
 

Abstract—This paper deals with the school bus routing 

problem (SBRP) while satisfying with bus capacity and student 

travel time constraints. The objective is to minimize the number 

of school buses as well as the total travel distance. A hybrid 

metaheuristic, which is combined iterated local search (ILS) 

with set partitioning procedure (SP), is proposed for this 

bi-objective problem. An SP model is built by the routes which 

are generated in the execution of ILS, and then the model is 

solved by the optimization software CPLEX. In the local search 

of ILS, four neighborhood operators are sequentially executed 

to improve the solution, and the routes of the improved solution 

and the best local optimization obtained every iteration are both 

put into the route pool. To keep the diversification of the local 

search, an effective perturbation method based on ruin and 

recreate is also adopted. The developed algorithm was tested on 

the benchmark instances. The results show that the proposed 

algorithm is effective. 

 
Index terms—school bus routing problem, bi-objective, 

iterated local search, set partitioning, hybrid metaheuristic 

I. INTRODUCTION 

ITH the development of the compulsory education in 

China, providing the bus service for the students has 

become one of the main tasks for the education authorities. 

Providing the bus service not only can enhance the quality of 

school services, but also relieve the traffic pressure, 

especially for the relatively densely populated areas. Some 

areas in China, such as Shanghai, Shenzhen, Dalian, have 

begun the work of school bus services to explore the model of 

school bus operation management. Among the school bus 

operation management, planning school buses routes are the 

basic work. It is generally agreed that the reasonable school 

buses planning can reduce the purchase costs and the ordinary 

operating costs of school buses while ensuring student safety. 

Therefore, it is important to develop an efficient algorithm, 

which allows the transportation department in organizing 

routes easily and efficiently. School bus routing problem 

(SBRP) seeks to plan an efficient schedule for a fleet of  
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school buses where each bus picks up some students from bus 

stops and delivers them to their designated school while 

satisfying with various constraints [1]. SBRP belongs to an 

application area of vehicle routing problem (VRP), and it is 

an NP-hard combination optimization problem. Although the 

model and algorithms for SBRP have been researched for 

many years, the problem is also continuously studied because 

of the complexity of constraints and planning objectives in 

real life [2-4]. 

The mainly operation mode of school bus service in China 

is the single-school SBRP, that is the fleet of buses are 

servicing for one school. We can reduce the single-school 

SBRP to the capacitated vehicle routing problem (CVRP) if 

we only consider the students capacity constraint. However, 

in practice, single-school SBRP is more complex than the 

CVRP. There are many other constraints such as maximum 

riding time for each student, school time window and the 

maximum bus travel distance which need to be considered. To 

satisfy school bus service regulations, the objectives of 

single-school SBRP need to balance the operation costs, 

services quality, and equality. As more objectives added to 

the problem, the process of organizing efficient routes 

becomes more time-consuming and complicated. In the 

current literature, the commonly used methods are including 

exact methods, heuristic methods, and metaheuristics. The 

exact methods suit for small size problem and can get the 

exact best routes [5, 6], e.g. integer linear programming 

(MIP), dynamic programming. The heuristics and 

metaheuristic methods are non-exact methods, which can only 

get the approximation of best routes, e.g. saving heuristic, 

simulated annealing, ant colony optimization (ACO). 

However, these methods can solve practical large dataset 

problems within reasonable computational time. Therefore, 

the heuristics and metaheuristics are the better to solve the 

large dataset for single-school SBRP [7, 8]. From the 

objective perspective, the common objectives of 

single-school SBRP are aiming to minimize the bus travel 

distance or the number of school bus [6, 7]. In some cases, 

researchers combined the two objectives, which called the 

bi-objective problem. One of the bi-objective is to minimize 

the number of buses to reduce the bus purchase budget, and 

the other is to minimize the total travel distance to reduce the 

bus travel cost in practical. By combining the two objectives, 

it has a significant influence on practical application for 

SBRP. However, this bi-objective problem is only solved by 

exact methods [6] or heuristic algorithm [9]. Seldom paper 

tries to combine the exact method and the metaheuristic 

method to solve the bi-objective problem. This paper aims to 

fill this gap to improve the efficiency of the current algorithm. 

