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Abstract—Systems of nonlinear equations have been widely 

applied in many aspects, such as computational science and 
engineering, etc. In this paper, we propose a Broyden trust 
region quasi-Newton method for solving general nonlinear 
equations. The method is based on a new trust region radius, 
and possesses the global and superlinear convergence under 
appropriate conditions. Numerical experiments show that the 
proposed method is more competitive than the Broyden linear 
search and BFGS trust region quasi-Newton methods. 
 

I. INTRODUCTION 
onsider the numerical solution of nonlinear equations  
                         ( ) 0F x = ,                                     (1.1) 

where : n nF R R→ is continuously differentiable. Let 
( )J x  denote the Jacobian matrix of F at x point. 

Throughout the paper, we assume that the solution set of (1.1) 
is nonempty. In all cases, ⋅  denotes the Euclidian norm of 

vectors or its induced matrix norm. Let
21( ) ( )

2
f x F x= , 

the nonlinear equation problem (1.1) is equivalent to the 
global optimization problem [12] 
                               ( ) 0f x = .                                      (1.2) 

Conventional quasi-Newton methods [1, 2] for solving (1.1) 
generate a sequence of iterates { }kx by 1k k kx x d+ = + , 

where kd  is a solution of the following system of linear 
equations 
                            0k kF B d+ = ,                                     (1.3)                       

where ( ),k k kF F x B=  is an approximation of ( )k kJ J x= . 
An attractive feature of quasi-Newton methods is its local 
superlinear convergence without computing the Jacobian 
matrix. Since 
                    1( )T T

k k k k k kf x d F J B F−∇ = − ,                   (1.4) 
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then kd  is not necessarily a descent direction of f  at kx .  
One way to globalize such quasi-Newton methods is to 
employ the line search rule given by Griewank [5] and Li et al. 
[7]. In [7], kλ  satisfies the line search condition 

 
2

1( ) (1 ) ( )k k k k k k kF x d F x dλ η σ λ+ ≤ + − ,    (1.5) 

where 1 0, 0, k
k

σ η η η> > ≤ < ∞∑ . Another way is to 

exploit the trust region strategy. In this paper, we use the latter 
technique. 

Yuan et al. [15] propose a trust region BFGS quasi-method 
for solving nonlinear equations 
        min ( )kq d such that   kd ≤ ∆ ,                     (1.6) 

where 
21( )

2k k kq d F B d= + , p
k kc F∆ = , 0 1c< < , 

and p  is a nonnegative integer, the trust region radius k∆  

has an important relation with kF . kB  is an approximation 

of kJ , kB  is generated by the BFGS formula 

1

T T
k k k k k k

k k T T
k k k k k

B d d B y yB B
d B d y d+ = − + ,                     (1.7) 

where 1k k kd x x+= − , 1k k ky F F+= − . Under appropriate 
conditions, the global and superlinear convergence is 
obtained. The BFGS quasi-Newton method is not necessarily 
suitable for nonsymmetric nonlinear equations. Some 
derivative-free methods (see [6, 8, 9, 16]) are proposed for 
symmetric nonlinear equations, whereas derivative-free 
methods are few for general nonlinear equations. 

The purpose of this paper is to propose a Broyden 
quasi-Newton method for solving general nonlinear equations 
with a new trust region radius. At each iterative point kx , the 

trial step kd  is obtained by solving the following subproblem 

21( )
2k k kq d F B d= +  such that  kd ≤ ∆ ,  (1.8) 

p
k c∆ =  is a new trust region radius, 0 1c< < , and p  is a 

nonnegative integer. kB is generated by the Broyden 
updating formula 

1
( ) T

k k k k
k k T

k k

y B d dB B
d d+

−
= + ,                 (1.9) 

kB  is nonsingular. 1kB +  satisfies the quasi-Newton equation 

1k k kB d y+ = . The global and superlinear convergence is 
established under suitable conditions. Numerical results show 
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that the proposed algorithm performs better than the two 
quasi-Newton algorithms determined by the Broyden line 
search quasi-Newton and BFGS trust region quasi-Newton 
methods.  

II. NEW QUASI-NEWTON METHOD 
In this section, we give the Broyden trust region 

quasi-Newton method for solving nonlinear equations. 
Let p

kd  be the solution of the trust region subproblem (1.8) 
corresponding to p . We define the actual reduction as 

( ) ( ) ( )p p
k k k k kAred d f x f x d= − + ,                (2.1) 

the predict reduction as 
( ) 0) (( )p p

k k k k kPred d q q d= − ,                     (2.2) 
and the ratio of actual reduction over predict reduction as 

( )
( )

p
p k k

k p
k k

Ared dr
Pred d

= . 

