
 

  

Abstract—In this paper, we utilize generalized linear (or 

linear-conjugation-linear) transformation to re-derive the 

nc-FastICA algorithm, and degenerate to obtain the c-FastICA 

algorithm. In addition, the necessary and sufficient conditions 

for the fixed point (pseudo-fixed point) of the iterative function 

for the c-FastICA algorithm are first proved. We also introduce 

in detail the relationship between the fixed point (pseudo-fixed 

point) and the local minima(maxima) point of contrast function 

in the orthogonal projection method. Finally, it is proved that 

the column vectors of the mixing matrix are the fixed point 

(pseudo-fixed point) of the iterative function. Three properties: 

of the c-FastICA algorithm and nc-FastICA algorithm are 

verified by computer simulation. (1) Both two algorithms are 

convergent. (2) The larger sample size, the better separation 

effect. (3) There is poor separation effect when source signal is 

selected as Gaussian distribution. 

 
Index Terms—nc-FastICA, c-FastICA, fixed point, minima, 

pseudo-fixed point, maxima 

 

I. INTRODUCTION 

NDEPENDENT component analysis (ICA) [1]-[3] is a 

classic statistical technique that transforms mixed signals 

into components that are mutually as independent as possible, 

mainly for dealing with blind source separation (BSS) 

problem. ICA is widely used in many fields, such as feature 

extraction, medical signal processing, image signal 

processing, speech signal processing, fetal ECG separation, 

and so on.  There are many existing methods for ICA. And fast 

independent component analysis (FastICA) [4]-[5] is 

extremely popular with its fast convergence speed.  

Since Hyvärinen proposed the FastICA algorithm in [4], 

many scholars have conducted related researches. As we all 

know, the FastICA algorithm mainly includes two versions. (1) 

one-unit (or deflation) FastICA [6], which can only separate 

one source signal at a time; (2) symmetric FastICA, the 

required source signals can be separated at the same time, 

equivalent to parallel execution of several one-unit FastICA 

algorithms. Consecutively, the complex-valued FastICA 

algorithm [8] has also been proposed to solve the complex 
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BSS [9]-[10]. In 2000 Bingham and Hyvärinen first proposed 

the complex FastICA algorithm for processing circular 

(proper) complex-valued signals (abbreviation c-FastICA)[8]. 

In 2008, Novey extended it to the noncircular complex 

FastICA (nc-FastICA) algorithm [11]. Due to the inherent 

complexity of the complex value field, the research on the 

complex FastICA algorithm is scarce, compared with the 

research of the real FastICA algorithm. Li proposed a novel 

complex ICA by entropy bound minimization (ICA-EBM), 

based on a novel (differential) entropy estimator [12]. Loesch 

and Yang [13] derived a closed-form expression for the 

Cramér-Rao bound (CRB) of the demixing matrix for 

instantaneous noncircular complex FastICA algorithm. In 

[14], Chao and Douglas proposed to use the Huber 

M-estimator as a nonlinearity within the complex FastICA 

algorithm, and demonstrated the ability of the proposed 

algorithm to separate mixtures of various complex-valued 

sources. An improved nc-FastICA algorithm is proposed for 

the separation of digital communication signals, and it is 

asymptotically efficient, i.e. its estimation error can be made 

much smaller by adaptively choosing the approximate 

optimal nonlinearity [15]. Ruan and Li [16] discussed two 

complex FastICA algorithms for noisy data, where contrast 

functions are based on kurtosis and negentropy respectively, 

also gave the stability conditions of contrast functions. In [17], 

a simple check of undesirable points was proposed based on 

the kurtosis of estimated sources to get rid of the undesirable 

fixed points. The authors of [18] established the theory for 

complex-valued FastICA giving Cramér -Rao lower bound 

and identification conditions, and presented a new algorithm 

that taken three properties into account, including 

non-Gaussianity, nonwhiteness, and noncircularity. In [19], 

Zhao W et al developed a new reference-based contrast 

function by introducing reference signals into the negentropy, 

upon which an efficient optimal FastICA algorithm is derived 

for noncircular sources. Related study on complex valued 

FastICA is available in [20]-[21]. 

