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Abstract—Android continues to dominate the mobile social
devices, and Android applications have become the major target
of hackers in social networks. Although millions of Android
malware samples are found every year, they can be grouped
into a limited number of malware families. To automatically
and effectively classify Android malware into the corresponding
malware families, a deep-learning based classification approach
is proposed by utilizing the code-images converted from the
malware’s binary bytecodes. To overcome the training issue
that only a very limited amount of malware samples are
publicly labeled with families, the deep-learning classifier makes
use of the low-level layers of a pre-trained convolutional
neural network. The empirical studies show that the proposed
approach excels the existing code-image based technique in
implementation simplicity as well as in classification metrics
such as F-measure values, false positive rates, and false negative
rates. Furthermore, the implemented classifier can identify
malware families of different sizes, including small families.

Index Terms—Android malware, code image, deep learning,
malware family classification.

I. INTRODUCTION

AS mobile social devices becomes increasingly perva-
sive, it is important to improve the security of applica-

tions running on the devices. Due to the overwhelming user
amount, Android applications have been the biggest target
of malware authors in various social networks. For example,
360 Internet Security Center found 7.57 million new Android
malware samples in 2017 [1]. Many researchers focus on
distinguishing malicious Android applications from benign
ones. For instance, Sachdeva et al. [2] classify Android
applications into safe, suspicious and highly suspicious ones.
However, in recent years, although the yearly added Android
variants are 0.6 times more, the yearly added malware
families are 3 times less [3]. This is because the majority
of current Android malware are variants that are created
by reusing malicious modules or by employing malware
generation tools. In view of the ever increasing amount of
new malware and the limited number of malware families,
it is crucial to automatically classify numerous malware into
their corresponding families.

The approaches to characterize and analyze Android mal-
ware include static approaches and dynamic ones. Dynamic
approaches are also called behavior-based methods [4],
which execute the target program, trace and analyze the
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program behaviors. For examples, Ahmad et al. [5] trace
the system call sequences of Android programs and utilize
machine learning algorithms to classify them; Madihah et
al. [6] trace and analyze system calls and permissions of
Android applications to detect camera-exploitation malware.
Static approaches and dynamic approaches for malware
family classification are complementary. We focus on the
static approaches in this paper. Traditional static methods
utilize such code features of Android malware as opcode
(operational code), API calls, control flow graphs and so on.

Code images were firstly proposed as static features of
x86 malware by Nataraj et al. in 2011 [7]. They classify
malicious x86 executables by visualizing malware binaries
as images and then group the images into families. The
approach is based on the following observation: for many
malware families, the images belonging to the same family
appear very similar in layout and texture. In 2015, Microsoft
hosted a competition in Kaggle for x86 malware family
classification [8]. The competition winner’s solution heavily
relied on the malware’s code-image features, especially the
first 800 pixels’ intensities of the images transformed from
disassembled codes [9]. The winner utilized a random forest
algorithm to classify the code-images. To classify Android
malware into families, Y. Yang et al. [10] employ code-
images of Android malware. They extract texture features
of grayscale images converted from binary bytecodes, and
then apply a random forest algorithm to classify the images.
However, they cannot detect Android malware families of
small sizes (less than 40), and moreover, the detection
effectiveness needs to be ameliorated.

Malware family classification is multi-class classification.
In recent years, deep Convolutional Neural Networks (CNNs)
have yielded significant gains in various multi-class clas-
sification tasks of traditional images [11][12][13][14]. The
image features used by the CNNs, although not explicitly
expressed, are more generic in the early layers and more
dataset-specific in the later layers of the CNNs [15]. CNN
has been applied to classify various non-image data in
applications other than image processing by transforming
such data into non-traditional images [16][17][18]. Since
malware’s code images and traditional images have common
generic features such as edges and curves, deep CNNs
have potentials to classify the code-images into multi-classes
(i.e., malware families). Compared to the traditional machine
learning techniques that require manual specification and
explicit extracting of image features, deep-learning based
family classification techniques automatically learn discrim-
inative features from the malware images, and thus reduce
the implementation cost and computation cost.

