online publication: 27 May 2019)



TAENG International Journal of Computer Science, 46:2, IJCS 46 2 24

X relu

pool

x*h

Fig. 1: The original architecture of max-min pooling method
for exploiting either positive and negative output of convo-
lution process (adapted from [22]).

II. RELATED WORK

Convolutional Neural Network (CNN) classifier has been
around for a couple years and widely used to tackle a lot
of visual understanding problems, including image classifi-
cation, image captioning, object detection, semantic scene
segmentation, and object re-identification. In the last couple
years, the number of parameters of CNN classifier is reduced
by designing the network with fewer full-connection layer
and added more convolutional layers to the classifier, but
on the other hand, the number of layers of the classifier
was increased rapidly. Does deeper CNN classifier produce
better accuracy? The trend we see in the last couple of
years shows that deeper classifier produced better accuracy.
CNN classifier with more than 100 layers were designed
by taking into consideration the flows of gradients from the
end of the network to the first layer of the classifier. The
flows of gradients are very important and in the case of the
backpropagation, the gradients that arrived at the several first
layers of the network may have very low value due to the
chain rule used in the backpropagation process.

The first approaches of CNN architecture that considering
the flows of gradients in the network was ResNet (Residual
Network) which proposed by He et al. [6]. ResNet CNN
architecture works by stacking the residual module which
will add the features with residual factor computed in each
module. Each residual module consists of several convolu-
tional layers and a skip connection with a summing operation
at the end of the module. By using the residual module,
the ResNet CNN architecture provides a highway flows of
gradients from the higher layer to several first layers of
the network. The highway flows of the gradients are very
efficient to train very deep CNN classifier. Although the
solution is working very well, very deep CNN classifier is
very difficult to paralleling the process in the cluster or chip
due to the dependencies between layers.

The second approaches to optimizing the training process
of CNN classifier is max-min pooling strategy which pro-
posed by Blot et al. [22]. The analogy of the current CNN
architecture is to search the features that have a connection
with the problem definition. For example, if the classifier goal
is to classify a person and non-person, the training process
will search the optimal features to represent the person/non-
person in the images. The ReLU (Rectified Linear Unit) is
used to search the optimal features by selecting the positive
features and penalize the negative features. Those operations
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Fig. 2: The proposed extended max-min pooling to reduce
the number of parameters by adding normalization layer at
the end of the module. The diagram assumed that convolution
kernel has 32 channel output.

may affect the flows of gradients from higher and create an
inactive neuron in the current layer. Blot et al. [22] proposed
a max-min pooling which exploiting either negative and
positive output of convolution output. The proposed max-
min pooling method proved more effective than the plain
network with just ReLU and max-pooling layer. One of the
disadvantages of max-min pooling method is that the output
of the pooling has a double number of features which very
difficult to use it for designing a deeper CNN classifier.

ITII. PROPOSED CLASSIFIER

In this section, we describe how the proposed classifier
was designed. For the basis of the classifier, we use Karpathy
ConvNetJS CIFAR10 Model [23] composed of three convo-
lutional layers and one fully connected layer. As mentioned
on their website [23], the accuracy of Karpathy ConvNetJS
CIFAR10 Model is around 80%, which is a very good
accuracy consider that the model only has around 20,000
parameters.

A. Max-Min Pooling

One of the important factors for CNN classifier is the
choice of the activation function. In recent years, many acti-
vation functions were developed for CNN classifier including
ReLU (Rectified Linear Unit) [24], Leaky ReLU [25], P-
ReLU (Parametric ReLU) [26], and ELU (Exponential Linear
Unit) [27]. All of those new activation function explores the
positive output of the convolution process. Bolt et al. [22]
proposed a method to explore either negative or positive
output of the convolution process called max-min pooling
method. Figure 1 shows the illustration of max-min pooling
method. Let X an input of max-min pooling method, the
output of max-min pooling can be described as follows

Y = [ReLU(X *h), ReLU(—X x h)] (1)

where h is the kernel used in the convolution process and
[..] denote the concatenation operation. The disadvantage
of max-min pooling method is that the number of output
channel is twice the number of the input channel. This
behavior increases the number of parameters in the next layer
rapidly compared with the standard pooling method.

