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Abstract—An edge coloring graph G is rainbow connected
if every two vertices are connected by a rainbow path, i.e.,
a path with all edges of different colors. An edge coloring
under which G is rainbow connected is a rainbow coloring.
Rainbow connection number of G is the minimum number
of colors needed under a rainbow coloring. In this paper, we
propose a lower bound to the size of the rainbow connection
number of pyramid networks. We believe that our techniques
used for the lower bound is useful to prove lower bounds in
the class of pyramid-like networks. In this paper, we also give
a linear-time algorithm for constructing a rainbow coloring on
pyramid networks and thus get an upper bound to the rainbow
connection number of pyramid networks. The result shows that
although the ratio of the upper bound and the lower bound are
associated with a proportional increase in the dimension of the
networks, the resulting ratios are still bounded.

Index Terms—rainbow connection number, rainbow coloring,
rainbow path, pyramid networks.

I. INTRODUCTION

INTERCONNECTION networks have an enormous im-
pact on the quality of communications between users

and data transmissions. To address this issue, many re-
search problems, including Hamiltonian connectivity [10],
[11], k−path vertex cover [21], linear karboricity [20], for
interconnection networks were widely discussed. A powerful
and analytical tool in studying interconnection networks is
graph theory because interconnection network usually can be
modeled as a simple graph whose vertices represent process-
ing nodes of the system and edges represent communication
links. Let V (G) and E(G) denote the set of vertices and the
set of edges, respectively, of a graph G. The order of G is
|V (G)|. An edge coloring of a graph is a function from its
edge set to the set of natural numbers. A path between two
vertices u and v is called a u− v path. A u− v path in an
edge colored graph with no two edges sharing the same color
is called a rainbow u− v path. An edge-colored graph G is
rainbow connected if any two vertices u and v are connected
by a rainbow u−v path. In this case, the edge coloring of G
is called a rainbow coloring of G. The rainbow connection
number of a connected graph G, denoted by χr(G), is the
smallest number of colors that are needed to make G rainbow
connected. A rainbow k−coloring of a graph is a rainbow
coloring that uses k colors.

The problem of rainbow coloring in graphs was introduced
by Chartrand et al. in [3] and has application in secure trans-
fer of classified information between various agencies which
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may have other agencies as intermediaries by assigning pass-
words between agencies [8]. Every pair of agencies with one
or more secure paths along with distinct passwords reveals
the rainbow connection and is prohibitive to intruder [8].
The problem and its applications are intensively discussed
in detail from the combinatorial perspective, with over 100
papers published (see good surveys [7], [13] and a book [14]
for an overview).

The rainbow connection number and rainbow coloring
have been studied from both the algorithmic and graph-
theoretic points of view. Chakraborty et al. showed that
computing the rainbow connection number of a general graph
is NP-hard [2]. In fact, even deciding whether χr(G) = 2
holds for a graph G is an NP-complete problem [2]. In
[7], Eiben et al. gave an algorithm for deciding whether it
is possible to obtain a rainbow coloring by saving a fixed
number of colors. An easy observation that diam(G) ≤
χr(G) ≤ |V (G)| − 1, where the diameter diam(G) is the
length of the longest shortest path in G. It is easy to verify
that χr(G) = 1 if and only if G is a complete graph, and
χr(G) = |V (G)|−1 if and only if G is a tree. In [1], Caro et
al. provided sufficient conditions that guarantee χr(G) = 2
and determined a threshold function for a random graph to
have χr(G) = 2. Also notice that χr(G) ≤ |V (G)|−1 for a
general graph G, since one may color the edges of a given
spanning tree with distinct colors (and color the remaining
edges with one of the already used colors). Most recent
research has been devoted to study the bounds of the rainbow
connection numbers on random regular graphs [5], connected
outerplanar graphs [6], triangular snake graphs [16], etc.
Chartrand et al. computed the precise rainbow connection
number for certain special graphs, e.g., Peterson graphs and
complete multi-partite graphs [3].