Algorithm 1 
Step 0 Choose , (0,1), 0, 0c pρ ε∈ = > . Initialize 0 0,x B . 

Set : 0k = . 
Step 1 Evaluate ,kF  if kF ε≤ , terminate. 

 Step 2 Solve the subproblem (1.8) to obtain p
kd . 

 Step 3 Compute 
( )
( )

p
p k k

k p
k k

Ared dr
Pred d

= . 

If p
kr ρ≥ , then 1

p
k k kx x d+ = + , go to step 4. Otherwise, set 

: 1p p= +  go to step 2. 

Step 4 Update kB  by (1.9). Set : 1k k= +  and 0p = . Go 
to Step 1.  

III. CONVERGENCE ANALYSIS 
 In this section, we prove the global and superlinear 

convergence of Algorithm 1. 

A. Global convergence 
In order to prove the global convergence of Algorithm 1, 

we make the following assumptions. 
Assumption 3.1 (1) The level set 

0{ | ( ) ( )}nx R f x f xΩ = ∈ ≤  is bounded. 

(2)  ( )F x  is twice differentiable in an open convex set 1Ω  

containing Ω . 
(3)  The following relation 

[ ] ( )T p
k k k kJ B F O d− =  

holds. 
(4)  The matrices { }kB  are uniformly bounded in 1Ω , which 

means that there exist positive constants 00 M M< ≤  such 
that 

0 ,kM B M k≤ ≤ ∀ .                (3.1) 
Similar to Yuan [14], we get the following lemmas from 

Algorithm 1 and Assumption 3.1. 
Lemma 3.1  

2| ( ) ( ) | ( ) ( )p p p
k k k k k kAred d Pred d O d O− = = ∆

2
. 

Proof  By (2.1) and (2.2), we have 

22

2

2

2 2

2

| ( ) ( ) | | ( ) ( ) |
1 ( )
2

( ) ( )

[ ] ( )

( ) ( ).

p p p p
k k k k k k k k

p p p
k k k k k k k

T p p
k k k k k

T p p
k k k k k

p
k k

Ared d Pred d q d f x d

F B d F J d O d

F B J d O d

B J F d O d

O d O

− = − +

= + − + +

= − +

≤ − +

= = ∆

‖‖

 
Lemma 3.2 If p

kd  is a solution of (1.8), then 

1( ) min ,
2

T
k kp T

k k k k k
k

B F
Pred d B F

B

  ≥ ∆ 
  

2
 .      (3.2) 

Proof  Since p
kd  is a solution of (1.8), for any [0,1]α ∈ , it 

follows 

( )

2 2

1( )
2

1
2

1 .
2

p p
k k k k k k

Tk
k k k k kT

k k

T
k k k k k

Pred d F F B d

F F B B F
B F

B F B

α

α α

= − +

 ∆ ≥ − −
 
 

= ∆ − ∆

22

2

2

2
     (3.3) 

Therefore, 

0 1

2 21( ) max
2

1 min , .
2

p T
k k k k k k k

T
k kT

k k k
k

Pred d B F B

B F
B F

B

α

α α
≤ ≤

 ≥ ∆ − ∆  
  ≥ ∆ 
  

2

2

 

                                                                                    (3.4) 
This completes the proof. 
 
Lemma 3.3 Algorithm 1 does not circle between Steps 2-3 
infinitely. 
Proof  If Algorithm 1 circles between Steps 2 and 3 infinitely, 
i.e., , p

kp r ρ→ ∞ < and 0.pc →  Obviously 

,k
T
kB F ε>  otherwise the algorithm stops. Thus                  

0p p
k kd c≤ ∆ = → . 

From Lemmas 3.1 and 3.2, we have 
2| ( ) ( ) | 2 ( )| 1| 0.

| ( ) |

p p
p k k k k k

k p T
k k k k k

Ared d Pred d Or
Pred d B F

− ∆
− = ≤ →

∆
                                                                                       (3.5) 
Hence, for k  large enough, 

,p
kr ρ≥                                     (3.6) 

which contradicts the fact that p
kr ρ< . 
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Theorem 3.1 Let Assumption 3.1 hold and { }kx  be 
generated by Algorithm 1. Then either there exists some finite 

0k  such that 
0 0

0T
k kB F =  or   

lim inf 0.T
k kk

B F
→∞

=                     (3.7) 

Proof  Assume that Algorithm 1 does not stop after finitely 
many steps, then there exists a positive constant ε  and an 

infinite subsequence { }jk  such that .
j j

T
k kB F ε≥  Let 

{ | }T
k kK k B F ε= ≥ . 