(Advance online publication: 27 May 2019)
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TABLE I: Several different network configuration we used for the experiments on CIFAR10 and CIFAR100 dataset. The
net-A configuration has the same configuration as the Karparthy ConvNetJS baseline but with additional max-min pooling.
The ”5x5@20” means that the convolution process is conducted with 20 of a 5x5 kernel, while ”2x252” means that the
pooling method is conducted using a 2x2 kernel with stride 2. The “fc-10” means full-connection layer with 10 output.

l Group ‘ net-A ‘ net-B ‘ net-C ‘ net-D ‘ net-E ‘ net-F ‘
groupl convl convl convl convl convl convl
(5x5@16) (5x5Q@16) (5x5@32) (5x5@32) (5x5Q64) (5x5@64)
mm-pooll (2X2s2)
convl-n (1x1Q@16) [ convl-n (1x1@32) [ convl-n (1x1@64)
group2 conv2 conv2 conv2-1 conv2-1 conv2-1 conv2-1
(5x5@20) (5x5@32) (5x5@32) (5x5Q@32) (5x5Q64) (5x5@64)
mm-pool2-1 mm-pool2-1 mm-pool2-1 mm-pool2-1
(2x2s1) (2x2s1) (2x2s1) (2x2s1)
conv2-1n conv2-1n conv2-1n conv2-1n
(1x1@32) (1x1@32) (1x1Q64) (1x1@64)
conv2-2 conv2-2 conv2-2 conv2-2
(5x5@32) (5x5Q@32) (5x5Q@64) (5x5@64)
mm-pool2-2 mm-pool2-2
(2x2s1) (2x2s1)
conv2-2n conv2-2n
(1x1@32) (1x1Q@64)
conv2-3 conv2-3
(5x5@32) (5%x5Q64)
mm-pool2 (2x2s2)
conv2-n conv2-n (1x1@32) conv2-n (1x1Q64)
(1x1@20)
group3 conv3 conv3 conv3-1 conv3-1 conv3-1 conv3-1
(5x5@20) (5x5@32) (5x5@32) (5x5@32) (5x5@64) (5x5Q@64)
mm-pool3-1 mm-pool3-1 mm-pool3-1 mm-pool3-1
(2x2s1) (2x2s1) (2x2s1) (2x2s1)
conv3-1n conv3-1n conv3-1n conv3-1n
(1x1@32) (1x1@32) (1x1Q64) (I1x1@64)
conv3-2 conv3-2 conv3-2 conv3-2
(5x5@32) (5x5Q@32) (5x5@64) (5x5@64)
mm-pool3-2 mm-pool3-2
(2x2s1) (2x2s1)
conv3-2n conv3-2n
(1x1@32) (I1x1@64)
conv3-3 conv3-3
(5x5Q@32) (5x5@64)
mm-pool3 (2x2s2)
conv2-n conv3-n (1x1@32) conv3-n (1x1Q64)
(1x1@20)
| final | fe-10 / fe-100 |

B. Design Goals

As mentioned in the previous sub-section, the max-min
pooling method has disadvantages that the number of the
pooling output has doubled channel compared with standard
pooling. To reduce the number of parameters, we added
a normalization layer by performing a convolution process
using a 1x1 kernel. By setting the output channel of the
normalization layer to the same number of the input channel,
the max-min pooling process will produce the same number
of output channel as the standard pooling method. Figure 2
shows the diagram of our extended max-min pooling module.
We introduce r-ReLU (reversed ReLLU) which an opposite
version ReL.U and min-pool which pooling the features using
a minimum function instead of maximum function. The r-
ReLU can be described as follows

f(z) = min(0, z) )

The r-ReLU function will support the minimum-pool layer
which will explore the negative features of the output of

the convolution process. Our version of max-min pooling is
quite different, but by using our approach, the convolution
process is only conducted one time which will decrease the
computational power.

To test the classifier, we designed six different CNN clas-
sifier with very simple architecture. All of the configurations
can be viewed in Table I. The net-A configuration has the
same configuration as the Karpathy ConvNet]S CIFAR10
baseline [23] but with extended max-min pooling module
instead of a standard max pooling method. The CNN clas-
sifier configuration designed with a maximum of 15 layers.
We carefully computed the number of parameters of each
configuration to express the correlation between the number
of parameters with the accuracy of the classifier.