We focus attention on the construction of rainbow color-
ings of a given pyramid network. Pyramid networks have
powerful architecture for many applications such as image
processing, visualization, and data mining [4]. The major
advantage of pyramid networks for image processing systems
is hierarchical abstracting and transferring of the data from
different directions and forward them toward the apex of a
pyramid network [18]. Its features include the fault-tolerate
properties such as fault diameter, ω−wide diameter [9]. Pyra-
mid network also can be implemented with more efficient
parallel algorithms than mesh connected networks for such
problems as image processing and digital geometry [15],
[17]. In this paper, we propose an efficient time algorithm
for finding a rainbow path for any two vertices of a pyramid
network. As far as we know, no rainbow path algorithm exists
for pyramid networks.

The rest of the article is structured as follows. Section II
gives the definition of pyramid networks. In Section III, we
give a simple and general lower bound argument which yields
lower bounds to the size of the rainbow connection numbers
in any pyramid-like graphs. An upper bound for pyramid

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_07

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



(2; 0, 3)(2; 0, 2)(2; 0, 1)(2; 0, 0)

(2; 1, 3)

(1; 0, 0)

(0; 0, 0)

(2; 1, 2)(2; 1, 1)(2; 1, 0)

(2; 2, 3)(2; 2, 2)(2; 2, 1)(2; 2, 0)

(2; 3, 2) (2; 3, 3)(2; 3, 1)(2; 3, 0)

(1; 1, 0) (1; 1, 1)

(1; 0, 1)

Fig. 1. A top view of the pyramid P2.

networks is presented in Section IV. Section V presents
algorithms for finding a rainbow path on given two arbitrary
vertices of a pyramid network. Finally, concluding remarks
are given in the last section.

II. PRELIMINARIES

A square mesh Mk of order 2k × 2k has the vertex set
V (Mk) = {(x, y) | 0 ≤ x, y ≤ 2k − 1} where any two
vertices (x1, y1) and (x2, y2) are connected by an edge iff
|x1 − x2|+ |y1 − y2| = 1.

Let Pn be an n-dimensional pyramid with the vertex set
n⋃
k=0

Vk, where Vk = {(k;x, y) | 0 ≤ x, y ≤ 2k−1}. We label

the vertex v of Vk as (k;x, y), where k, x and y are the layer
number, row number and column number, respectively, of v.
The subgraph induced by Vk is connected as an Mk and
called the layer k of Pn. For simplicity, we let Mk denote
the subgraph induced by Vk. In Mk, a subgraph induced by
the set of vertices with the same row number x (respectively,
column number y) is called row x (respectively, column y).
Vertex (k;x, y) has exactly four children (k+1; 2x, 2y), (k+
1; 2x, 2y + 1), (k+ 1; 2x+ 1, 2y), (k+ 1; 2x+ 1, 2y + 1) in
Vk+1 and a parent vertex (k − 1; bx2 c, b

y
2 c) in Vk−1, where

2 ≤ k ≤ n − 1. Let p(v) denote the parent vertex of v.
Every vertex on the shortest path from v to (0; 0, 0) is an
ancestor of v. An edge [v, p(v)] incident on v and p(v) is
called a layer edge, while every edge of an Mk is called a
mesh edge. Let Lk denote the set of layer edges between
Vk and Vk+1. The distance dG(u, v) between two vertices u
and v of G is the minimum length of the u− v paths, where
every vertex on a u−v path is a vertex in G. Figure 1 depicts
an example of the 2-layered pyramid P2. The vertex (1; 0, 0)
has four children (2; 0, 0), (2; 0, 1), (2; 1, 1) and (2; 1, 0). In
contrast the parent vertex of (2; 0, 0) is (1; 0, 0). Both vertices
(0; 0, 0) and (1; 0, 0) are ancestors of the vertex (2; 0, 0). The
dash lines indicate layer edges, while the solid lines are mesh
edges. The layer edges connecting the vertex (1; 0, 0) and its
four children are in L1. The distance dM2

((2; 0, 0), (2; 3, 3))
is equal to 6, while dG((2; 0, 0), (2; 3, 3)) is equal to 4.