Based on the current metaheuristics techniques, we design a 

A Hybrid Metaheuristic Algorithm for the 

Bi-objective School Bus Routing Problem  

Lan-xue Dang, Yan-e Hou, Qing-song Liu and Yun-feng Kong  

W 

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_03

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 

mailto:danglx@foxmail.com
mailto:houyane@henu.edu.cn
mailto:qliu20@kent.edu
mailto:yfkong@henu.edu.cn


new metaheuristics algorithm, which combines the two 

categories of methods to tackle bi-objective SBRP. 

On the one hand, the Iterated local search (ILS) is one kind 

of metaheuristic algorithm, which has been successfully 

applied to combination optimal problems [10]. The advantage 

of ILS is that it is easy to implement and it can integrate with 

other algorithms effectively. On the other hand, Local 

search-based set-partitioning (SP) method can effectively 

improve the VRP/SBRP solutions produced by local search 

methods (e.g., ILS) [11-13]. Therefore, in this study, we 

proposed a hybrid metaheuristic, which integrates the ILS 

with SP to solve the bi-objective single-school SBRP. In our 

proposed algorithm, ILS used a perturbation mechanism 

based on ruin and recreated principles [14] aiming to add the 

diversity of algorithm. The SP model was built by the search 

history of ILS to find the global best solution. The 

experiments on a set of benchmark instances prove that our 

ILS algorithm outperforms other methods in some scenarios 

and has advantages in solution quality solving for bi-objective 

SBRP problems. 

The paper is organized as follows. The bi-objective SBRP 

and an MIP formulation are defined in Section II. Section III 

describes the design of our algorithm. Section IV shows the 

results on a set of SBRP instances. The algorithm 

performance is also compared with the MIP solutions 

obtained from CPLEX optimizer and other algorithms. 

Section V presents the concluding remarks of this work. 

II. PROBLEM DEFINITIONS 

The school bus routing problem can be defined as the 

following graph problem. Let ( , )G V A be a complete graph 

where  0,1,...,V n is the node set, 

and   , , , |A i j i j V i j   is the arc set. Nodes  0,1,..., n  

correspond to the student stops, each with a known number of 

students
i

q , to be served, whereas node 0 corresponds to the 

school as a depot (
0
=0q ). The costs 

ij
c and 

ij
t  are associated 

with each arc  ,i j A , and represent the travel distance and 

travel time from node i  to node j . A set of school buses are 

available at the depot, each of them has the same capacity Q . 

Each bus leaves from school depot, visits several student 

stops and returns to school. Every stop must be visited only 

once. Also, some schools usually manage the length of time 

that the students ride on the bus, and the maximum riding time 

for any one student shall not exceed
max

T . 

We assume cost matrix is symmetric, where 

ij ji
c c and

ij ji
t t . Subject to school bus capacity and 

maximum riding time constraints, both the number of school 

buses and the total travel distance have to be minimized. The 

service time for picking up students at stop i , 
i

t (
0
=0t ), can be 

estimated by the number of students at that stop. The 

bi-objective SBRP can be expressed as an MIP model. The 

model is proposed based on the two-index vehicle flow 

formulation, which uses binary decision variables 
ij

x  

( , |i j V i j  ) to indicate if a bus traverses or not an arc in 

the optimal solution. Additional integer decision variables 

i
y (

0
=0y ) and 

i
z (

0
=0z ) donate the cumulative number of 

students in a bus and the cumulative travel time of the bus 

when it leaves from stop i . The bi-objective MIP formulation 

for SBRP is shown as follows: 

The objective function (1) is to minimize the number of 

routes and the total travel distance in a lexicographic manner. 

The parameter
0

M is a big enough positive number which 

represents the fixed cost of a bus. Constraints (2) ensure that 

every stop is served by one bus and visited exactly once. 

