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ABSTRACT- An accurate parameter estimation of chirp 

rate and initial frequency of the linear frequency modulation 

(LFM) signals based on zoom modified discrete chirp Fourier 

transform (MDCFT) is investigated. The first step of the 

proposed algorithm returns a coarse estimate of the parameter 

by addressing the maximum MDCFT coefficient of a LFM 

signal. The coarse estimate is refined by fine search named 

zoom MDCFT (Zoom-MDCFT) in the second step. Compared 

to traditional brute fine search approaches, Zoom-MDCFT 

method has merit in high efficiency because it utilizes more 

prior information about the MDCFT results, thus requiring 

fewer extra computations. Finally, computer simulations are 

conducted to evaluate the performance by comparison with 

the Cramer–Rao lower bound. The proposed estimator shows 

accurate and robust performance with the addition in the 

additive white Gaussian noise. 

Index Terms - Parameter estimation; Modified discrete chirp 

Fourier transform; Linear frequency modulation; 

Zoom-MDCFT 

I. INTRODUCTION 

inear frequency modulation (LFM) signals, also called 

chirp signals, have widely used in the field of radar [1–

3], ultrasound [4], and communication [5]. Accurate 

estimation of the initial frequency and the chirp rate of an 

LFM signal without any prior knowledge is always a 

classical topic in these applications. There have been a 

variety of estimators based on several extensively studied 

methods. 

The maximum likelihood (ML) estimation algorithms [2] 
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have numerous local optima and high computational 

complexity, making their application in engineering 

impossible. The Fast Fourier transform (FFT)-based 

searching approach [6] is very convenient, but the necessary 

condition for the best performance is the high 

signal-to-noise ratio (SNR). The de-chirp methodology [7] 

does not require heavy numerical computation but cannot 

achieve expected performance in a noisy environment. The 

estimators based on the ambiguity function (AF) [8], and the 

Wigner–Ville distribution (WVD) [9], either have an 

insufficient resolution or suffer from interference from cross 

terms. The disturbance induced by cross terms would be 

suppressed through the selection of a matching kernel; 

however, the energy accumulation will be inevitably 

degraded. The short-time Fourier transform (STFT) [10] 

does not have the problem of cross terms but suffers from 

poor resolution due to its fixed window length. The 

fractional Fourier transform (FrFT) [11–15], as a 

generalized style of ordinary Fourier transform with a 

fractional order, attracts more and more attention in the field 

of parameter estimation because it has a remarkable energy 

concentration on the LFM signal. However, the FrFT-based 

approaches must search the fractional order in the whole 

fractional order space and thus have a heavy computational 

burden as their drawback. The linear canonical transform 

(LCT)-based estimator [16] can be implemented by FFT. 

But both the LCT method suffers from the “picket fence” 

effect. The phase-unwrapping and time-domain ML 

methods are combined in [17] to estimate chirp signal 

parameters effectively, and the estimation accuracy is really 

perfect together with the root mean square errors getting 

close to the Cramer–Rao lower bound (CRB). However, the 

drawback of this combination estimator is that it is highly 

time-consuming. 

Each estimator has its merits and some drawbacks. 

However, further studies on LFM signal parameter 

L

IAENG International Journal of Computer Science, 46:3, IJCS_46_3_11

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



estimation are still essential with respect to their efficiency 

and accuracy, which are decisive factors in engineering 

practice. In recent years, the modified discrete chirp Fourier 

transform (MDCFT) has been proposed as an efficient 

method for chirp signal processing [18–21]. The MDCFT of 

an LFM signal is optimal in the sense of maximum energy 

concentration since a matching chirp kernel is employed. 

However, the performance of parameter estimation cannot 

achieve an expected accuracy due to the discrete calculation. 

This work aims to derive an accurate parameter estimator 

for LFM signals based on MDCFT. The proposed algorithm 

consists of two banks, namely, coarse search and 

zoom-based fine search. The coarse search returns a coarse 

estimate of the parameter by addressing the maximum 

MDCFT coefficient of a signal. The coarse estimate is 

refined by spectrum zooms method. Compared to 

conventional fine search approaches, spectrum zooms 

method is always more efficient because it utilizes more 

prior information about the MDCFT results, thus requiring 

fewer extra computations. Finally, computer simulations are 

conducted to demonstrate the performance of the proposed 

algorithms. 

II. METHODOLOGY 

 A noisy signal under consideration is modeled as follows: 

      2
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   (1) 

where 
0 0
b  and

0
  refer to signal amplitude, initial 

frequency, and chirp rate, respectively.  t is the 

zero-mean additive complex white Gaussian noise, and the 

real part and imaginary part of the noise are mutually 

independent and irrelevant. The variance of  t  is 2
2 . 