The first major purpose of this article is to re-derive the 

nc-FastICA algorithm in a simpler method. In [8], the 

circular complex-valued FastICA algorithm (c-FastICA) is 

discussed, and locally stable conditions are given which is 

analogous to real-valued FastICA algorithm [4]. In 2008, 

Novey and Adali [11] derived the nc-FastICA algorithm and 

local stability conditions. In this paper, we utilize generalized 

linear (or linear-conjugation-linear) transformation [22] and 

re-derive the nc-FastICA algorithm . 

The convergence of the real-valued FastICA algorithm has 

been discussed in [23]-[24]. For the real-valued FastICA 

algorithm author of [24] proved the minimums of contrast 
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function are fixed points of FastICA iterative function. 

Furthermore, the convergence order of the algorithm was 

proved. However, it is still a missing for the complex-valued 

FastICA algorithm. In this paper, we fills this gap. In the part 

IV, we introduce in detail the relationship between the fixed 

point (pseudo-fixed point) of iterative function and the local 

minima point of contrast function in the orthogonal projection 

method. 

II. COMPLEX ICA 

A. Preliminaries 

In this paper, we define complex random vector 
n

R Ij C= + x x x ,where 
Rx and 

Ix denote the real and 

imaginary parts of x respectively, and 2 -1j = . We introduce 

augmented vector x of x , and the specific calculation 

formula as follows, 

n nR R

n nI I

j

j

     
= =      

−      
*

I Ix xx
x T

I Ix xx
, 

where *
x  denotes the conjugate of x . 2 2n nC T is a 

transformation matrix from real value to complex value, and 

22H H

n= =T T TT I , where H
T is the conjugate transpose of 

.T  Obviously, ( ) 2 ,
T n

R I Rx x  where T denotes the 

transpose. Write the complex space to which x  belongs as 

2

*

nC , whose first n  elements are the conjugate of the last n  

elements. The symbols associated with the augmented vectors 

mentioned in this article are underlined. The expectation of 

x ： 

( ) ( ){ }
TT

E j j= = = + −*
R I R Ix x x x x xx

μ x μ μ μ μ μ μ . 

And augmented covariance matrix of x  is computed as 

follows, 

 {( )( ) }HE
 

= − − =  
 

xx xx

xx x x * *

xx xx

R R
R x μ x μ

R R
, (1) 

where {( )( ) } { }H HE E= − − =
xx x x

R x μ x μ xx  is a Hermit 

matrix, and {( )( ) } { }T TE E= − − =
xx x x

R x μ x μ xx called 

pseudo-covariance matrix is a symmetric matrix. If =
xx

R 0 , 

random vector x is circular or proper. Otherwise, it is 

noncircular. 

B. Complex-valued ICA 

The mathematical model of complex-valued ICA is defined 

by 

 =x As . (2) 

where 1 2[ , , , ]T

ns s s=s denotes unknown source signal to be 

recovered, whose components ( 1, , )is i n=
 
are mutually 

independent. 1 2[ , , , ]T

nx x x=x denotes mixed signal that 

can be observed. A is an unknown ( n n ) mixing matrix. For 

simplicity, following hypotheses are made: 

Assumption 1: Source signal s  satisfies { }HE =ss I . 

Assumption 2: x has been performed whitening and centering 

process, i.e. { }HE =xx I  and =
x
μ 0 . 

Assumption 3: A is square and non-singular with full rank. 

Without loss of generality we also assume A is a unitary 

matrix as described in [11]. 

For circular source signal, { }TE =ss 0 , and { }TE ss 0  

for noncircular source signal. Introduction for the whitening 

of complex-valued signals can be found in [25]. We aim to 

look for the optimal separated matrix W  to make Hy = w x  

as an estimate of the source signal, where H
w is row vector of 

W  and is referred as separated vector. Of course, W is a 

unitary matrix [11]. 