Constraints (3) guarantee that the bus capacity is never 

exceeded. Constraints (4) state the accumulation of students 

in a bus: (y )
i j ij j

q x y  .If the arc  ,i j  is traveled, 1
ij

x  , 

then y
i j j

q y  , otherwise (y ) 0
i j ij

q x  ; so the nonlinear 

inequality can be expressed to linear inequality by introducing 

a positive integer 
1

M  (
1

2M Q ). Constraint (5) ensures that 

the riding time of every student is never exceeded the 

maximum riding time T. Constraints (6) state the 

accumulation of bus travel time: (z )
i ij j ij j

t t x z   by 

introducing a big positive integer 
2

M  (
2

2M T ). Constraints 

(7) and (8) are the constraints on all decision variables. 

III. PROPOSED ALGORITHM 

A. Algorithm Framework 

The proposed hybrid algorithm (ILS-SP) includes an 

iterated local search (ILS) heuristic and a set partitioning (SP) 

procedure. ILS has been successfully applied to various 

combination optimization problems, especially for the VRPs. 

Its performance depends mainly on the choice of the local 

search, the perturbations and the acceptance criterion [10]. 

There are four components in the ILS algorithm i.e. a method 

for generating an initial solution, neighborhood structures, 

perturbation scheme, and an acceptance rule. Also, the 

intermediate routes in the locally optimal solution identified 

by ILS are recorded in a route pool. After iterations of the 

local search, an SP model described in Section C will be built 

based on the routes in the route pool. The SP model is then 

solved by an MIP solver. The algorithm framework of ILS-SP 

is described in Algorithm 1. 

Algorithm 1: ILS-SP (Maxiter, Inneriter,p) 

(1) Generate an initial feasible solution S0;  

(2) RoutePool=Null, Sbest=S=S0; 

(3) For (i=0; i<Maxiter; i++) 

(4)   For each local search operator op  

(5)      S=Localsearch(op,S,Sbest);  

(6)      Update_route_pool(RoutePool, S); 

(7)   S=Perturbation(Inneriter , p,S, Sbest); 

(8)   Update_route_pool(RoutePool, S);  

(9) sp=Build_sp_model(RoutePool);       

(10) S*=MIPSolver(sp);  

min 
0 0

|i 0 | ,i 0

i ij ij

i V i V j V i j

Z M x c x
     

     (1) 

s.t. 
| |

1, | 0
ij ji

j V j i j V j i

x x i V i
   

       (2) 

 , | 0
i

y Q i V i     (3) 

 
1
(1 ), , | , 0

i j j ij
y q y M x i j V i j j         (4) 

 
max

,
i

z T i V    (5) 

  2
1 , , | , 0

i ij j j ij
z t t z M x i j V i j j          (6) 

 {0,1}, , |
ij

x i j V i j     (7) 

 , {0,1, 2...},
i i

y z i V    (8) 
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(11) S best=GetBetter(Sbest, S*); 

(12) Output Sbest. 

As described in Algorithm1, the initial feasible solution 
0S  

is first generated. In our algorithm, 
0S  is obtained by the 

standard saving method in [15]. The procedure 

Localsearch(op, S ,
bestS ) uses operator op to explore the 

neighborhood space of the current solution S . A 

neighborhood solution is accepted or rejected according to 

the acceptance rules. Once a neighborhood solution is better 

than the best solution bestS , the best solution will be updated by 

this solution. Then the perturbation method (shown in section 

C) is adapted to the solution S . The procedure 

Update_route_pool(RoutePool, S) records the routes of the 

solution S  in RoutePool. The procedure Build_sp_model 

(RoutePool) builds an SP model based on the routes in 

RoutePool. The procedure MIPSolver (sp) solves the set 

partitioning model sp. At the end of the algorithm, the better 

solution of bestS  and S  is produced. 

B. Neighborhood Structures 

We use four neighborhood structures: one-point move, 

two-point move, 2-opt move, and or-opt move, to explore the 

solution space in the local search phase sequentially. All the 

four types of moves are performed within a route or between 

routes. The neighborhood structures are described as follows.  