Moreover, T  represents the total observation time. The 

total number of samples during the observation time is 

assumed to be N  with sampling intervals 

 , 0,1, , 1n T N n N      . As a result, the discrete 

sequence of the LFM signal can be expressed as 
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where 2
0 0 0 0,f T k T   . 

The MDCFT for the sequence ( )x n  is defined as 
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,  (3) 

with exp( 2 )NW j N  . 

From (3), one can see that for each fixed k , MDCFT is 

the ordinary discrete Fourier transform (DFT) of the signal. 

When 0k  , the DCFT is the same as the DFT. 

Consequently, the MDCFT can be implemented by the fast 

Fourier transform algorithm, and the computational 

complexity is thus   2logO N N [18][19]. 

In addition, the definition of MDCFT indicates that the 

modulus of ( , )X f k  will reach its peak of N  when f  

and k  precisely match 0f f  and 0k k , respectively. 

Therefore, by the computation of the MDCFT on the signal, 

it is shown that the signal will be kept compact and 

concentrated along a peak coefficient; then, the 

corresponding peak coordinate, denoted as ( , )p pf k , yields 

the estimate of the LFM signal parameters, which is known 

as the basic principle that MDCFT can be used as an 

estimator of the LFM signal parameters. 

However, the parameters 0f and 0k  are always arbitrary 

(in other words, they may be not integers in most cases), 

whereas the variables f  and k  in MDCFT are all 

integers due to discretization. The question of interest here 

is that there are inevitably some deviations in the parameter 

estimates if we regard pf and pk  directly as the 

approaches of parameters 0f  and 0k ,, respectively. What 

we are going to discuss in the present study is how to 

eliminate or minimize the deviations, thus improving the 

accuracy of parameter estimation. 

For the sake of simplicity in expression, the sought 

coordinate ( , )p pf k , which is addressed by searching in the 

two-dimensional plane  ,f k  after the calculation of 

MDCFT, is named quasi-peak. Meanwhile, the coordinate 

corresponding to the true peak can be denoted as 0 0( , )f k  

and its estimator is expressed as   00( , )f k . 

III. FURTHER IMPROVEMENT 

It should be noted that the cross interference of 

parameters 0f  
and 0k  is surprisingly obvious when both 

of them or either of them is not an integer in MDCFT. In 

addition, evidence-based results for this cross interference 

are simulation outcomes presented in Tables I–IV. First, it 

can be observed in Table I that the peak coefficient of 

MDCFT reaches its maximum amplitude when the 

parameters of LFM signal are all integers, e.g., 

 0 070.0, 90.0f k   . Moreover, the coordinate of the 

quasi-peak coincides with that of the true peak, resulting in

 0 070, 90p pf f k k    . By contrast, the parameters of 

the LFM signal vary from  0 070.0, 90.0f k    to 
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 0 070.4, 90.0f k    0 070.2, 90.2f k   and 

 0 070.0, 90.4f k    in Tables I–IV, but the three peak 

coefficients of MDCFT have almost the same amplitude 

(marked in bold in Tables II–IV separately). Furthermore, 

the coefficients around the quasi-peak can hardly be 

distinguished from each other since they possess nearly 

equal amplitudes. For example, the coefficients at position 

 1 71, 90p pf k   in Tables II, III, and IV hold three 

amplitudes of 0.5046, 0.5043 and 0.5045, respectively. The 

difference between these coefficients is so small that we 

cannot differentiate them in a noisy environment; this 

indicates that the cross interference of parameters is so 

severe that it cannot be ignored. With the presence of cross 

interference and noise, there would be erroneous or reverse 

compensation if the MDCFT coefficients are utilized 

directly to estimate parameters, since the MDCFT 

coefficients with signal parameter  0 070.0, 90.4f k    

are nearly indistinguishable from those with signal 

parameter  0 070.4, 90.0f k   , and it is difficult to 

determine the parameter that should be compensated, and 

vice versa.