Using Algorithm 1 and Lemma 3.2, we have 

1

2

[ ( ) ( )] ( )

min , .
2

p
k k k k

k K k K

k
k K

f x f x Pred d

M

ρ

ε ερ

+
∈ ∈

∈

− ≥ ⋅

 ≥ ⋅ ∆ 
 

∑ ∑

∑
 

By the definition of Algorithm 1, it follows 
0.p

kr ρ≥ >                                    (3.8) 
This implies 

1 00 ( ) ( ) ( ).k kf x f x f x+≤ ≤ ≤ ≤  

Therefore, { ( )}kf x  is convergent, then 

                2min , .
2 k

k K M
ε ερ

∈

 ⋅ ∆ < ∞ 
 

∑  

Thus 0, ,k k k K∆ → → +∞ ∈ , which implies that 

kp → +∞  as k → +∞ ( k K∈ ). Therefore, we can 

assume 1kp ≥  for all k K∈ . 

From the determination of ( )kp k K∈  in the inner circle, 

the solution kd  corresponding to the following subproblem 

2 11min ( ) .  .
2

kp
k k kq d F B d s t d c −= + ≤    (3.9) 

is unacceptable.  Let 1k k kx x d+ = +  , we have 

1( ) ( ) .
( )

k k

k k

f x f x
Pred d

ρ+−
<




                         (3.10) 

From Lemma 3.2, it follows 

1
2( ) min , .

2
kp

k kPred d c
M

ε ε− ≥  
 

  

By Lemma 3.1, we get 
2( 1

1

2 )( ) ( ) ( ) ( ) ( ).kp
k k k k kf x f x Pred d O d O c −

+− − = = 

Therefore, 
2( 1)

1

1
2

( ) ( ) ( )1 .
( ) min ,

2

k

k

p
k k

pk k

f x f x O c
Pred d c

M
ε ε

−
+

−

−
− ≤

 
 
 




 

Since kp → +∞  as k → +∞ , we obtain 

1( ) ( ) 1, .
( )

k k

k k

f x f x k K
Pred d

+−
→ ∈




 

This is in contradiction with (3.10). Thus, the conclusion 
follows. 

Remark Theorem 3.1 shows that the iterative sequence { }kx  

generated by Algorithm 1 satisfies 0T
k kB F → . If The 

matrices 1{ }kB−  are uniformly bounded in 1Ω , then we have 

0kF →  . 
The following lemma means that the solution of the 

subproblem in Step 2 is close to quasi-Newton direction when 
the number of iterations is sufficiently large. 
Lemma 3.4   Let the conditions of Theorem 3.1 hold,  p

kd  be 

generated by Algorithm 1. If the iterative sequence { }kx  

converges to *x , then there exists a positive integer K such 
that 

1p
k k kd B F−= −                                (3.11) 

for all k K≥ . 
Proof   By Assumption 3.1(4), we have 

(0) ( )
1 ( )
2

( ).

p
k k k k

T p p T T p
k k k k k k k

p
k

q q q d

F B d d B B d

O d

∆ = −

= − −

=

 

Because { }kx  converges to *x , * *( ) ( )TJ x J x  is 

positive definite. By the continuity of ( ) ( )TJ x J x , 

( ) ( )TJ x J x  is bounded. From Assumption 3.1(3), 
21 ( ) ( )

2
1 ( )
2

T p p T T p p
k k k k k k k k k k

T p p T T p
k k k k k k k

f q F J d d J J d o d

F B d d B B d

∆ − ∆ = − − +

+ +
 

2

1( ) ( ) ( )
2

( )

T p p T T T p
k k k k k k k k k k

p
k

F B J d d B B J J d

o d

= − + −

+

2 2

1( ) ( ) ( )
2

( ) ( ).

T p p T T T p
k k k k k k k k k k

p p
k k

B J F d d B B J J d

o d O d

≤ − ⋅ + −

+ =
 

Therefore, we obtain 
2

( )
1 ,

( )

p
kk

p
k k

O df
q O d

∆
− ≤

∆
 

which implies that 1k

k

f
q

∆
→

∆
  as k → ∞ .Then there exists 

a positive integer K  and a lower bound of the trust region 
radius ∆ , such that 

1( )T T
k k k k kB B B F− ≤ ∆ ≤ ∆  

holds for all k K≥ .  Because { }kB  are nonsingular, we 
have 

1 1( ) .p T T
k k k k k k kd B B B F B F− −= − = −  
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B. Superlinear convergence 
In order to establish the superlinear convergence of 

Algorithm 1, the following assumption is further  needed. 
Assumption 3.2 (1) *

kx x→ , where *x  is the solution of 
(1.1). 
(2) Let nD R⊆  be an open convex 
set, ( ) Lip ( ),J x Dγ∈ ,x D∈  i.e., ( )J x  is Lipschitz 
continuous. 