(1) One-point move. A student stop is removed from a route 

and then inserted to a different position of the same route or 

into a different route in the solution (Fig. 1).  In Fig.1 (a), 

student stop 4 is removed and inserted to a new position of the 

same route. In Fig.1 (b), student stop 4 is removed from the 

right route and inserted into the left route. 

(a) Within a route

(b) Between routes

Depot Relocated stopStopSchool

1

2

3

5

1

4

4

2

3

5

1

2

3

4

5

6

7

1

2

3

4

5

6

7

 

 
Fig. 1.  Examples of One-point Move 

 

(2) Two-point move. A pair of student stops are swapped. 

The procedure chooses a random student stop and then tries to 

swap it with another student stop in the same route or in 

different route (Fig. 2). Example in Fig.2 (a) swapped a pair 

of student stops (stops 2 and 5) in the same route. Example in 

Fig.2 (b) swapped a pair of student stops (stops 4 and 8) in 

different routes. 

(a) Within a route

(b) Between routes

Depot Relocated stopStopSchool

1

5

2

3

4

2

6

1

3
4

5
6

1

2

3

8

1

2

3

4

5

6

7

8 4

5

6

7

 
 

Fig. 2.  Examples of Two-point Move 

 

(3) 2-opt move. 2-opt is a simple and effective 

improvement procedure. It is often used in local search of 

VRP. It removes two non-adjacent arcs and adds two new arcs 

while maintaining the route structure. When performing 2-opt 

in the same route, the nodes between two arcs are reversed. 

For example, in Fig. 3(a) after reversing the order of student 

stops 2, 3 and 4 a new route is generated (i.e. removing arc e1 

and e2 from the original route and adding new arcs e3 and e4 to 

it). When performing 2-opt between different routes, we 

randomly select two arcs from different routes, remove them 

and then switch their end points. After 2-opt operation, we can 

generate a new feasible solution and get new routes. For 

example, in Fig. 3(b), arc e1 and e2 are located in different 

routes. After 2-opt, two new routes are generated (i.e. 

removing arc e1 and e2 and inserting new arc e3 and e4). 

(b) Between routes

(a) Within a route

Related edgeDepot StopSchool

e2

e1

1

2

1

3
4

5

6 2

3
4

5

6

e3

e4

1

2

3

4

9

6

7

8

5

e3

e4

1

2

3

4

9
5

6

7

8 e1e2

 
Fig. 3.  2-OPT 
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(4) Or-opt move. This move is aimed at shifting a sequence 

of consecutive student stops from a randomly chosen route to 

the same route or another route. The number of student stops 

is randomly generated between two and four. After 

determining the length of consecutive student stops, the 

neighborhood operator attempts to shift these student stops to 

other positions as long as the shifting does not violate problem 

constraints. Fig.4 (a) and Fig.4 (b) show examples of 

performing or-opt within a route and between routes 

respectively. 

Depot Relocated stopStopSchool

1

23

4

56

7

1

23

4

56

7

(b) Between routes

Depot Relocated stopStopSchool

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(a) Within a route

 
Fig. 4.  Or-opt 

C. Acceptance Rules 

The optimization objective defined in this paper is to 

minimize the number of school buses and total travel distance. 

However, the object of the number of school buses has higher 

priority than the objective of total travel distance. The new 

local optimal solution found in local search need to evaluate 

whether is accepted or not according by optimization 

objective. We use a lexicographic bi-objective function to 

evaluate the neighborhood solutions: 
2

( ) | | ( | | ) ( )
r S r S

Cost S S r d r  
 

                 (9) 

In the function, S is a solution, || S indicates the number of 

routes in the solution S , || r is the number of nodes in route r , 

and ( )d r indicates the distance of route r , and     . 