Table I. Normalized amplitude of MDCFT coefficients with a signal parameter  0 070.0, 90.0f k    

 

Row 

Column 

88 89 90 91 92 

68 

69 

70 

71 

72 

0.0501 

0.0981 

0.2225 

0.4890 

0.6283 

0.0389 

0.0918 

0.2985 

0.8946 

0.2985 

0.0000 

0.0000 

1.0000 

0.0000 

0.0000 

0.2985 

0.8946 

0.2985 

0.0918 

0.0389 

0.6283 

0.4890 

0.2225 

0.0981 

0.0501 

Table II. Normalized amplitude of MDCFT coefficients with signal parameter  0 070.4, 90.0f k    

 

Row 

Column 

88 89 90 91 92 

68 

69 

70 

71 

72 

0.0869 

0.1294 

0.2253 

0.4171 

0.5498 

0.0979 

0.1512 

0.3039 

0.6987 

0.5066 

0.1261 

0.2162 

0.7568 

0.5046 

0.1892 

0.3032 

0.6952 

0.5103 

0.2407 

0.1336 

0.5474 

0.4999 

0.3297 

0.1857 

0.1144 

Table III. Normalized amplitude of MDCFT coefficients with signal parameter  0 070.2, 90.2f k    

 

Row 

Column 

88 89 90 91 92 

68 

69 

70 

71 

72 

0.0914 

0.1391 

0.2435 

0.4306 

0.5159 

0.1021 

0.1626 

0.3304 

0.6741 

0.5070 

0.1271 

0.2209 

0.7548 

0.5043 

0.1915 

0.2774 

0.7164 

0.5092 

0.2242 

0.1273 

0.5804 

0.5050 

0.3129 

0.3129 

0.1729 

Table IV. Normalized amplitude of MDCFT coefficients with signal parameter  0 070.0, 90.4f k    

 

Row 

Column 

88 89 90 91 92 

68 

69 

70 

71 

72 

0.0966 

0.1498 

0.2619 

0.4401 

0.4827 

0.1073 

0.1760 

0.3558 

0.6463 

0.5067 

0.1300 

0.2341 

0.7477 

0.5045 

0.1984 

0.2537 

0.7334 

0.5079 

0.2100 

0.1226 

0.6123 

0.5083 

0.2951 

0.1611 

0.1027 
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In an attempt to avoid reverse compensation caused by 

incorrect or superfluous interpolation, we suggest an 

improved method called Zoom-MDCFT, which is a 

supplemental version of the high resolution MDCFT 

algorithm. 

As demonstrated in Tables II–IV, the cross interference 

is most serious around the quasi-peak area when the signal 

parameters 0f and 0k  are not integers. So, we can 

introduce the refining technology, namely, Zoom-MDCFT, 

to enrich the detailed spectrum character of MDCFT. More 

concretely, the non-standard coefficients located at

 ,p pf n k  ,  ,p pf k n  ,  ,p pf n k  , and 

 ,p pf k n 
 

need to be calculated, where  is defined as 

the thickness of the Zoom-MDCFT; 0,1, , 1n L  ; L  

is the number of zooms; and 1L   . With the assistance 

of spectrum zooms, the detailed spectrum features of 

MDCFT near the quasi-peak would be presented completely. 

As shown in Fig. 1, nine coefficients near the quasi-peak 

location (70, 90) are plotted without spectrum zooms, and 

monotonous information is demonstrated.  

  

Fig. 1. Nine coefficients of MDCFT near the quasi-peak location 

 70, 90p pf k   , with LFM signal parameters 0 70.2f   and 

0 90.2k  . 

On the contrary, complex characterization of the MDCFT 

spectra near the same area is depicted by Zoom-MDCFT (as 

shown in Fig. 2), which is the basis of accurate parameter 

estimation. In addition, numerical simulation indicates that 

the cross interference is significantly suppressed. However, 

the computational effort would be increased sharply if the 

number of zooms is fairly large, even though the 

non-standard coefficients can be calculated by the FFT 

algorithm. Then, several simulations are conducted to 

evaluate the range of number L . 

 

 

Fig. 2. Spectrogram of MDCFT near the quasi-peak location 

 70, 90p pf k   by Zoom-MDCFT, with LFM signal parameters 

0 70.2f   and 0 90.2k  . 

 

Fig. 3. The relationship of the number of zooms and RMSE, with SNR = 3 

dB. 

In the experiments, five LFM signals were constructed 

with five different parameters in the range of  70,71 , and 

parameter 0k  is treated similarly within  90,91 . Number 

L  varies from 10 to 200 with step size 10, and the 

signal-to-noise ratio (SNR) level is 3 dB. Then, Monte 

Carlo simulations are performed 1000 times to compute the 

root mean square errors (RMSEs) of parameters 0f  and 0k . 

After the five LFM signals are all simulated, the 

relationships between the mean RMSE and number L  are 

illustrated in Fig. 3, and the CRB [6] is also measured for 

comparison. As shown in Fig. 3, the RMSE/CRB of 

estimation will not decrease when the number of zooms is 

more than approximately 70, even though the number L  

increases further, let alone the extra computation with the 

increase of L . As a result, L  is generally taken as a value 

within 5080 from the perspective of engineering 

implementation. 
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Finally, the flow of the Zoom-MDCFT algorithm is 

summarized in Table V. 