III. NONCIRCULAR COMPLEX FASTICA 

Similar to real-value FastICA algorithm, complex-valued 

FastICA algorithm is based on solving the following 

optimization, 

 
1

2

ˆ arg max { ( )}
n

H

S

E G
−

=
w

w w x . (3) 

( ) : {0}G R R+ → is a twice continuously differentiable and 

non-quadratic function, which is referred to as the 

nonlinearity, and 
21 { 1}.n nS C− =  =w w In addition, 

2

( ) { ( )}HJ E G=w w x  is called contrast (cost) function. 

There have been three different classic nonlinearities [8] and 

derivatives ( )g  : 

 1 1( )G y a y= + , 
1

1

1
( )

2
g y

a y
=

+
, 

 
2 2( ) log( )G y a y= + , 2

2

1
( )g y

a y
=

+
, 

2

3

1
( )

2
G y y= , 

3( )g y y= , 

where 
1a  and 

2a  are arbitrary constants whose values usually 

are chosen as 0.1. In [11], the nc-FastICA algorithm has been 

derived. In this paper, we re-derive this algorithm by using a 

simple method, generalized linear transformation [22] (or 

linear-conjugation-linear). 

The complex differential theory used in this paper is 

Wirtinger differential [26]-[27], whose main idea is to treat 

f as a function of two independent complex variables x  and 

*
x . Thus, solving a generalized complex differential with 

respect to x , we treats *
x  as a constant theoretically. The 

generalized complex gradient is defined as: 

 
*

( ,  )Tf f
f

 
 =

 
x

x x
, (4) 

where generalized complex differential 

 
1

( )
2 R I

j
  

−
  x x x

, (5) 

and conjugate generalized complex differential 

 
*

1
( )

2 R I

j
  

+
  x xx

. (6) 

x of (4)-(6) can be either a vector or a scalar, so can f . 

Specific extensions can be found in [26]-[27]. If f  is a real 

value function, *( ) ( )f f=x x . Thus, the gradient of the 

scalar real function ( )f x  is the augmented vector 
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 *( ,  ( ) )Tf f
f

 
 =

 
x

x x
. (7) 

The generalized complex Hessian matrix is defined as: 

 ( )Hf f   
= =  

   

xx xx

xx * *

xx xx

H H
H

x x H H
, (8) 

where complex Hessian matrix 

 ( )Hf 
=

 
xxH

x x
, (9) 

and complex complementary Hessian matrix 

 
*

( )Hf 
=


xxH

xx
. (10) 

Next, we re-derive the nc-FastICA algorithm using 

generalized linear transformation (or linear-conjugate-linear) 

and the above differential theory. We solve constraint 

optimization problem (3) based on Lagrangian multiplier. 

First, construct Lagrangian function 

 ( , ) ( ) ( 1)HL J = + −w w w w , (11) 

where   is Lagrangian multiplier. Then, solve (11) based on 

complex Newton’s update [27], 

 *

1( ) J− = − 
ww w

w H , (12) 

where 
1n n+ = −w w w . Substitute (11) into (12),  

1

2( ) ( )nJ J − = − +  +
ww w

w H I w . 

where 2 . =  Further, we have 

 *2( )nJ J J+  − +
ww www

H I w H w . (13) 

According to (5), (6), and (7), we obtain the generalized 

complex gradient as 
* *

1

* *

* * * *

1 1 1

* *

{ ( ) }

{ ( ) }
.