The second component maximizes
2

| |
r S

r


 which encourages 

the search operators to move stops from shorter routes to 

longer routes, and guide the algorithm toward the direction of 

reducing the number of routes more and more easily. When 

the number of routes decreases, the solution must be accepted; 

otherwise, the solution is accepted or not by the 

record-to-record [16] acceptance criterion. The accepted rule 

is defined in the following: 

*
', ( ')

', ( ') (1 ) , [0,1]

S f S L
S

S f S dev L dev




   

 
 
 

              (10) 

In formula (10), 'S is the new neighborhood solution, *S is 

the current best solution, L  is the total travel distance of 

solution *S , and dev is the relative coefficient. If the total 

travel distance of 'S is better than L or less than (1 )dev L  , 

'S is selected as the new best solution and L will be updated. 

Otherwise 'S is rejected. 

D. Perturbation Schemes 

ILS is based on building a sequence of local optimal 

solutions by perturbing the current local optimum and 

applying local search to the modified solution. The 

perturbation strength has to be sufficient to lead the trajectory 

to a different attraction basin leading to a different local 

optimum. In our algorithm, we adopt a ruin and recreate 

perturbation method, which is different from the perturbation 

method that is usually used in ILS (e.g., random customer 

insertion, the exchange route segment), to perturb the current 

solution. The perturbation method is described in Algorithm 

2.  

Algorithm 2: Perturbation (Inneriter,p,S,Sb) 

(1) S*=S; 

(2) for(int i=0;i<Inneriter;i++) 

(3)   R*= Destroy(S*, p); 

(4)   Sr = Recreate(R*); 

(5)   if Sr is better than S* 

(6)      S*= Sr 

(7) Sb=GetBetter(S*, Sb); 

(8) S=Sb; 

(9) return S; 

 

The perturbation procedure executes Inneriter times to 

destroy and recreate the solution. In every iteration, the 

solution is firstly partially destroyed by rejected some nodes, 

and then the solution is recreated by reinserting the rejected 

nodes. Some nodes are selected from the current solution and 

then remove them in the Destroy procedure, which can 

explore the bigger solution space. The lager solution space 

could cause higher computation complexity, so the 

perturbation factor p is introduced to control the strength of 

perturbation. The value of perturbation factor is a decimal 

number between zero and one, i.e., when p  is 0.1, it means 

that the 10% of nodes are removed from the solution. Thus, 

the current solution *S  is destroyed by randomly removing 

p *100% nodes to obtain a partial solution *R . The procedure 

Recreate performs a task of recreating solution. A new 

solution rS  is obtained by inserting nodes in the guidance of 

insertion rules. The insertion rule is designed to find the 

position to insert with the cheapest feasible insertion cost for 

every insertion. The solution rS  that is better than *S  will 

become the next solution to perturbation. 

E. Set Partitioning Procedure 

After the execution of ILS, there are many routes in the 

route pool. A set partition model is built by these routes in the 

route pool. Let C  be the set of stops. Let R  be the set of all 

possible routes for SBRP and 
i

R  be the subset of the routes 

covering stop i  ( , ii C R R  ). Each route r  ( ir R ) has 

an associated cost 
r

c and a binary variable
r

x . The cost 

r
c consists of the purchase costs (denoted by M0) and the total 
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travel distance of the route r . A set partitioning formulation 

for the SBRP is given as follows: 

min 
r r

r R

xc



 

(11) 

s.t. 1,
i

i

r

r R

i Cx


  
 

(12) 

 {0,1},rx r R  
 

(13) 

This SP model tries to select an optimal solution from the 

possible routes. The objective function (11) minimizes the 

sum of the route costs. Constraints (12) guarantee that each 

stop must be covered exactly once. Constraints (13) define the 

binary decision variables. The new solution is obtained by 

solving the SP model by CPLEX software. 

IV. COMPUTATIONAL EXPERIMENTS 

Our algorithm was programmed in C# language and 

executed in an AMD Phenom™ II X4 B97 3.20GHz with 

4GB of RAM running 64-bit Windows 7 operating system. 