(3) 
*

1

1

( ( ))( )
lim 0.k k k

k
k k

B J x x x
x x

+

→∞
+

− −
=

−
 

Lemma 3.5 ([3]) Let : n nF R R→  be continuously 
differentiable in the open convex set ,nD R⊆  

( ) Lip ( ),J x Dγ∈  x D∈ . For any ,v u D∈ , it follows 

( ) ( ) ( )( )

.
2

F v F u J x v u

v x u x v uγ
− − −

≤  − + −  − 
                           (3.12) 

Lemma 3.6 ([3]) Let ,F J  satisfy the conditions of Lemma 

3.5 and assume that 1( )J x −  exists. Then there exists 0α > , 
such that 

( ) ( ) ,F v F u v uα− ≥ −                       (3.13) 

for all ,v u D∈ . 

Theorem 3.2 Let Assumptions 3.1 and 3.2 hold, { }kx  be 

generated by Algorithm 1. Then { }kx  converges 

superlinearly to *x and *( ) 0F x = . 

Proof  Define *
k ke x x= − . Now we show that the sequence 

{ }kx  converges superlinearly to *x . From Lemma 3.4, there 

exists a positive integer K , it follows 

* *

0
( ( )) ( )

p
k k k

p p
k k k k

B d F
B J x d F J x d

= +

= − + +
  

for any k K≥ . Therefore, we have 
* *

1 1( ( )) [ ( ) ],p p
k k k k k kF B J x d F F J x d+ +− = − + − + +    

where 1
p

k k kd x x+= − . 
From Assumption 3.2(2) and Lemma 3.5, 

*
* 11

* 1
1

1

( ) ( )

( )( )
( ).

2

p p
k k k k kk

p p p
k k k

k k k
k k

k k

B J d F F J x dF
d d d

B J x x
e e

x x
γ

++

+
+

+

− − + +
≤ +

− −
≤ + +

−

                                                                                 

Using Assumption 3.2(3), we have 1lim 0.k
pk

k

F
d

+

→∞
=  

Since lim 0p
kk

d
→∞

= , this implies 

*( ) lim ( ) 0.kk
F x F x

→∞
= =                    (3.14) 

From Lemma 3.6, there exist 00, 0kα ≥ ≥ , such that 

*
1 1 1( )k k kF F F x eα+ + += − ≥          (3.15) 

for all 0k k≥ . According to (3.14) and (3.15), we get 

1 10 lim limk k
p pk k

k k

F e
d d

α+ +

→∞ →∞
= ≥  

1

1

lim lim ,
1

k k

k k
k k k

e r
e e r
α α+

→∞ →∞
+

≥ =
+ +

 

where 1k
k

k

e
r

e
+= . This implies 

lim 0,kk
r

→∞
=  

which completes the proof of superlinear convergence. 

IV. NUMERICAL EXPERIMENTS 
In this section, we report the results of some numerical 

experiments with the proposed algorithm. We also give 
another two quasi-Newton algorithms determined by the line 
search condition (1.5) and the trust region (1.6), and we call 
them Algorithms 2 and 3, respectively.  

We choose 9 test functions [10, 11, 14] listed in Table 1.  
In the experiments, the parameters are chosen 

as 510 , 0.0001, 0.5.cε ρ−= = =  The initial 

quasi-Newton matrix 0B A=  (see [8]). For Algorithms 1 

and 3, we obtain kd  from Dogleg method (see [13]). For 

Algorithm 3, we update 1kB +  by (1.7) if 510T
k ky d −> , 

otherwise, we set 1k kB B+ = . We stop the iteration process if 
510kF −≤ , and stop the program if the iteration number is 

larger than 5000. The program is coded in MATLAB 9.0. 
To compare the efficiency of the three algorithms, we use 

the performance profile proposed by Dolan and More [4]. The 
dimensions of test functions 1-9 are 50. According to the 
numerical results, we plot two figures based on the total 
number of iterations and the CPU time, respectively. 