{ ( ) }

{ ( ) }

T

n

w

n n

n

E g yy y

E g yy yJ J J J
J

E g yy y

E g yy y

 
 
 
     
  = = 

      
 
 
 
 

x

x

w w w w x

x

 (14) 

From (8),  if solving the generalized complex Hessian 

matrix J
ww

H , we need to find J
ww

H  and J
ww

H . Elements 

in the matrix J
ww

H  is 

 
2

* * * *

*
{ [ ( ) ( )]}i k

k i

J
E g yy yy g yy


= +

 
x x

w w
, (15) 

where ( )g   is derivative of function ( )g  . And elements in 

the matrix J
ww

H  is 

 
2

* *2

* *
{ ( ) }i k

k i

J
E g yy y


=

 
x x

w w
. (16) 

Thus, the generalized complex Hessian matrix 

 
* *

H T

H T

c d
J E

d c

 
=  

 
ww

xx xx
H

x x x x
, (17) 

where
2 2 2

( ) ( )c g y y g y= + and
2 *2( ) .d g y y=  According 

to the part 2.2.1 of [22], we know n nJ W 
ww

H , where 

n nW  denotes a set composed of 2 2n n  augmented matrices 

H that satisfy (18), i.e. a specific modular form: the lower 

right matrix block is the conjugate of the upper left  matrix 

block, and the lower left matrix block is the conjugate of the 

upper right matrix block.  

 
1 2

* *

2 1

 
=  

 

H H
H

H H
. (18) 

Then from (2.10) of [22], we can obtain a augmented 

description (19) of generalized linear transformation (or 

linear-conjugate-linear), 

 *{ } { }H TJ E c E d= +
ww

H w xx w xx w . (19) 

Taking the first n  rows of (13), then combining (14) and (19), 

we have 

 *

*
{ } { }H TJ

E c E d


 − + +


w xx w xx w
w

. (20) 

Equation (20) removes the coefficient of the left w , which is 

reasonable from [11]. And { } { } ,H HE c E cxx xx
 

{ } { }T TE d E dxx xx  [11]. Thus, nc-FastICA update for 

one unit is 
2 2 2 2*

2 *2 *

{ ( ) } { ( ) ( )}

       { } { ( ) }T

E g y y E g y y g y

E E g y y

  − + +

 +






w x w

xx w

w
w

w

. (21)
 

( )g   and ( )g   in the iteration (21) represent the first 

derivative and the second derivative of the nonlinear ( )G  , 

respectively. Of course, c-FastICA update for one unit is 
2 2 2 2*{ ( ) } { ( ) ( )}E g y y E g y y g y  − + +







w x w

w
w

w
. (22)

 

IV. CONVERGENCE FOR C-FASTICA 

In recent years, many scholars have studied the 

convergence of the real-valued FastICA algorithm. Specific, 

Oja, Yuan and Shen, Kleinsteuber, Huper discussed the 

convergence of the real-valued FastICA algorithm in 

[23]-[24]. Especially, author proved the minimum of the 

real-valued FastICA algorithm is a fixed point of the FastICA 

iterative function In [24]. However, this is still a missing for 

the complex-valued FastICA algorithm. Thus, we discussed 

convergence for the c-FastICA algorithm.  

Firstly, based on model (22) and the local stability 

conditions of the c-FastICA algorithm, we define four 

important functions for relevant explanations and proofs 

below: 

A. 1: n nR S C− →  

 

2

2 2 2

( ) : { ( )( ) }

            { ( ) ( )}

H H

H H H

R E g

E g g

= −

+ +

w w x w x x

w x w x w x w

 (23) 

B. 1: n nT S C− →  

 
( )

( ) :
( )

R
T

R
=

w
w

w
 (24) 

C. 1: nU S C− →  

 

2 2 2

2 2

( ) : { ( ) ( )

           ( )}

H H H

H H

U w E g g

g

= +

−

w x w x w x

w x w x

 (25) 
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D. 1: nS C− →  

 
2

( ) : {( ) ( ) }H HE g ⊥ =
v

v v x v x P x  (26) 

And nC denotes all n  dimensions complex vectors. Actually, 

( )R w and ( )T w is consistent with (22). ( )U w is convergence 

condition, this can be found in [8]. If ( ) 0U w , the column 

of the mixing matrix A  is local maxima of contrast function 
 

under the constraint 
2 2

{ } 1HE = =w x w . Otherwise, they 

are local minima. Equation (26) will be used to prove theorem 

1 and will be used for judging criteria of fixed point of the 

c-FastICA algorithm. 