C. Overfitting

Overfitting is the main problem for modern CNN ar-
chitecture. There are some methods that designed to re-
duce the effect of overfitting including dropout [28], batch
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normalization [29], and heavy data augmentation process.
At this stage, we use two versions of batch normalization
configuration, BN and BNv2. In the BN version, we applied
batch normalization only after main convolutional layers (the
batch normalization does not put after the norm layer). In
the BNv2 version, we applied batch normalization on all
convolutional layers including the norm layer. For more
further experiments, we also use heavy data augmentation
process but the experiments are discussed in a separate
section.

IV. INITIAL EXPERIMENTS

In this section, we describe the results of initial exper-
iments using six different network configuration as shown
in Table I on CIFAR dataset [30]. All of the experiments
were done using Caffe deep learning framework [31] and
use the same parameters for fair comparison. We only use
a validation set for evaluation and the winner is chosen for
further experiments based on the accuracy on validation set.

A. CIFAR Dataset

CIFAR dataset [30] is a subset of 80 million tiny images
introduced by Torralba et al. [32]. CIFAR dataset divided
into two different data, CIFAR10 and CIFAR100. CIFAR10
consists of 10 different image classes with a total of 60,000
images while CIFAR100 consists of 100 different image
classes with the same number of images. The dataset is one
of the main datasets that mainly used for evaluating a new
proposed classifier. Around 50,0000 images in the dataset
are used for training or validation purposed and the rest of
the images (10,000 images) are used for testing purpose. All
labels in the dataset are simple objects, like ship, airplane,
cat, etc.; and each image only contains one object with
32x32 image resolution.

B. Experiments Setup

Data Augmentation. In the training process, we follow
a simple data augmentation process described in [33] by
adding 4 pixels of zero padding on each side of the training
dataset. The original resolution of training dataset is 32x32
pixel and will be increased to 36 <36 after data augmentation
process. In the training process, a random crop of 32x32
resolution and random horizontal mirror are used for on-
fly data augmentation process. We subtract the training data
with a mean value of 128 to create center zero mean
data. We take 5,000 images (from 50,000 images) of the
CIFAR10/CIFAR100 training data for validation purpose.

Training Process. To perform the training process, we
initialize the learning rate at 0.01 and decrease to 0.001
at 200,000 iterations and stops at 600,000 iterations. The
momentum of 0.9 and weight decay of 0.0005 is used for the
training process. All experiments were performed with same
training parameters using Adam stochastic gradient descent
algorithm [34]. We use very high maximum iterations to
compare the performance of batch normalization method
with the classifier that not use batch normalization method. In
the training process with CIFAR100 dataset, we decrease the
learning rate again to 0,0001 at 400,000 iterations because
the number of output class is higher than CIFAR10.

TABLE II: The results of the experiments on CIFAR10
dataset (lower is better).

Classifier #Params Validation (Error rate)
wioBN [ BN | BNv2
| Baseline [23] | 0.023M | 1965 % | -]

net-A 0.025M | 17.06 % | 17.38 % | 17.24 %
net-B 0.050M | 1588 % | 1572 % | 15.82 %
net-C 0.120M | 12.84 % | 1236 % | 1230 %
net-D 0.175M | 13.00 % | 11.98 % | 11.78 %
net-E 0466M | 11.08 % | 10.80 % | 11.10 %
net-F 0.687TM | 1052 % | 11.18 % | 10.08 %

Testing Process. To perform the testing process, we only
use one crop of full 32x32 resolution. We also subtract the
testing data with a mean value of 128 to create the same
zero mean distribution as training data. As mentioned before,
we only tested the 5,000 validation images taken from the
training data and choose the best network configuration for
further experiments.