Table V. Flow of the Zoom-MDCFT algorithm. 

Step 1.  ( , ) ( )i jX f k MDCFT x n  and ( , ) ( , )i j i jY f k X f k , 

where , 0,1,..., 1;i j N  . 

Step 2.    
,

, arg ( , )p p i i
f k

f k Max Y f k . 

Step 3. Let 50 100L   , by spectrum zooms to perform 

   
,

, arg ( , ) ( , )M M m n p p
f k

f k Max Y f k X f m L k n L     , 

where , 0,1,..., 1;m n L   

Step 4. End: Obtain the estimation results   00 ,M Mf f k k  . 

The proposed Zoom-MDCFT algorithm can be easily 

popularized and applied to the case of multi-component 

signals. In engineering applications, the intensity of each 

component always varies from that of other components, 

and the presence of an intensive component signal may 

affect the parameter estimation of a weak component. As a 

result, certain measures must be taken to suppress the 

influence of an intensive component on weak ones. In light 

of the good concentration of MDCFT, we can use the chirp 

Fourier domain signal separation technology to avoid the 

interference of the intensive component on weak ones. The 

flow is arranged as follows. First, the peak masking process 

can be introduced to eliminate the most intensive 

component [11] to repeatedly detect the most intensive 

component and estimate the parameters by the 

Zoom-MDCFT algorithm and the second intensive 

component and process. 

IV. PERFORMANCE ANALYSIS AND SIMULATION RESULTS 

A. Computation Issue 

The computational complexity of the proposed 

Zoom-MDCFT algorithm consists of two banks, namely, 

coarse search and fine search. For the coarse search, 

MDCFT can be implemented by the fast Fourier transform 

algorithm, and the computational complexity is thus

  2logO N N  [18][19]. During the fine search procedure, 

spectrum zooms instead of a brute-force search is 

introduced. For each step of spectrum zoom calculation, the 

computational complexity is about 4N complex 

multiplication; and the total computational complexity of 

spectrum zooms is about 4N*L complex multiplication, 

where L is the number of spectrum zooms. As a result, the 

total computational complexity during our fine search 

procedure is about 4N*L complex multiplication. However, 

the computation load of a fine search by increasing the 

number of zooms is about 4N*N complex multiplication, 

which is far greater than 4N*L, as the number of samples N 

is usually far greater than the number of zooms L, e.g. the N 

is 512,and L is 50 in our simulations. 

As for the FrFT-based method [15], discrete FrFT should 

be performed once for each fractional order in the range 

[0,2]. As a result, the primary computation complexity 

during the procedure of coarse search in the FrFT-based 

method is about  22 logO M N N  , where M  is the 

searching step of fractional order, not mention the fine 

search.  

Then the computational complexity of algorithm named 

time-domain maximum likelihood (TDML) estimator [17] 

is taken for comparison too. The TDML method always 

needs two 1D searches, thus requiring quantity of 

computation  2O N , which is much larger than 

 2logO N N  when N is large enough. 

B. Simulation Results 

In an effort to validate the effectiveness of the proposed 

Zoom-MDCFT algorithms, several experiments were 

conducted to evaluate the estimation performance in 

additive Gaussian noise environments, and CRB was also 

employed for comparison. 

First, an LFM signal with parameters 

 0 070.0, 90.4f k 
 

was taken into consideration. In the 

experiments, the number of spectrum slices is fixed at 

50L  , and the Zoom-MDCFT algorithm is conducted. 

The length of signal was assumed to be N = 1000. The 

value of SNR varies from −9 dB to 6 dB, with increments 

of 1 dB. At each SNR level, 1000 Monte Carlo simulations 

were conducted to obtain the RMSE of the estimation result. 

The CRBs were also examined for comparison. The 

estimation results of 0f and 0k  are plotted in Figs. 3 and 4, 

respectively. As comparison, the CRBs[6] and algorithms 

reported in [11],[15] and [17], denoted as algorithm [Qi], 

[Song] and [Deng] respectively, are also employed, and the 

ratio of RMSE / CRB is set as the y-axis. 

As plotted in Fig.3 and Fig.4, the estimation precision 

improves gradually with the increase of SNR level. When 

the Zoom-MDCFT algorithm is applied, the RMSE of  0f  

and  0k  is greater than 1.05 times CRB when the SNR 
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level is lower than -3 dB. In addition, the RMSE and CRB 

agree closely in both figures when SNR is higher than 0 dB. 