In following, we use orthogonal projection method to 

analyze the convergence of the c-FastICA algorithm. We 

assume 
w

P  denote matrix of orthogonal projection from nC  

to subspace span( )w , of course, 1nS −w . And ⊥

w
P  is 

matrix of orthogonal projection from nC  to subspace 

span( )⊥
w . Then, we can know 

 H=
w

P ww  (27) 

and 

 
H⊥ = −

w
P I ww  (28) 

For any nCx , the following orthogonal decomposition is 

effective. 

 ⊥= +
w w

x P x P x  (29) 

Next, we discuss some relative convergence problems on 

c-FastICA algorithm. Theorem 1 is based on definition 1 and 

the orthogonal decomposition of vector v . And definition 1 

is displayed as follows. 

Definition 1 If x  satisfy ( )f = −x x , x  is referred as 

pseudo-fixed point. 

Theorem 1 (Fixed (Pseudo-fixed) point condition) The 

necessary and sufficient condition for the vector v  to be a 

fixed point of the iterative function (24) is ( ) 0 =v  and 

( ) 0U v . And the necessary and sufficient condition for the 

vector v  to be a pseudo-fixed point of the iterative function 

(24) is ( ) 0 =v  and ( ) 0U v . 

Proof: According to the definition of fixed point, we know 

the vector v  is a fixed point of the iterative function ( )T w  if 

and only if ( )T =v v . 

2

2 2 2

1
( ) { ( )( ) }

( )

 { ( ) ( )}

H H

H H H

T E g
R

E g g

= −


+ +


v v x v x x
v

v x v x v x v

 

2 2 2

2

1
       { ( ) ( )}

( )

 { ( )( ) ( )}

H H H

H H

E g g
R

E g  ⊥

 = +


− +
v v

v x v x v x v
v

v x v x P x P x

 

2 2 2

2 2 2

1
        = { ( ) ( )}

( )

 { ( ) } { ( )( ) }

H H H

H H H H

E g g
R

E g E g  ⊥

  +


− −
v

v x v x v x v
v

v x v x v v x v x P x
 

 
1

       = ( ) ( )
( )

U
R

− v v v
v

. 

Obviously
2

( ) {( ) ( ) } span( ) .H HE g ⊥ ⊥ = 
v

v v x v x P x v  And 

it is orthogonal to v . Thus, ( )T v  is parallel with v  if and 

only if ( ) 0 =v . 

Next we have  
2 2

1

2

( ) ( ) ( ) [ ( ) ( )

  ( ) , ( ) ( ), ( ) ]

( ) ( ) ,

R U U

U U

U U

= −  = + 

−  − 

= =

v v v v v v v

v v v v v v

v v v v

 

where ( ) , ( )U v v v  denotes inner product of ( )U v v  and 

( ) v . Because ( ) span( )U v v v  and ( ) span( )⊥ v v , 

then ( ) , ( ) 0U  =v v v . When ( ) 0U v , we have ( )T =v v , 

and v  a is fixed point. When ( ) 0U v ,we have ( )T = −v v . 

From definition 1, we know v  is a pseudo-fixed point at this 

case. 

According to Theorem 1 and the following lemma 1 [8], we 

can directly get the theorem 2. The specific content of Lemma 

1 is as follows 

Lemma 1 (convergence condition) Assume that observed 

signals x  is prewhitened using matrix { }HE =xx I . Also, 

( )G   is a sufficient smooth even function. Then the local 

maxima (resp. minima) of ( )J w  under the constraint 

2
1=w  include those columns of the mixing matrix A  such 

that the corresponding independent components 
is  satisfy 

 
2 2 2 2 2

{ ( ) ( ) ( )} 0( 0,  resp.)i i i i iE g s s g s s g s+ −   . (30) 

Equation (30) is consistent with ( )iU a , where 
ia  is the 

ith  column of mixing matrix A  and H

i is = a x . There is 

specific proof of lemma 1 in [8]. According to Theorem 1 and 

the following lemma 1 [8], we have following theorem 2. 