However, so far, few works have been done for deep-
learning based family classification with malware code-
images. For x86 malware, Llaurad [19] tries to use a CNN
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for the malware family classification with the code images,
but he conducts no controlled experiments to compare the
classification results between using machine-learning and
deep-learning infrastructures. For Android malware, no deep-
learning techniques have been employed to classify malware
code-images into families.

To improve the classification effectiveness of Android
malware families based on code-images, and to detect An-
droid malware families of varying sizes, we propose a deep-
learning based approach in this paper. We construct the deep-
learning classifier by reusing the feature-extracting layers of
a convolutional neural network that has been successfully
trained for a traditional image classification task on a large
dataset [20]. The reasons for us to utilize a pre-trained
deep-learning network rather than to create a network from
scratch are as follows: The publicly available datasets for
Android malware family classification are very limited in
scale and variety. For example, in the Drebin dataset which
is possibly the largest dataset for this purpose, there are only
4 malware families containing over 600 malware samples
[21]. However, a large training dataset in size is essential
to the success of a deep-learning classifier. Since the dataset
currently available for Android malware family classification
is small in size, it is not a good idea to train our deep-
learning classifier from scratch with such a dataset. Instead,
we can utilize a pre-trained network to create our classifier,
and then train the top network-layer which contains more
dataset-specific features.

We implement the Android malware family classifier
using the Google’s TensorFlow framework [22], and con-
duct empirical studies with controlled experiments. As the
experimental results demonstrate, our deep-leaning based
classifier outperforms the existing classifier with respect to
the simplicity of usage and the classification effectiveness.
Moreover, our classifier works well even when malicious
families only contain few samples for training.

The contributions of this paper are summarized as follows:
1) We propose a family classification approach for An-

droid malware based on deep-learning of malware
code-images. The approach extracts malware features
automatically, rather than selects features manually.

2) We implement our approach in a tool, and empirically
demonstrate its simplicity of usage, detection effective-
ness, and applicability to malware families of varying
sizes.

II. RELATED WORK

A. Malware family classification using code-images
1) For x86 programs: To classify x86 malware into

the corresponding families, Nataraj et al. [7] initiate a
code-image based technique. It extracts texture features of
grayscale code-images with the GIST (Generalized Search
Trees) [23] method and classifies the images by employing
the KNN (k-nearest neighbors) algorithm. Dey et al. [24]
propose an improved KNN-based approach by adding an
entropy filter while extracting the GIST features. Han et
al. [25] convert malicious PE (Portable Executable) files
into texture images, and then use a clustering technique
to classify and tag malware families. The image texture
features are extracted with the GLCM (Gray Level Co-
occurrence Matrix) method. In the Microsoft contest of

malware family classification in 2015, the winner extracted
the following features from malware: code-images, segment
line count of the disassembled code, and n-gram opcodes.
They utilized a random forest algorithm for classification
[9]. Gibert [19] also utilizes the code-images of disassembled
codes of x86 executables, and employs a CNN for malware
family classification. He et al. [26] draw disassembly codes
from x86 malicious executables too. They extract code-image
texture features using the GIST method, and further obtain
and optimize the local features of the code-images using
the SIFT (Scale Invariant Feature Transform) method [27]
and the BoW (Bag of Words) model, respectively. Based on
the above features, they utilize a random forest algorithm to
classify the code-images into families.

In conclusion, since Nataraj et al. proposed the code-
images based technique for family classification of x86
malware, researchers have improved the technique by using
more features like SIFT, or by employing other machine-
learning algorithms for classification, e.g., clustering, random
forests and SVM (Support Vector Machine) algorithms.