It can also be confirmed that, the traditional MDCFT 

algorithm is inferior to the Zoom-MDCFT. The 

performance of the proposed algorithm then slightly 

outperforms the other three algorithms introduced in [11] 

(denoted as [Qi]), [15] (denoted as [Song]) and [17] 

(denoted as [Deng]) when the SNR is lower than -1dB. 

 

Fig. 3. The estimation results of parameter 0f  with several different 

iterative interpolation times. 

 

Fig. 4. The estimation results of parameter 0k  
with several 

different iterative interpolation times. 

To demonstrate the relationship between estimation 

performance and cross interference caused by decimal 

parameters, an extra simulation was conducted. In this 

experiment, SNR was fixed at 3 dB, and the parameter 0k

was fixed as an integer 90; at the same time, the other 

parameter 0f  varied from 69.5 to 70.5 with a step size of 

0.1, and Monte Carlo simulations were performed 1000 

times at each step. The relationship of RMSE and parameter 

0f  is plotted in Fig. 5. The RMSEs of estimated 

parameters decrease with the parameter 0f  as it varies 

from 69.5 to 70.5, whereas the curves rise with the increase 

of  from 70.0 to 70.5. As expected, the RMSEs reach 

their bottom when 0f  equals exactly 70.0. This means that 

the further the parameter deviates from the integer, the more 

serious the cross interference and, at the same time, the 

worse the estimation performance. 

Fig. 5 indicates that as long as the parameters are not all 

integers, the cross interference between parameters will be 

tangible, which results in a decline in the estimation 

performance. 

 

Fig. 5. The estimation results when 0f  varies from 69.5 to 70.5, with a 

fixed
 0 90k  at the 3-dB SNR level. 

Then, to validate the stability of the Zoom-MDCFT 

algorithm when the number of spectrum zooms is greater 

than a certain value, we tweaked the number from 50 to 100 

in steps of 5 and conducted the following simulation. In the 

experiment, the LFM signal parameters were

 0 070.0, 90.4f k  , and the SNR level is fixed at 3 dB; 

then the RMSEs of estimation are calculated. As shown in 

Fig. 6, the Zoom-MDCFT algorithm had a nearly stable 

performance when the number L increases from 65 to 100, 

and the RMSEs of  0f  and  0k  fluctuate within a fairly 

narrow range, namely, 1.015 to 1.025. 

 
Fig. 6. The estimation results with a different number of zooms at an SNR 

level of 3 dB. 

In the third part, experiments are performed to test and 
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verify the robustness of the Zoom-MDCFT algorithm when 

the LFM signal parameter varies. In simulation experiments, 

the LFM signal parameters were tweaked in a range 

  0 069.5 70.5 , 90.0f k   and 

  0 069.5 70.5 , 90.4f k   separately, and the SNR 

level was set to 3 dB; then we applied the Zoom-MDCFT 

algorithm with 1000 Monte Carlo cycles. As illustrated in 

Fig. 7, the RMSEs of estimated parameters fluctuate slightly, 

and the maximum value of the RMSE / CRB ratio does not 

exceed 1.020 when the parameters vary in the range 

  0 069.5 70.5 , 90.0f k   or 

  0 069.5 70.5 , 90.4f k  . Therefore, the proposed 

algorithm can ensure a steady accuracy of estimation with 

different LFM signal parameters. 

 

Fig. 7. The estimation results when LFM signal parameters change in the 

ranges   0 069.5 70.5 , 90.0f k 
 

and 

  0 069.5 70.5 , 90.4f k   at the 3-dB SNR level. 

V. CONCLUSIONS 

An accurate parameter estimation method named 

Zoom-MDCFT has been investigated for LFM signals in 

the present study. First, the shortcoming of MDCFT in 

parameter estimation has been analyzed in detail; Second, 

the severe cross interference between LFM signal 

parameters when performing MDCFT is proposed, and the 

corresponding solution called the Zoom-MDCFT method is 

presented accordingly. Finally, numerical simulations were 

conducted to validate the proposed algorithm, and 

experimental results have shown that the RMSEs of the 

parameters estimated by Zoom-MDCFT converge 

asymptotically to the CRB under low SNR levels, and our 

algorithm exhibits a steady performance with different LFM 

signal parameters. For future work, the performance 

evaluation of Zoom-MDCFT with the presence of colored 

noise should be taken under consideration, and the golden 

cut method would be more time-friendly than brute 

searching in the procedure of peak location. 
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