C. CIFARIO

The summary of the experiments on CIFARIO dataset
can be viewed in Table II. As shown in Table II, the best
performance is achieved by the classifier with net-F config-
uration with accuracy around 90%. The batch normalization
method seems not significantly improve the performance
of the classifier but, when the training loss is plotted, the
classifier with batch normalization method has lower loss
value compared with classifier without batch normalization
method. The plot between training loss and iterations in
the training process is shown in Figure 3. As shown in
Figure 3, the classifier without batch normalization suffers
from overshot loss value which causes by un-normalize
convolution output. At this stage, we proved that the classifier
without batch normalization can have similar performance
as the classifier with batch normalization method but with
more iterations in the training process. Overfitting problem
also occurs in some classifier configuration. We detect the
overfitting problem by comparing the loss value for training
data and validation data. Even with batch normalization
method, we found that the loss value for training data is very
low (less than 0.01) but the loss value for validation data is
still high, around 0.4. The problem is discussed and solved
in further experiments by adding heavy data augmentation
process and apply a dropout regularization method.

D. CIFARI00

Table III shows the summary of our experiments using
CIFAR100 dataset. The baseline [23] produces a quite low
accuracy compared with our approaches. For example, the
difference between our net-A approach that has a quite
similar configuration with the baseline classifier is more
than 5%. Unlike the CIFAR10 experiment, the CIFAR100
experiment shows that the best accuracy is achieved by net-
E configuration instead of net-F. The plot between loss and
iterations in the training process can be viewed in Figure 4.
As shown in Figure 4, the training loss of net-F is actually

(Advance online publication: 27 May 2019)
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Fig. 3: The graphic between training loss and iterations on CIFAR10 dataset in the training process, (a) without BN method

(b) with BN method (c¢) with BNv2 method.

lower than net-E but the validation shows that net-E produces
more accuracy than net-F. The same phenomena also appear
between net-C and net-D configuration. From the machine
learning perspective, net-E and net-F suffer for overfitting
indicated by very low training loss (around 10~2) with high
validation loss (around 2.0). The overfitting problem occurs
more strongly in CIFAR100 experiments compared with
the CIFAR10 experiments. Even with batch normalization
method, the network still suffers from strong overfitting
problem. As mentioned in the CIFAR10 experiments, we will
try to solve the problem by utilizing heavy data augmentation
and dropout in the separate section.

V. DEEPER EXPERIMENTS

As described in the previous section, all of the models
was suffering from overfitting problem. In this section, we
try to reduce the effect of overfitting problem by applying

TABLE III: The results of the experiments on CIFAR100
dataset (lower is better).

Classifier 4Params Validation (Error Rate)
wio BN [ BN | BNv2
| Baseline [23] | 0.0s1M | 53229 | - | -]

net-A 0.054M | 47.02 % | 48.16 % | 47.53 %
net-B 0.096M | 45.96 % | 45.60 % | 46.40 %
net-C 0.167M | 4542 % | 44.46 % | 43.74 %
net-D 0222M | 47.64 % | 4648 % | 47.66 %
net-E 0.558M | 42.16 % | 37.60 % | 37.32 %
net-F 0.779M | 4272 % | 4122 % | 4154 %

heavy data augmentation method and dropout regularization
to the network. We choose net-E network configuration with

(Advance online publication: 27 May 2019)
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Fig. 4: The graphic between training loss and iterations on CIFAR100 dataset in the training process, (a) without BN method
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Fig. 5: The CNN structure of the final proposed classifier, which is a modification of net-E network configuration (please
see Table I). The detail configuration of each layer can be viewed in Table IV.
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TABLE IV: Final Configuration of Proposed Classifier with
net-E as the base of the configuration.

’ Group ‘ Layers Output #Params
input RGB image (32x32@3) 32x32@3
groupl convl (7x7@64) 32x32@64 9,408
mm-pooll (2x2s2) 16x16@128
convl-n (1x1@64) 16x16@64 8,192
group2 conv2-1 (3x3@128) 16x16@128 73,728
mm-pool2-1 (2x2s1) 15x15@256
conv2-1n (1x1@128) 15x15@128 32,768
conv2-2 (3x3@128) 15x15@128 147,456
mm-pool2-1 (2x2s2) 8x8@256
conv2-1n (1x1@128) 8x8@128 32,768
group3 conv3-1 (3x3@256) 8x8@256 294,912
mm-pool3-1 (2x2s1) Tx7@512
conv3-1n (1x1@256) Tx7@256 131,072
conv3-2 (3x3@256) TX7@256 589,824
mm-pool3-1 (2x2s2) 4x4@512
conv3-1n (1x1@256) 4x4 @256 131,072
final gobal-pooling 1x1@256
fc-10 / fc-100 10 / 100 2,560/25,600
Total #Params | 1.45M/1.46M

BNv2 batch normalization configuration because the model
performs very good validation accuracy on both CIFARI10
and CIFAR100 dataset. Although net-E is not the best model
for CIFARI10 experiments, the accuracy gap between net-
E with the best model is very narrow while on CIFAR100
experiments, net-E outperforms all other network configura-
tions.