Gibert [19] utilizes a deep-learning infrastructure to im-
plement the family classification of x86 malware, and shows
that its classification effectiveness is worse than that of the
competition winner’s approach (which employs a machine-
learning infrastructure). However, Gibert’s work has the
following limitations: (1) His deep-learning infrastructures is
primitive and needs be further ameliorated; (2) His experi-
ments are not controlled ones. For example, the deep-learning
based implementation only uses the code-images features of
malware, but for comparison, the machine-learning based
implementation uses not only code-images but also other
features such as opcode n-grams. In conclusion, Gibert’s
work cannot demonstrate that deep-learning approaches are
less suitable for malware family classification than machine-
learning ones. Thus, in this paper, we will conduct controlled
experiments to explore whether or not deep-learning based
approaches are promising for malware family classification,
and focus on Android malware.

To classify the malware on non-Android platforms, Cui et
al. [28] convert malicious code into grayscale images, and
Ni et al. [29] transform the SimHash value of the opcode
sequence of malware to grayscale images, and both of them
utilize CNN to construct the classifiers. Different from them,
this paper aims to classify malware on Android platforms.

There are some works on visual analysis of binary codes
on x86 platforms. For example, Han et al. [30] transform
disassembly information of binary x86 programs into RGB
colored pixels on image matrices, and then uses a selective
area matching method to calculate the similarities between
image matrices. The similarities can be further utilized for
malware family classification.

2) For Android programs: Few works have been done
to utilize code-images for family classification of malicious
Android programs. Yang et al. [10] convert binary bytecodes
of Android malware into grayscale images, extract image
texture features using the GIST method, and then apply a
random forest algorithm to classify the images. They conduct
experiments on a subset of Drebin dataset and show that the
approach works. However, there is still a considerable margin
of improvement on the classification results.
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B. Android family classification based on machine-learning

Most works of malware family classification for Android
programs are based on traditional machine-learning tech-
niques. As mentioned in previous subsection, Yang et al.
[10] utilize the code-image features of Android malware
based on a random forest algorithm. Some recent machine-
learning based works utilize other features of Android mal-
ware for family classification. For examples, DroidLegacy
[31] uses API calls and agglomerative clustering algorithms
to extract familial signatures of malicious code module that
are produced by piggybacking. Dendroid [32] extracts static
features from code chunks and uses a text-mining based
method to find similarities in malware of the same family.
Droidscribe [33] extracts malware features at different levels,
including system calls, decoded Binder communication and
abstract behavioral patterns, and then employs an SVM
algorithm for multi-class classification. Massarelli et al. [34]
extract features of resource consumption metrics of malware
through detrended fluctuation analysis, and then employ
an SVM to classify malware into families. Chakraborty et
al. [35] extract both static features from the manifest files
and dynamic features from operation logs, and then utilize
traditional classification and clustering algorithms for family
classification. Garcia et al. [36] utilize a CART decision
tree to classify Android malwares based on the features of
API usage, reflection, and native code. Recently, Zhang et
al. [37] use an online passive-aggressive (PA) classifier for
binary classification of malware based on fingerprint n-gram
features.

Although traditional machine-learning techniques are ef-
fective in malware classification for Android malware, they
have the following limitations: malware features must be
specified manually by experts with professional background
knowledge, and the classification effectiveness need be fur-
ther improved. In this paper, we propose to automatically
learn discriminative features of Android malware for family
classification using a deep-learning based approach, and
show its improvement on classification effects with con-
trolled experiments.

Moreover, unlike many existing static methods, our clas-
sification method does not require any disassembly analysis
of Android malware, and thus more resilient to obfuscation
techniques.

III. METHODOLOGY

A. Method overview

To classify unknown Android malware into malware fami-
lies, we employ a deep-learning based classification approach
with the code images of the malware. We construct the deep-
learning classifier by reusing the feature-extracting layers
of a CNN which has been successfully trained for other
image classification tasks on a large dataset. Our malware
classifier makes use of code images transformed from binary
bytecodes of Android malware, and employs a pre-trained
CNN to learn discriminative patterns from the images.

In the remaining parts of Section III, we will expatiate
how to determine our deep-learning architecture and how to
construct our malware family classifier.