III. LOWER BOUND

In this section we present a simple argument useful to
prove lower bounds in the class of pyramid-like networks.
For simplicity of notation, we let χr be χr(Pn) in the

(c) (d)

(a) (b)

Fig. 2. Shapes of Sr for (a)χr = 8; (b)χr = 10; (c)χr = 7; (d)χr = 9.

remaining text of this section. Our proof is based on the
following observation.

Observation III.1. For any two vertices u, v of distance
greater than χr on Mi, 2 ≤ i ≤ n, every rainbow u−v path
contains 2a layer edges in Li−1, where the integer a ≥ 1.

A maximal subgraph Sr of Mi, 1 ≤ i ≤ n, is called a
rainbow unit if any two vertices in Sr are of distance less
than or equal to χr. Two rainbow units Sr1 and Sr2 are said
to be disjoint if V (Sr1) ∩ V (Sr2) = ∅.

Lemma III.1. |V (Sr)| ≤ χ2
r+2χr+2

2 .

Proof: To be maximal, Sr has a shape as shown in
Figure 2 depending on the parity of χr. For even χr, χr

2
is either even or odd. If χr

2 is even (refer to Figure 2(a)),
then

|V (Sr)| ≤ (
χr
2

+ 1)2 + 4(1 + 3 + · · ·+ (
χr
2
− 1))

=
χ2
r + 2χr + 2

2
.

When χr
2 is odd (see Figure 2(b)).

|V (Sr)| ≤ (
χr
2

+ 1)2 + 4(2 + 4 + · · ·+ (
χr
2
− 1))

=
χ2
r + 2χr

2
.

Consider odd χr. Figure 2(c) and Figure 2(d) depict the
subcases even dχr2 e and odd dχr2 e, respectively. If dχr2 e is
even, then

|V (Sr)| ≤ (
χr + 1

2
)(
χr + 3

2
) + 2(1 + 3 + · · ·+ χr − 1

2
)

+ 2(2 + 4 + · · ·+ χr − 3

2
)

=
χ2
r + 2χr + 1

2
.
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Otherwise dχr2 e is odd.

|V (Sr)| ≤ (
χr + 1

2
)(
χr + 3

2
) + 2(1 + 3 + · · ·+ χr − 3

2
)

+ 2(2 + 4 + · · ·+ χr − 1

2
)

=
χ2
r + 2χr + 1

2
.

We now establish a lower bound of χr as follows:

Theorem III.1. Any rainbow χr−coloring in Pn satisfies
the inequality χr(χ2

r + 2χr + 2) ≥ 8(4n−1)
3 .

Proof: For any two vertices u, v of distance greater than
χr on Mi, 1 ≤ i ≤ n, every rainbow u − v path, from
Observation III.1, contains at least two layer edges in Li−1.
So there are at least 2i·2i

|Sr| disjoint rainbow units on Mi, 1 ≤
i ≤ n. And the layer edges incident on any two disjoint
rainbow units must be assigned distinct colors. Then

χr ≥
2n · 2n

|V (Sr)|
+

2n−1 · 2n−1

|V (Sr)|
+ · · ·+ 21 · 21

|V (Sr)|

=
4n

|V (Sr)|
+

4n−1

|V (Sr)|
+ · · ·+ 41

|V (Sr)|

=
4n

|V (Sr)|
(1 +

1

4
+

1

42
+ · · ·+ 1

4n−1
)

=
4(4n − 1)

3|V (Sr)|
.

Furthermore, since, by Lemma III.1, |V (Sr)| ≤ χ2
r+2χr+2

2 ,
we have χr(

χ2
r+2χr+2

2 ) ≥ 4(4n−1)
3 . Therefore,

χr(χ
2
r + 2χr + 2) ≥ 8(4n−1)

3 .

IV. UPPER BOUND

Wang and Hsu [19] gave the exact values of the rainbow
connection number χr(Pn) for n ≤ 3 as follows:

Theorem IV.1. [19] χr(P1) = 2, χr(P2) = 4 and χr(P3) =
8.