From Figure 1, we find that Algorithm 2 is slightly better 
than Algorithm 3, Algorithm 1 obviously performs better than 
Algorithms 2 and 3 on the total number of iterations. From 
Figure 2, we can see that Algorithms 2 and 3 have similar 
performances. There are no large discrepancies on the CPU 
time because a curve crosses another curve. It is clear that our 

TABLE I 
FUNCTIONS OF EXPERIMENT 

No. Function 

1 Extended Rosebrock 
2 Logarithmic  
3 Brown almost linear 
4 Penalty 
5 Trigonometric 
6 Broyden tridiagonal 
7 Broyden banded 
8 Discrete boundary value 
9 Extended Freudentein and Roth 
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algorithm needs fewer CPU time than Algorithms 2 and 3 in 
the test problems. 

 
Figure 1: Performance profile of the number of iterations 

 
Figure 2: Performance profile of the CPU time 

V. CONCLUSIONS 
In this paper, we present a Broyden quasi-Newton method 

to solve nonlinear equations with a new trust region radius. 
The global and superlinear convergence is established under 
suitable assumptions. Preliminary numerical results show that 
our algorithm is promising.  

REFERENCES 
[1]  J.E. Dennis, J.J. More, “A characterization of superlinear convergence 

and its application to quasi-Newton methods,” Mathematics of 
computation, vol. 28, no. 126, pp. 549-560, 1974. 

[2] J.E. Dennis, J.J. More, “Quasi-Newton methods, motivation and 
theory,” SIAM  review, vol. 19,  no. 1,  pp. 46-89, 1977. 

[3] J.E. Dennis, R.B. Schnabel, “Numerical methods for unconstrained 
optimization and nonlinear equation,” Science Press, Beijing, 2009. 

[4] E.D. Dolan, J.J. More, “Benchmarking optimization software with 
performance profiles,” Math. Program., vol. 91, pp. 201-213, 2002. 

[5]   A. Griewank, “The `global' convergence of Broyden-like methods with 
a suitable line search,” J. Austral. Math. Soc. Ser. B, vol. 28, no. 01,  pp. 
75-92, 1986. 

[6] G.Z. Gu, L. Qi, “Descent directions of quasi-Newton methods for 
symmetric nonlinear equations,” SIAM J. Numer. Anal., vol. 40, no. 5, 
pp. 1763-1774, 2002. 

[7] D.H. Li, M. Fukushima, “A derivative-free line search and global 
convergence of Broyden-like method for nonlinear equations,” 
Optimization Methods and Software, vol. 13,  no. 3, pp. 181-201, 2000. 

[8] D.H. Li, M. Fukushima, “A global and superlinear convergent 
Gauss-Newton-based BFGS method for symmetric nonlinear 
equations,” SIAM J. Numer. Anal., vol. 37, no. 1, pp.  152-172,1999. 

[9]   D.H.  Li, X.L. Wang, “A modified Fletcher-Reeves-type derivative-free 
method for symmetric nonlinear equations,” Numerical Algebra 
Control Optimization, vol. 1, no. 1, pp. 71-82, 2011. 

[10] J.J. More, B.S. Garbow, K.E. Hillstrom, “Testing unconstained 
optimization software,” ACM Transaction Mathematical Software, vol. 
7, no. 1,  pp. 17-41, 1981. 

[11] J. Nocedal, S.J. Wright, “Numerical optimization,” Science Press, 
Beijing, 2006. 

[12] H. Wang, M. Qin, “A modified regularized newton method for 
unconstrained convex optimization,” IAENG International Journal of 
Applied Mathematics, vol.46, no.2, pp. 130-134, 2016. 

[13] Y.J. Wang, N.H. Xiu, “Theory and algorithm for nonlinear 
programming,” Shanxi Science and Technology Press, Xi'an, 2004. 

[14] G.L. Yuan, Z.X. Wei, X. W. Liu, “A BFGS trust-region method for 
nonlinear equations,” Computing , vol. 92, no. 4, pp. 317-333, 2011. 

[15] M.L. Zeng, Q. Ni, “A new trust region method for nonlinear equations 
involving fractional model,” Pacific J. Optim., vol.15, no.2, pp. 
317-329, 2019. 

[16] W.J.  Zhou, D.M. Shen, “An inexact PRP conjugate gradient method for 
symmetric nonlinear equations,” Numerical Functional Analysis and 
Optimization, vol. 35, no. 3, pp. 370-388, 2014. 

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_09

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 


	INTRODUCTION
	New quasi-newton method
	Convergence analysis
	Global convergence
	Superlinear convergence

	Numerical experiments
	Conclusions
	References