The parameters values were selected after some preliminary 

experiments. The parameters Maxiter and Inneriter were both 

set to 50. The perturbation factor p is set to a number within 

the range of [0.1, 0.4]. The parameter dev in acceptance rule 

is set to 410 . The SP model was solved by IBM ILOG 

CPLEX 12.6. The parameters for CPLEX solver were set to 

their default values, except that the maximum computation 

time was set to 60 seconds and the MIPGap parameter was set 

to 1010 . The ILS-SP algorithm was executed 10 times over 

each instance. 

A. Test Instances 

We consider two sets of instances for SBRP designed by 

[17] to evaluate the performance of our algorithm. The 

instances are classified into two groups: random spatial 

distribution of schools and bus stops (RSRB) and clustered 

distribution (CSCB). Based on the data, we prepared 12 

single school instances for this research. R01~R06 and 

C01~C06 come from the RSRB01 and CSCB01 benchmark 

instances. The number of student stops is 17~75. We assume 

the capacity of each school bus is 66, and its average speed is 

20 miles per hour. The service time at student stop is an 

integer number estimated by the formula 19+2.6*q, where q is 

the number of students at the stop. The maximum riding time 

(MRT) of a student in a bus is set to 45 minutes. The distance 

between any two nodes is calculated by Manhattan distance. 

B. Comparison of Exact Algorithm and ILS-SP 

In order to make comparison our results with the current 

exact methods, we run both the ILS-SP algorithm and the 

exact algorithm (i.e. the MIP model) on 12 instances. 

According to Section II, we build the MIP models for every 

instance. The model parameters M0, M1, M2 are set to 810 , 
310  and 510 respectively. The models were solved by 

CPLEX solver which we set the number of threads to 8, the 

maximum computation time to 1200s, the MIPGap parameter 

to 1010  and other parameters to default values. 

The ILS-SP and MIP solutions are shown in Table I. Num 

indicate the number of bus stops, which is the size of the 

instance. LB is the lower bound of a number of buses, which is 

the smallest positive integer that is greater than the total 

demand of all stops divided by the capacity of the school bus. 

N and D represent the number of routes and the total travel 

distance in seconds. The computing time in seconds on the 

computer is indicated by T. The optimal solutions given by 

CPLEX are labeled with a star (*), and the optima and better 

solutions found by our algorithm are recorded in bold. 

As shown in Table I, ILS-SP is more competitive than the 

MIP model. Compared with MIP, ILS-SP uses less the 

numbers of buses, and it has the shorter total travel distance 

on average. ILS-SP finds all the solutions with the optimal 

numbers of buses and total travel distance, which are obtained 

by MIP. For some solutions, ILS-SP can obtain better solution 

than MIP, such as for instance C01, C02, and C05. Compared 

with MIP, ILS-SP improves the number of buses and the total 

travel distance by 1.32% and 0.87% on average respectively. 

Further, ILS-SP algorithm uses less computation time. 

C. Effective of Set Partitioning Procedure 

We first run a heuristic method without SP (donated as ILS) 

on the same datasets as well as the proposed algorithm.  For 

the heuristic method, the algorithm ILS has the same 

parameters values as our proposed ILS-SP. The results 

obtained by both two algorithms are shown in Table II.  The 

columns, Navg ,Davg, and Tavg represent the number of routes, 

the total travel distance and execution time in average among 

the 10 solutions, respectively. The columns, N ,D, and T is the 

same as that are defined in TABLE I. 

There are some findings from TABLE II. (1) Compared 

with ILS, ILS-SP finds better solutions with the numbers of 

buses. Because of the first objective is the number of buses, 

ILS-SP can obtain a better solution for R01, and it improves 

the numbers of buses by 0.78% on average. For some 

instances, such as C02~C03, C04, C06, R02~R04 and R06, 

ILS-SP can keep the same performance with ILS. But for R03, 

R05, C01, and C05, ILS-SP can decrease the total travel 

distance when the number of buses is not improved. (2) The 

ILS-SP algorithm is more robust than ILS in all. For some 

instances, such as R01, R02, R05, and C02, ILS-SP has a 

more stable average route number. The number of optimal 

average route number obtained by ILS-SP and ILS are 4 and 1 

respectively. Meanwhile, ILS-SP also finds the optimal 

average total travel distance on instances C04 and C06. (3) 

The ILS-SP algorithm solved the problem instances 

efficiently. The execution time of ILS-SP is a bit longer than 

ILS, because of solving the set partitioning model.  