In this paper, we further discuss χr(Pn) for n ≥ 4. Let
ϕ be an edge coloring on Pn and ϕ(e) be the color number
assigned to the edge e. We also let ϕ(E) =

⋃
e∈E ϕ(e) for

an edge set E. Let τ = d 2n+logn3−1
3 e.

An Mk, k > 2(n − τ), can be partitioned into square
submeshes of order 2k+τ−n × 2k+τ−n, and each square
submesh is also called a cluster. Especially, every Mk, 1 ≤
k ≤ 2(n− τ), is regarded as a cluster. In a cluster, the edges
of a row are assigned the color numbers in an ascending
order from the leftmost edge to the rightmost edge of the row,
while the edges of a column are assigned color numbers in
an ascending order from the top edge to the bottom edge of
the column under the edge coloring ϕ. In ϕ, all layer edges
incident on a cluster are assigned the same color number.
The formal definition of ϕ is as follows:

Definition IV.1. Let ϕ be an edge coloring in Pn for n ≥ 4.

(1) ϕ([(k;x, y), (k;x, y + 1)]) =


y if 1 ≤ k < 2(n− τ),

(2τ − n)4n−τ + y if k = 2(n− τ),

y mod 2k+τ−n if 2(n− τ) < k ≤ n,
where 0 ≤ x ≤ 2k − 1 and 0 ≤ y ≤ 2k − 2.

(2) ϕ([(k;x, y), (k;x+ 1, y)]) =
x+ (2k − 1) if 1 ≤ k < 2(n− τ),

(2τ − n)4n−τ + (2k − 1) + x if k = 2(n− τ),

x mod 2k+τ−n + (2k+τ−n − 1) if 2(n− τ) < k ≤ n,
where 0 ≤ x ≤ 2k − 2 and 0 ≤ y ≤ 2k − 1.

(3) ϕ([(k;x, y), p(k;x, y)]) =
(2τ − n)4n−τ + 2(n− τ)− k if 1 ≤ k ≤ 2(n− τ),

(n− k)4n−τ + b x
2k+τ−n

c2n−τ
+b y

2k+τ−n
c if 2(n− τ) < k ≤ n,

where 0 ≤ x, y ≤ 2k − 1.

Definition IV.1(1) and (2) are used to assign color numbers
to the edges of a row and a column, respectively, on a cluster.
Definition IV.1(3) assigns color numbers to all layer edges.
From Definition IV.1(2), the color numbers of all edges of
a column in a cluster S on Mk, 1 ≤ k ≤ 2(n − τ), are
(2k − 1) more than the color numbers of all edges of any
row in S. For k > 2(n − τ), the color numbers of all
edges of a column in S are (2k+τ−n − 1) more than the
color numbers of all edges of any row. To ensure that all
layer edges incident on a cluster are assigned the same color
number, we define ϕ([u, p(u)]) = ϕ([v, p(v)]) by dividing
2k+τ−n on the column indexes and row indexes for any two
vertices u, v of a cluster (see Definition IV.1(3)).

Figure 3 depicts the edge coloring of layer k, where 2(n−
τ) < k ≤ n. Layer k is partitioned into 2n−τ×2n−τ clusters,
and each cluster in layer k is of order 2k+τ−n× 2k+τ−n. In
each cluster of layer k, the edges of a row are assigned the
color numbers in {0, 1, . . . , 2k+τ−n − 2}, while the edges
of a column are assigned the color numbers in {2k+τ−n −
1, 2k+τ−n, . . . , 2k+τ−n+1 − 3} under the edge coloring ϕ.
The edge colorings on layers 1, 2, . . . , 2(n − τ) are similar
to the edge coloring of a cluster on layer k.

Besides, we use Figure 4 as an example to illustrate
the edge colorings on layers 3, 4 and 5 of P6. Note that
n = 6, τ = 4 and 2(n − τ) = 4. In Figure 4, layers 6
and 5 are partitioned into 16 clusters. So, |ϕ(E(L5))| =
|ϕ(E(L4))| = 16. Then ϕ(E(L5)) = {0, 1, . . . , 15} and
ϕ(E(L4)) = {16, 17, . . . , 31}. Since (2τ−n)4n−τ = 32, the
color numbers of the edges on layer 4 are in {32, 33, . . . , 45}.