Theorem 2 If v  is a fixed point of the iterative function 

(24), then v  is the local minima of the contrast function 

( )J w . Conversely, if v  is a pseudo-fixed point of the 

iterative function (24), then v  is the local maxima of the 

contrast function ( )J w . 

Obviously, theorem 2 is correct from theorem 1 and lemma 

1. Further, we derive theorem 3 for the case of the c-FastICA 

algorithm. To prove theorem 3, first give the following lemma 

2. 

Lemma 2 Assume a  is the ith  column of mixing matrix 

A . Then, 
a

P x  and ⊥

a
P x  are independent. 

Proof: Mixing matrix A is unitary matrix, i.e. 

.H H= =AA A A I  Then, we have .H T

i=a A e Further, 

H H T

i is= = =a x a As e s . 

Because 
1

n

j j

j

s
=

= = x As a  and (28), (29), then 

1

( )
n

H H

j j i i j j

j j i

s s s⊥

= 

= − = − = − = a
P x I aa x x aa x a a a , 

H

is= =
a

P x aa x a . 

According to is  and js  ( )i j  are mutually independent, 

so 
a

P x  and ⊥

a
P x  are also independent. 
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Lemma 2 indicates that the orthogonal decomposition 
a

P x  

and ⊥

a
P x  of vector x  are independent each other. Applying 

the conclusion of theorem 2 to the c-FastICA algorithm, the 

following theorem 3 is obtained. 

Theorem 3 Assume a  is the ith  column of mixing matrix 

A , and ( ) 0U a . Then, a  is a fixed point of the iterative 

function (24) and the local minima of contrast function. 

Otherwise, a  is a pseudo-fixed point of the iterative function 

(24) and the local maxima of contrast function. 

Proof: From lemma 1, we can know column vector 
ja  

( 1, ,j n= ) are the local minima or maxima of the contrast 

function. Then we just need to prove a  is a fixed point (or 

pseudo-fixed point) of (24). We will prove it in two methods 

in this paper. 

Method 1 According to theorem 1, we need to prove 

( ) 0 =a . Next, we will use lemma 2 to continue our proof. 

Then, we can obtain 
2

( ) {( ) ( ) }H HE g ⊥ =
a

a a x a x P x  

2

            {( ) ( )( ) }H H HE g= −a x a x I aa x  

2

            {( ) ( )} {( ) }

0.

H H HE g E= −

=

a x a x I aa x
 

The above formula is established based on { } 0E =x . 

Method 2: We have 
i i= =Ae a a . Then, 

2 2 2 2

2 2 2 2*

2 2 2 2*

2 2 2 2 2

( ) { ( ) ( )} { ( ) ( )}

{ ( ) ( )} { ( )}

{ ( ) ( )} { ( )}

{ ( ) ( )} { ( )}

( ) .

H H H H H

i i i i i

i i i i i i

i i i i i i i

R E g g E g

E g s s g s E s g s

E g s s g s E s g s

E g s s g s E s g s

U

= + −

= + −

= + −

= + −

=

a a x a x a x a x a x a x

a x

A e A s

A e A e

a a

And, 
( ) ( )

( )
( ) ( )

R U
T a

R U
= = =

a a a
a

a a a
, which is because 1=a . 

In summary, Theorem 1, 2, and 3 show the relationship 

between the fixed point (pseudo-fixed point) of iterative 

function and the local minima point of contrast function in 

detail for the first time. 

V. COMPUTER SIMULATION 

In this part three experiments are implement to verify the 

relevant performances of the c-FastICA algorithm and the 

nc-FastICA algorithm. 