TABLE I
COMPARISON OF TWO NETWORK ARCHITECTURES

Network #Layers #Parameters Top-5 Error

VGGNet 19 140 M 7.3%

GoogLeNet
Inception-v3

47 23 M 3.46%

B. Decision on deep-learning architecture

Our code-image based malware classification approach
aims to utilize a deep-learning network architecture to clas-
sify malware families. Because very deep convolutional net-
works have been successfully applied to various computer-
vision related tasks since 2014 [11][12][13][14], our ap-
proach will utilize such networks.

VGGNet [38] and GoogLeNet Inception [39] are two most
popular convolutional network architectures. VGGNet has
the advantage of simple architecture, while the Inception
architecture performs well with low costs of computation and
memory. Inception-V3 is a popular version of the Inception
architecture and its pre-trained model is publicly available.
Inception-V3 utilizes factorized convolutions and aggressive
regularization to efficiently scale up convolution networks
[40].

We compare the architectures of VGGNet and Inception-
V3 in respect of network depth (i.e. layer count), parameter
count (measured in M, Million) and top-5 error rate on the
ImageNet ILSVRC-2012 dataset [40] and demonstrate the
results in Table I. As Table I shows, compared to VGGNet,
Inception-V3 has 2.5x more network depth but 6x less
parameters and 2x reduction of top-5 error. It means that,
compared to VGGNet, Inception-V3 network might represent
more complex functions with smaller empirical margin error
and much less computational cost [41] [42].

Based on the above analysis, we choose GoogLeNet
Inception-V3 as the deep-learning network architecture of
our malware classifier.

C. Construction of our malware classifier

We construct the malware family classifier in the following
four steps, as shown in Figure 1.

1) Generating code images of malware: For each Android
malware sample, we firstly decompress its application pack-
age to get the executable file in Dex (Dalvik executable)
format. A Dex file is in bytecode format that contains
compiled code written for Android and can be interpreted by
the Dalvik virtual machine. Next, we convert the binary code
of each Dex file into its equivalent hexadecimal form, where
every two hexadecimal digits, ranging from 0X00 to 0XFF
(namely from 0 to 255), denote one byte of the malware
code. Finally, we utilize an image-pixel matrix to represent
a Dex file by mapping each hexadecimal byte into one
grayscale value of an image-pixel. As a result, the grayscale
code-images of malware samples are derived from the above
image-pixel matrixes.

2) Generating feature vectors of code images: Firstly,
we download the instance of Google Inception V3 archi-
tecture which was trained for the ImageNet project [43].
Then, we remove the top convolutional layer, namely the
fully-connected layer, of the neural network. The remaining
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Fig. 1. Construction process of our malware family classifier

convolutional layers of the neural network were used for
extracting image features in the ImageNet project. We keep
all the parameters in the remaining layers unchanged and
get the feature-extracting module. Next, we run the feature-
extracting module on the code images of the malware, as
mentioned in Subsection B, and consequently obtain the
2048-dimentional feature vectors of the images. Finally, the
feature vectors of all the aforementioned code images are
stored in a feature-vector file.

3) Building the malware classifier: Firstly, we construct
a top convolutional layer, namely a fully-connected layer,
as follows: The Softmax layer of the fully-connected layer
reads the feature vectors of code images from the feature-
vector file, and then converts them into the tensor data format
that can be processed directly by the Softmax layer. The
Softmax layer has N output nodes, where N denotes the
total number of the malware families. Next, we add the
top convolutional layer to the lower feature-extracting layers
obtained previously, and thus get our convolutional neural
network for malware family classification.

4) Training the malware classifier: When training the
malware classifier, we only train the top layer of the deep-
learning neural network without altering the parameters of
all the remaining layers. In other words, we only train
the Softmax layer but keep the feature-extracting module
unchanged. A training dataset is a group of code images
labeled with malware families. During the training of the
malware classifier, we primarily adjust the following three
parameters: the optimizer, the learning rate and the count of
iterations of the deep-learning neural network.