For a higher dimensional Pn, we use Table I and Table II
to demonstrate the range of values of ϕ(E(P10)) with τ = 7
and 2(n− τ) = 6.

Lemma IV.1. If S is a cluster of Pn, then S is rainbow
connected under the edge coloring ϕ.

Proof: For any two distinct vertices s, t ∈ V (S), we
want to show that there is a rainbow s− t path under ϕ. Let
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Fig. 3. The edge coloring of layer k, where 2(n − τ) < k ≤ n. Every
cluster is colored the same as shown in the bottom of the figure.

s = (k;x1, y1), t = (k;x2, y2) and v = (k;x2, y1), where
1 ≤ k ≤ n and x1 ≤ x2. By Definition IV.1(2), the color
numbers of the edges incident on the vertices in column y1
are in an ascending order from the edge [(k;x1, y1), (k;x1+
1, y1)] to the edge [(k;x2−1, y1), (k;x2, y1)]. So there exists
a rainbow s− v path P1. If y1 = y2, then v is t and hence
completes the proof. Otherwise, by Definition IV.1(1), we
also have a rainbow v− t path P2. If 1 ≤ k ≤ 2(n− τ), the
color numbers of the edges of P1, by Definition IV.1(1)-(2),
are (2k − 1) more than the color numbers of the edges of
P2. Thus the concatenation of P1 and P2 is a rainbow a− t
path. When k > 2(n − τ). The color numbers of the edges
of P1, by Definition IV.1(1)-(2), are (2k+τ−n−1) more than
the color numbers of the edges of P2. So the concatenation
of P1 and P2 is a rainbow s− t path.

We now show that ϕ is a rainbow coloring of a pyramid
network.
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Fig. 4. The edge colorings on layers 3, 4 and 5 of P6.

TABLE I
THE RANGE OF COLOR NUMBERS FOR THE MESH EDGES OF P10 .

mesh edges range of color numbers
row column

M1 0-0 1-1
M2 0-2 3-5
M3 0-6 7-13
M4 0-14 15-29
M5 0-30 31-60
M6 256− 318 319− 381
M7 0− 14 15− 29
M8 0− 30 31− 60
M9 0− 62 63− 125
M10 0− 126 127− 253

Theorem IV.2. The edge coloring ϕ is a rainbow coloring
on Pn.

Proof: Let s = (k1;x1, y1), t = (k2;x2, y2) ∈ V (Pn),
where 0 ≤ k1 ≤ k2 ≤ n. If s and t are on the same cluster,
then, by Lemma IV.1, there is clearly a rainbow s− t path.
When s and t are on two different clusters, three cases are
considered depending on the values of k1 and k2.

TABLE II
THE RANGE OF COLOR NUMBERS FOR THE LAYER EDGES OF P10 .

layer edges range of color numbers
L0 261− 261
L1 260− 260
L2 259− 259
L3 258− 258
L4 257− 257
L5 256− 256
L6 192− 255
L7 128− 191
L8 64− 127
L9 0− 63
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Case 1. k1 = 0.
Vertex s is indeed an ancestor of t. Let P be the s − t
path consisted only of layer edges. The edges of P , by
Definition IV.1(3), are assigned distinct color numbers.

Case 2. 1 ≤ k1 < 2(n− τ).
Let at be the ancestor of t in Mk1 . By Definition IV.1(3),
we have a rainbow t − at path P1 consisting only of layer
edges. Since Mk1 is in fact a cluster, by Lemma IV.1, we
have a rainbow s−at path P2 consisting only of mesh edges.
Clearly, the concatenation of the paths P1 and P2 construct
a rainbow s− t path.