The first experiment is conducted to test the convergence 

performance of the c-FastICA algorithm and the nc-FastICA 

algorithm. For the c-FastICA algorithm, four complex signals 

(cos sin )j j j js r f i f= + , 1,2,3,4j = , are processed. The 

radius jr  of every source signals js is random number from 

four different distribution: Binomial distribution, Gamma 

distribution, Poisson distribution, Hypergeometric 

distribution, respectively. And all the parameters in these 

distributions are randomly generated. The phase angle jf  is 

uniformly distributed on [ , ] − . And every source signal is 

standardized to unite variance. The number of samples 

selected for this experiment is 60000. In addition the 

operating software selected in this article is MATLAB2017b. 
TABLE I 

C-FASTICA ALGORITHM 

S1. Whiten x  to make { }HE =xx I  and Initialize W  

S2. For 0,1, ,i n=  

For 0,1, ,j n=  
2

(:, ) { ( (:, ) ( (:, )) ) )}Hj E g j j = −W W W x  

2 2

               { ( (:, ) ) (:, )H HE g j j+ W x W x  

2

               ( (:, ) )} (:, )Hg j j+ W x W  

end 
1/2( )H=W WW W  

end 

S4. H=s W x  

 

The mixing matrix A  is a random complex matrix, and 

both real part and imaginary part are randomly generated. Q  

is whitening matrix. W  is separated matrix so that H=s W x . 

The c-FastICA algorithm can be summarized as Table I. 

 
Fig. 1 Convergence of the c-FastICA algorithm 

 
Fig. 2 Convergence of G  for the c-FastICA algorithm 

In this experiment, we choose  the sum of squared deviation 

of ( )H=P W QA  from the nearest permutation matrix to 

measure effect of separation, which is because ( )H
W QA  

should converge to a permutation matrix. The experimental 

results are shown in Fig. 1 and Fig. 2. Contrast function 

2 2( ) log( )G y a y= +  is chosen, where 2 0.1a = . And all the 
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mathematical expectations in the test are replaced by sample 

mean values.From Fig. 1, we know algorithm convergence 

about needs five steps. Thus, Fig. 1 verifies the convergence 

of the c-FastICA algorithm. And Fig. 2 shows convergence of 

( )G  . Obviously, ( )G   can converge to local maxima or 

minima. 

For the nc-FastICA algorithm, we produce noncircular 

source signals by ( )sin( ) * ( )cos( )nc j js real s f j imag s f= + , 

1,2,3,4j = , where f  is used for controlling the degree of 

noncircularity with noncircularity index tan( ) 40f = = . 

And the whitening step of the nc-FastICA algorithm is 

different from the one of the c-FastICA algorithm. For the 

nc-FastICA algorithm, the whitening step does not 

decorrelate the components as is done in the 

strong-uncorrelating transform (SUT). The specific whitening 

process can be found in [25]. The mixing matrix and related 

parameters of the nc-FastICA algorithm are also randomly 

generated by MATLAB. Iterative formula is as (21) for the 

nc-FastICA algorithm. In this experiment we choose contrast 

function as 
2 2( ) log( )G y a y= + , where 

2 0.1a = . The results 

of the experiment are shown in Fig. 3 and Fig. 4. 

 
Fig. 3 Convergence of the nc-FastICA algorithm 

 
Fig. 4 Convergence of G  for the nc-FastICA algorithm 

From Fig. 3, we know algorithm convergence about needs 

four steps. Fig. 3 verifies the convergence of the nc-FastICA 

algorithm. And Fig. 4 shows convergence of ( )G  . Obviously, 

( )G   can converge to local maxima or minima. 

The second experiment is conducted to test the relationship 

between performance and sample size for the c-FastICA 

algorithm and the nc-FastICA algorithm, respectively. Except 

taking the four source signals of the first experiment, this 

experiment adds another source signal with Beta Distribution, 

whose parameters are randomly generated. And the 

noncircularity index is chosen as 32. Similar to the 

performance index (PI) in real cases in [28], the performance 

of the different algorithms is measured by the normalized 

Amari index 
AI  [29]: 

1 1 1 1

1
[ ( 1) ( 1)]

2 ( 1) max max

M M M M
ij ij

A

i j j ik ik k kj

p p
I

M M p p= = = =

= − + −
−

   

where 
ijp  1, ,i M= , 1, ,j M= , are the entries of the 

matrix ( )H=P W QA . The lower the 
AI  value, the better 

the separation result. If 10log 10dBAI  − , the algorithm is 

not performing adequately. We test two algorithms with three 

classic nonlinearity as described in part III. 