Figure 5 shows the structure of the final CNN classifier
used in the experiments. To produce higher accuracy with
comparable network parameters, we change the number of
filters used in each group with increasing trends and a maxi-
mum of 256 filters. We follow the ResNet design strategy [6]
by increasing the filter size in the first convolutional layer to
7x7 and reduce the filter size in other convolutional layers to
3x3. We also use average global pooling operation before
the final layer, same as ResNet design strategy. Table IV
shows the final configuration of the classifier with a total of
1.45 million parameters for CIFAR10 experiments and 1.46
million parameters on CIFAR100 experiments.

A. Choosing Training Algorithm

To analyze the effect of the training algorithm used in
the training process, we conducted experiments using sev-
eral different training algorithms, including SGD (Stochastic
Gradient Descent), NAG (Nesterov Accelerated Gradient)
[35], RMSProp, AdaGrad [36], and Adam [34] solver. The
training process performs using minibatch of 256 examples
for 64,000 iterations (or around 350 epochs) with a simple
data augmentation method. All weights are initialized using
the method described by He et al. [26]. The learning policy
used in the training process for each training algorithm
described as follows

¢ SGD and NAG. The training process runs for 64,000

iterations with learning rate initialized at 0.1 and de-
creased to 0.01 and 0.001 at 32,000 and 48,000 itera-
tions respectively.

« RMSProp, AdaGrad, and Adam. The training process
was run for 64,000 iterations with learning rate initial-
ized at 0.001 and decreased to 10~ and 10> at 32,000
and 48,000 iterations respectively.

Table V shows the summary of experiments using the
proposed classifier trained with several different training
algorithms. As shown in Table V, the performance of the
proposed classifier is similar when trained using NAG or
SGD training algorithm. The final training loss of the pro-
posed classifier for all training algorithm is very low except
for AdaGrad algorithm which has bigger training loss value.
That phenomena show that Adam and RMSProp algorithm
suffers from overfitting problem.

B. Weights Initialization

To provide more detailed analysis, we conducted exper-
iments to analyze the effect of the weights initialization
method used in the training process. In this experiment,
we use the NAG training algorithm with the same learning
rate policy as the one used in the previous experiments
and initialize the weights using three different methods, He
et al. [26] (MSRA), Xavier & Bengio [37] (Xavier), and
Mishkin & Matas [38] (LSUV). Table VI shows the summary
of experiments using the proposed classifier with weights
initializes using three different weights initialization method.
As shown in Table VI, the weights initialization method is
not too much effect on the performance of the proposed clas-
sifier. We continue our investigation using MSRA weights
initialization method with additional dropout and heavy data
augmentation.

C. Minibatch Size

One of the parameters that affecting the performance of
the classifier is the number of minibatch examples used
in the training process. For further analysis, we perform
several experiments using different minibatch configuration.
To provide a fair comparison, we used epochs to determine
the maximum number of iterations in the training process
for each minibatch configuration. The learning rate in the
training process is initialized at 0.1 and decreased to 0.01
and 0.001 at 50% and 75% of maximum iterations.

Table VII shows the results of experiments using several
different minibatch configurations. As shown in Table VII,
the best accuracy is achieved using a minibatch size of
512 for CIFAR10 dataset and minibatch size of 256 for
CIFAR100 dataset. The minibatch configuration with more
than 512 and less than 64 examples per iteration produces
lower accuracy and tend to lead the classifier to overfitting
condition. For the next experiments, we only use minibatch
configuration with 256 and 512 number of examples per
iteration.

D. Batch Normalization Configuration

To perform a deeper analysis, we conducted experiments
using three different batch normalization (BN) configuration.
The first configuration is placing the BN layer before the
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TABLE V: Summary of the experiments using the proposed classifier trained using several different training algorithms on
CIFAR dataset (reported using error rate, lower is better).