Case 3. 2(n− τ) ≤ k1 ≤ n.
Let as, at ∈ V (M2(n−τ)) and as and at be the ancestors
of s and t, respectively. From Definition IV.1(3), we get a
rainbow s−as path P1 and a rainbow t−at path P2 consisted
only of layer edges. Notice that the color numbers of P1

and P2 are less than or equal to (2τ − n)4n−τ − 1. Since
M2(n−τ) is in fact a cluster, by Lemma IV.1, we have a
rainbow as−at path P3 and P3 are consisting only of mesh
edges. Because the color numbers of every mesh edge of P3,
from Definition IV.1(2), is greater than the color number of
any layer edge in P1 and P2, it follows that the concatenation
of the paths P1, P3 and P2 constructs a rainbow s− t path.

Clearly, the largest color number in ϕ(E(Pn)) gives an
upper bound to the size of the rainbow connection number
on Pn. According to Definition IV.1, the largest color number
is assigned to the bottom edge of a column on layer 2(n−τ)
or layer n. Let c1 = (2τ − n)4n−τ + (2k1 − 1) + x1 be the
color number assigned to the bottom edge of any column on
layer 2(n − τ), where k1 = 2(n − τ) and x1 = 2k1 − 2.
Let c2 = x2 mod 2k2+τ−n + (2k2+τ−n − 1) be the color
number assigned to the bottom edge of any column on layer
n, where x2 = 2τ − 2 and k2 = n. Then

c1 = (2τ − n)4n−τ + 22(n−τ) + 22(n−τ) − 3

= (2τ − n+ 2)4n−τ − 3

and

c2 = (2τ − 2) mod 2n+τ−n + 2n+τ−n − 1

= 2τ+1 − 3.

Let max(c1, c2) denote the larger value of c1 and c2. The
next theorem holds.

Theorem IV.3. χr(Pn) ≤ max((2τ−n+2)4n−τ−3, 2τ+1−
3), where τ = d 2n+logn3−1

3 e.

V. RAINBOW PATH CONSTRUCTION

According to the rainbow coloring ϕ, we further design
the algorithm Rainbow Path for finding a rainbow s − t
path for any two distinct vertices s and t of Pn. Algorithm
Rainbow Path is with time complexity O(n) because the
amount of operations is bounded by the length of a rainbow
path.

Function Path-on-a-Cluster(u, v)
Input: Vertices u = (k;x1, y1), v = (k;x2, y2).
Output: A rainbow u− v path P .
begin

The mesh edges connecting the starting vertex (k;x1, y1)
to the destination vertex (k;x1, y2) in row x1 form the
subpath P1;
The mesh edges connecting the starting vertex (k;x1, y2)
to the destination vertex (k;x2, y2) in column y2 form
the subpath P2;
return P = P1 + P2;

end

Function Path-Connecting-Layers(u, v)
Input: Vertices u = (k1;x1, y1), v = (k2;x2, y2).
Output: A rainbow u− v path P .
begin

Iteratively add layer edges
[w = (k2 − k; bx2

2k
c, b y2

2k
c), p(w)] to P , for each

k = 0, 1, . . . , k2 − k1 − 1;
return P ;

end

VI. CONCLUDING REMARKS

In this paper, we establish a lower bound and an upper
bound to the size of the rainbow connection number in
an n-dimensional pyramid network Pn. To the best of our
knowledge, this is the first result for constructing rainbow
coloring in Pn. The ratio of the bounds is considered as a
performance metric in our algorithm. The resulting values
are shown in Table III. The data are calculated on different
scenarios to see the lower bound and the upper bound for
different scales of pyramid networks. In Table III, the row
“diam(Pn)” provides a trivial lower bound to χr(Pn), where
n is the dimension of the given network. The results of
an improved lower bound for χr(Pn) (from Theorem III.1)
are given in the row “Our lower bound”. The row “Our
upper bound” reveals the largest color number that assigned
to the edges of E(Pn) under the edge coloring ϕ. The
row “ratio 1” shows that χr(Pn) increase sharply on the
growing n in spite of the tiny diameter. The row “ratio 2”
demonstrates the proximity of our lower bound and upper
bound. Although the ratio of the upper bound and the lower
bound are associated with a proportional increase in the
dimension of the networks, the resulting values of ratio 2
are still bounded by 4.58 even when the given network is of
dimension 80.
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