 
Fig. 5 The average 10log AI  about sample size for the c-FastICA algorithm 

 
Fig. 6 The average 10log AI  about sample size for the nc-FastICA algorithm 

Fig. 5 shows the average 10log AI  by varying sample size 

from 100 to 1000 for the c-FastICA algorithm. And Fig. 6 

shows the average 10log AI  for the nc-FastICA algorithm.  

Analyzing Fig. 5 and Fig. 6, we can summary three 

properties of the c-FastICA algorithm and the nc-FastICA 

algorithm. (1) All of values 10log AI  are less than 10. Thus, 
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both algorithms perform well. (2) Six curves of average 

10log AI  decrease as sample size increases. Therefore, we 

draw a conclusion that the larger the sample size, the better 

the separation result for both the c-FastICA algorithm and the 

nc-FastICA algorithm. (3) Comparing separation effects of 

three nonlinearity , we can know that both two algorithms 

with nonlinearity 
3G  perform worst. Separation effect of the 

c-FastICA algorithm with nonlinearity 
2G  is best, when 

sample size is about larger than 450. And separation effect of 

the nc-FastICA algorithm with nonlinearity 
2G  is best, when 

sample size is larger than 300. Thus, we usually choose 
2G  as 

nonlinearity to solve practical problem. 

The third experiment is conducted to verify poor separation 

performance for the c-FastICA algorithm and the nc-FastICA 

algorithm, when gaussian distribution is chosen. We generate 

circular complex random variables from Generalized 

Gaussian Distribution (GGD) [30], with probability density 

function defined by 

 
2/

( , ) exp( )
2

( )2

p

p

rp
p b p

b
b

p


−
=



, (31) 

where b  is the scale parameter and p  is the shape parameter. 

( )  is gamma function in complex field. By adjusting p , we 

can generate super-Gaussian variables with 0 2p  , 

Gaussian variables with 2,p =  sub-Gaussian variables with 

2p  . Specially, we can generate Laplace distribution when 

1p = . In this experiment three cases with 1.25p = , 2p = , 

and 3p =  are discussed. Variables r  is generated as 

follows, 
1/gamrnd(2 / , ) exp(2 *rand)pr p a j= , 

where gamrnd(2 / , )p a generates gamma random variables, 

rand generate uniformly distributed variables in [0,1] , and 

a  is also randomly generated. We generate two circular 

complex source signals 
cs  by the above way. Then we 

produce two noncircular complex source signals 
ncs by 

( )sin( ) * ( )cos( )nc c cs real s f j imag s f= +  with the 

noncircularity index tan( ) 32f = = . Therefore, there are 

four source signals and two signals is noncircular signals with 

same noncircularity index. In this case, we only use 

nc-FastICA algorithm to separate signal. Sample size is 

chosen as 1000 in this part. The simulation results are shown 

in Table II. As shown in Table II, all the cases perform well 

when 1.2p =  and 3p = . However, algorithm performs poor 

when 2p = . Thus, we verify poor separation performance, 

when gaussian distribution is chosen.  

 

VI. CONCLUSION 

In this paper, the derivation of the nc-FastICA algorithm 

proposed by Novey M, Adali T is improved by using 

generalized linear (or linear-conjugation-linear) 

transformation. Further we get the c-FastICA algorithm. The 

theoretical basis of the proof is stronger by improving. 

Another main result of the article is proof about the 

relationship between the fixed point (pseudo-fixed point) of 

the iterative function and the local minima(maxima) point of 

contrast function. There are specific content and proof in 

theorem 1 and theorem 2. Theorem 3 applies this result to the 

c-FastICA algorithm. And we prove it by orthogonal 

projection. 
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