CIFAR10 CIFAR100
Training Algorithm |\ dation Testing Validation Testing
Center Crop ‘ Multi Crop Center Crop Multi Crop

SGD 7.70% 8.68% 7.72% 32.18% 31.25% 29.65%
NAG 7.54% 8.33% 7.75% 31.72% 31.01% 29.41%
RMSProp 9.20% 9.57% 8.54% 34.96% 34.70% 32.74%
AdaGrad 19.60% 20.18% 17.85% 49.86% 48.67% 46.72%
Adam 8.82% 9.17% 8.28% 33.84% 33.65% 31.52%

TABLE VI: Summary of the experiments using the proposed classifier trained using several different weights initialization

method on CIFAR dataset (reported using error rate, lower is better).

CIFAR10 CIFAR100
Training Algorithm o Testing . Testing
Validation Validation
Center Crop Multi Crop Center Crop Multi Crop
MSRA [26] 7.54% 8.33% 7.75% 31.72% 31.01% 29.41%
Xavier [37] 7.94% 8.29% 7.66 % 30.34% 31.29% 30.11%
LSUV [38] 7.72% 8.38% 7.85% 32.08% 31.78% 29.92%

TABLE VII: Summary of the experiments using the proposed classifier trained using several different minibatch configura-

tions on CIFAR dataset (reported using error rate, lower is better).

CIFAR10 CIFAR100
No. | Batch Size | #Epochs #lter Validation Testing Validation Testing
Center Crop ‘ Multi Crop Center Crop | Multi Crop

1. 16 364 1.024.000 12.16% 12.65% 11.07% 37.84% 38.94% 36.77%
2. 32 364 512.000 8.56% 10.03% 8.75% 35.32% 34.15% 31.83%
3. 64 364 256.000 8.66% 8.84% 7.73% 32.72% 32.29% 30.27%
4. 128 364 128.000 7.56% 8.51% 7.71% 32.42% 31.78% 29.82%
5. 256 364 64.000 7.54% 8.33% 7.75% 31.72% 31.01% 29.41%
6. 512 364 32.000 7.80% 8.15% 7.39% 32.52% 32.02% 30.02%
7. 1024 364 16.000 8.08% 8.55% 7.66% 34.08% 33.43% 31.86%

TABLE VIII: The effect of placing the Batch Normalization layer (reported using error rate, lower is better).

CIFAR10 CIFAR100

BN-Place Batch Size e Center Multi . Center Multi
Validation Crop Crop Validation Crop Crop
L 256 7.54% 8.33% 7.75% 31.72% 31.01% 29.41%

Before Activation Layer
512 7.80% 8.15% 7.39% 32.52% 32.02% 30.02%
L 256 7.90% 8.13% 7.12% 32.12% 31.43% 29.85%

After Activation Layer
512 7.16% 8.27% 7.16% 32.14% 31.65% 30.25%
Both 256 7.64% 8.59% 7.69% 31.16% 31.34% 29.57%
0

512 7.46% 8.34% 7.52% 31.96% 31.75% 30.18%
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activation layer which is the default configuration as we
used in the previous experiments. The second configuration
is placing the BN layer after the activation layer. The third
configuration is placing the BN layer in both before and after
the activation layer. We use the same training parameters as
used in the previous experiments with a minibatch configu-
ration of 256 and 512 number of examples per iteration and
MSRA weight initialization method.

Table VIII shows the summary of the experiments using
three different BN layer configurations. As shown in Table
VIII, placing the BN after the activation layer produces
higher accuracy on CIFAR10 dataset comparing with placing
the BN before the activation layer. For CIFAR100 dataset, the
accuracy for all BN configurations produces similar accuracy
which is very different from the results using CIFAR10
dataset.

E. The Effect of Bias Parameter

We conducted further experiments by removing the bias
parameters of the classifier except for the last fully-connected
layer. The training process is done using the same training
parameters as in the previous experiment. We also vary the
classifier configuration, including the BN placing variation
and two different minibatch configurations.