Based on these above results, we can find the effect of set 

partitioning procedure. This could be explained by the fact 

that locally optimal routes explored by the ILS local search 

are globally recombined and selected by set partitioning. The 

set partitioning procedure may find the best solution from a 

global perspective, and it also can make full use of the 

advantages of the SP model in solving accurately. 

D. Influence of the mode of route construction on ILS-SP 

We make further efforts to test the influence of mode of 

route construction on ILS-SP algorithm. The SP model is 

built by the routes recorded in the route pool in the local 

search procedure. The mode of route construction in the route 

pool could affect the solution of the SP model. We run two 

algorithms on the same instances, which is just different with 

our ILS-SP algorithm in the route construction mode. One 

algorithm is donated as ILS-SP-a, and the route pool of which 

just include the routes of local best solutions found in each 

iteration. The other algorithm is donated as ILS-SP-b. The 

routes that are improved by the local search procedure are put 
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into the route pool of ILS-SP-b. These two algorithms and 

ILS-SP have the same parameters. The results of these three 

algorithms are shown in TABLE III. The columns in TABLE 

III have the same meaning with TABLE I. 

As shown in TABLE II, three algorithms all find the best 

route number for the first optimization objective. For the total 

travel distance objective, ILS-SP is a bit better than the other 

two algorithms. For ILS-SP algorithm, the route pool consists 

of the routes of local search and the best local solution. The 

routes in the route pool are more varied, so ILS-SP could find 

better solutions in the global. At the same time, the size of 

route pool of ILS-SP is bigger than the other two algorithms. 

The execution time of ILS-SP is a bit longer. 

E. Influence of the iterations on ILS-SP 

In this section, we test the influence of the iterations on 

ILS-SP algorithm. The parameter Maxiter of ILS-SP is first 

set to 10 and then adding 10 every time until 90. The other  

parameters of ILS-SP are not changed. The results of the test 

are shown in TABLE IV. We use three measurement 

indicators, that is  SNum, SDistance, and STime, to calculate 

the results. 

SNum and SDistance indicate the sum of the best route 

number and best travel distance respectively. STime is the 

sum of the execution of time in seconds. For RSRB and CSCB 

instances, the results are given respectively.  

The results in TABLE IV show that ILS-SP algorithm is 

very stable for optimizing the route number. It almost is 

irrelative with the number of iteration. For the total travel 

distance objective, the ILS-SP algorithm can find less total 

travel distance with the increasing of iterations at the 

beginning. When the number of iteration is added to 50, it is 

hard to find a better solution. For CSCB instances, the 

SDistance keeps the same value, when the number of iteration 

is larger than 50. For RSRB instances, the SDistance is not 

changed until the iteration is equal to or larger than 80. The 

SDistance decrease insignificantly when the number of 

iteration is 50. There is a little difference between CSCB and 

RSRB, because the random of stops and school for RSRB 

instances may cause the more random combination routes to 

be put into the route pool in the local search. For STime 

indicators, the execution time of ILS-SP increase with the 

adding of iterations. Therefore, the number of iterations 

should be set to an appropriate value to keep the balance 

between quality and efficiency of the algorithm. 

F. Comparison ILS-SP with ACO algorithm 

To further evaluate the performance of ILS-SP algorithm, 

we also run a metaheuristic method (i.e., ant colony 

optimization algorithm, ACO) on the same datasets as well as 

the proposed algorithm. For the metaheuristic method, we 

implemented the basic ACO algorithm [18] and had the 

following parameters: the number of iterates is 300, the 

number of ants is set to 40, a=2, b=0.7, p=0.9. The results 

obtained by these three algorithms are shown in TABLE V. 