Table IX shows the results of the effect of bias parameters
experiments. As shown in Table IX, the classifier perfor-
mance is not too affected by the bias parameter. The dif-
ference between classifier with bias parameters and without
bias parameters is under 1% on CIFAR10 and CIFAR100
dataset. The best performance achieves by the classifier with
BN placed after activation layer and with 256 minibatch
examples per iterations.

F. Dropout and Heavy Data Augmentation

In this last experiments, we try to reduce the overfitting
problem by adding dropout regularizatio and hevay data
augmentation method. We vary the classifier configuration
using several different dropout probability rate, heavy data
augmentation, two BN configuration, and two different mini-
batch configuration. For heavy data augmentation method,
we use five data augmentation process; random image con-
trast correction, blurring operation, random color shifting
operation, random translation operation, and random mirror-
ing operation. The training process is perform using NAG
training algorithm with learning rate intialized at 0.1 and
decrease to 0.01 and 0.001 at 50% and 75% from maximum
iterations respectively. The dropout regularization is attached
in the last convolutional layers, just before the global pooling
operation (please see Table IV). In total, we conducted
experiments using 28 different classifier configuration.

Table X shows the summary of experiments using ad-
ditional dropout and heavy data augmentation process. As
shown in Table X, placing the BN layer after activation
layer produces more stabil performance comparing with the
classifier that placing the BN layer before the activation
layer. The number of examples per iteration or minibatch
size is not effected the performance of the classifier and
produces similar performance, either on CIFAR10 dataset or
CIFAR100 dataset. The best accuracy on CIFAR10 dataset
achieves by classifier with additional dropout probability of

25% and no heavy data augmentation method. While the best
accuracy on CIFARIO0 dataset achieves by classifier with
additional dropout probability of 6.25% and no heavy data
augmentation method. The experiments conclude that the
heavy data augmentation may not too impacted the overall
performance of the proposed classifier.

VI. COMPARISON

For fairness comparison, we only compare the results
of the proposed classifier with other classifiers that have
shallow CNN architecture, including NiN CNN architecture
[39]-[41], All-CNN [42], DSN (Deep Supervised Network)
[33], FitNet [43], Highway Network [44], BinaryConnect
[45], Gated Pooling CNN [46], and Maxout Network [47].
Table XI shows the error rate comparison of several state-of-
the-art methods that have shallow architecture on CIFAR10
and dataset. As shown in Table XI, the proposed classifier
outperforms other approaches that have shallow architecture.
The detail number of parmeters in the classifier is included
except for BinaryConnect and Maxout classifier. In term of
the number of parameters, our proposed classifier has around
1.4 million parameters which are similar to several other
classifiers, such as All-CNN [42] and Gated Pooling [46].
Unfortunately, several classifiers do not include the total
number of parameters in their publication.

VII. CONCLUSION

We have presented a systematic evaluation of shallow
CNN classifier designed using max-min pooling on CIFAR
dataset. The max-min pooling method used to either ex-
ploring the positive and negative output of the convolution
process. There are six different CNN architecture that we
evaluated using CIFAR dataset. With the same network con-
figuration, our classifier outperforms the original Karpathy
ConvlJS baseline by 2% in CIFAR10 experiments and 6% in
CIFAR100 experiments. For deeper analysis, we conducted
several additional experiments, including the effect of the
training algorithm used in the training process, weights ini-
tialization, minibatch configuration, BN layer configuration,
the effect of bias parameters, dropout regularization, and
heavy data augmentation. As shown in the experiments, the
classifier designed with max-min pooling method outper-
forms several other classifiers that have the same number
of layers.

This paper only discusses the shallow version of the classi-
fier with max-min pooling method. Additional experiments to
analyze the deeper version of the classifier is required to im-
prove the performance of the classifier and comparable with
very deep CNN architecture, such as ResNet or DenseNet.
Benchmarking the proposed classifier on other datasets, such
as SVHN (Street View House Numbers) or STL-10, is also
our concern for future work. Furthermore, a combination of
the proposed classifier with the highway network or residual
concept can be used to optimize the flows of the gradient in
the training process and may produces a better accuracy.
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TABLE XI: Comparison of error rate (in %) with several state-of-the-art methods on CIFAR10 and CIFAR100 dataset
(lower is better).
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