The columns in TABLE V have the same meaning with 

TABLE I. 

As shown in TABLE V, ILS-SP outperforms ACO. 

Comparing with ACO, ILS-SP finds the same numbers of 

buses with ACO, but it has the shorter total travel distance on 

average. For all the instances except C04 and C06, ILS-SP 

improves the total travel distance. ILS-SP decreases the total 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I 

THE RESULTS OF ILS-SP AND CPLEX 

Instance LB Num 
CPLEX ILS-SP 

N D T N D T 

R01 9 38 9* 18536 1200 9* 18536 6.62 

R02 9 40 9* 18866* 259 9* 18866* 8.58 

R03 13 51 13* 21296 1200 13* 21296 14.51 

R04 7 35 10 20807 1200 10 20807 5.99 

R05 9 42 9* 18393 594 9* 18393 7.49 

R06 8 44 9* 18076 1200 9* 18076 10.79 

C01 14 70 17 35836 1200 16 34969 19.59 

C02 11 35 12 22814 1200 12 22798 6.76 

C03 8 30 9* 18867 1200 9* 18867 6.46 

C04 7 23 7* 13327* 232 7* 13327* 3.88 

C05 17 75 20 39830 1200 18 36657 22.92 

C06 6 17 6* 9609* 3.34 6* 9609* 2.71 

Average 9.83 41.67 10.83 21354.75 890.7 10.58 21016.75 9.69 

 

TABLE Ⅱ 

COMPARISON OF ILS AND ILS-SP  

Instance 
ILS ILS-SP 

Navg Davg Tavg N D T Navg Davg Tavg N D T 

R01 10 17495 6.81 10 17515 6.54 9.7 17631 8.49 9* 18536 6.62 

R02 9.7 19279 5.88 9* 18866* 6.33 9* 18986 8.44 9* 18866* 8.58 

R03 13 21602 10.46 13 21529 10.18 13 21436 12.7 13 21296 14.51 

R04 10 20824 5.16 10 20807 5.40 10 20807 7.51 10 20807 5.99 

R05 11.6 22638 7.97 9* 18469 7.50 9.1 18511 9.83 9* 18393 7.49 

R06 9.6 19878 7.74 9* 18076 7.65 9.1 18269 9.71 9* 18076 10.79 

C01 16 35084 16.78 16 35108 16.14 16 34994 19.58 16 34969 19.59 

C02 12.5 24364 6.94 12 22798 6.33 12 22798 6.78 12 22798 6.76 

C03 9.2 18845 4.41 9* 18867 4.90 9* 18898 5.87 9* 18867 6.46 

C04 7* 13581 2.69 7* 13327* 2.96 7* 13327* 3.15 7* 13327* 3.88 

C05 18 36704 19.29 18 36660 18.24 18 36689 21.78 18 36657 22.92 

C06 6* 9620 1.88 6* 9609* 1.87 6* 9609* 2.36 6* 9609* 2.71 

Average 11.05 21659.5 8.00 10.67 20969.25 7.84 10.66 20996.25 9.68 10.58 21016.75 9.69 

 

 

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_03

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



 

 

 
 

travel distance by 1.24% on average. It is shown that the SP 

procedure can improve the quality of the algorithm. The 

average computation time of ILS-SP is longer than that of 

ACO and ILS because of adding the execution of the SP 

procedure. 

 

V. CONCLUSIONS 

In this paper, we have proposed an ILS-based hybrid 

metaheuristic algorithm to solve bi-objective SBRP, which 

minimizes the number of buses and the total travel distance 

together. The proposed algorithm combines the ILS with SP 

procedure. In the execution of ILS, four neighborhood 

structures and a new ruin and recreate perturbation method to 

explore solution space to get better solutions. The routes of 

the solution in local search are recorded to build SP model. 

The SP procedure can find a better solution from a global 

perspective. The solutions presented to demonstrate the good 

performance of the ILS-SP algorithm. When compared with 

other heuristic algorithms, our proposed algorithm is 

competitive and able to find high-quality solutions. 
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