As a result of the above steps, we obtain our familial An-
droid malware classifier that consists of the trained Softwax
layer and the feature-extracting module, as the two nodes
with thick border-lines show in Figure 1.

IV. EMPIRICAL STUDIES

In this section, we conduct experiments to evaluate our
malware family classification technique and compare it to
the existing technique proposed by Yang et al [10]. The
experiments aim to answer the following research questions:

Q1: How to determine the classifier’s parameters in our
technique? Is the parameter-tuning simpler than that in the
existing technique?

Q2: Is the classification effectiveness of malware families
using our technique better than that using the existing tech-
nique?

Q3: How about the classification results of our technique
for malware families of varying sizes?

A. Dataset

Drebin [21] is the largest public dataset of Android
malware with labeled families. Yang et al [10] propose
a machine-learning based technique for Android-malware
family-classification by utilizing code-images. They conduct
10-fold cross-validation on a Drebin subset, namely Subset1
shown in Table II. The Subset1 contains 3962 Android
malicious Apps of 14 malware families.

However, the existing technique [10] cannot work with
small families. The Subset1 does not include small families
whose sizes (namely numbers of family members) are less
than 40. To evaluate the classification results of our tech-
nique on malware families of varying sizes, including small
families, we extend the Dataset1 with the Dataset2, as shown
in Table II. The Subset2 includes 16 malware families, and
10 of them are small families whose sizes are less than 40. In
summary, the entire dataset used in our experiments consists
of the existing Subset1 and the new Subset2. As Table II lists,
our dataset includes 30 malware families and 4892 malware.
Column 2 and 4 list the malware family names, while column
3 and 5 indicate the number of malware in each family.

To answer the above research questions RQ1 and RQ2, we
compare our technique to the existing technique [10] on the
same dataset (namely Subset1) that are used by Yang et al. To
answer the research question RQ3, we evaluate our technique
on the entire dataset (including Subset1 and Subset2) which
involves families of varying sizes, including small families.

TABLE II
DATASET OF MALWARE FAMILIES

Dataset Malware #Malware Malware #Malware
family family

Subset1

BaseBridge 330 Imlog 43
DroidDream 81 Kmin 147
DroidKungFu 667 MobileTx 69
FakeDoc 132 Opfake 613
FakeInstaller 925 Plankton 625
FakeRun 61 SendPay 59
Iconosys 152 Gappusin 58

Subset2

GinMaster 339 Geinimi 92
Adrd 91 ExploitLinux 70

Lotoor
Glodream 69 SMSreg 41
Yzhc 37 Jifake 29
Hamob 28 Boxer 27
Penetho 19 Fakelogo 19
Xsider 18 Fatakr 17
Dougalek 17 FakePlayer 17

B. Experiment setup

We implemented our classifier tool in Python language by
utilizing the open-source libraries of TensorFlow 0.12.0-rc0
[44] and PrettyTensor 0.7.1 [45]. We performed experiments
on a PC with Window 10 platform, Intel Core i7-7500U CPU
and 8G RAM.
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To perform 10-fold cross-validation [46], we partition one
dataset into 10 roughly equal-sized subsets at random. The
cross-validation process is repeated 10 times, namely 10
rounds. In each round, one subset is chosen as the testing
data (namely validation data) and the remaining 9 subsets
are used as the training data. Each subset can be used as
the validation data in only one round. At last, the average
results generated from the 10 rounds are used as the final
experiment results.

The cross-validation process is repeated 10 times (namely
10 rounds) with each subset used exactly once as the valida-
tion data. In other words, in one round, one subset is chosen
as the testing data and the remaining 9 subsets are used as
the training data. At last, the average results generated from
the 10 rounds are used as the final experiment results.

To evaluate the malware classification effectiveness, for
each malware family, we collect the following classification
data: true positive (TP), true negative (TN), false negative
(FN) and false positive (FP). To determine the parameters of
our classifier, we compute the classification Accuracy of our
technique with the following formula:

Accuracy = TP+TN
FP+TP+FN+TN (1)

To compare the classification results of our technique with
those of the existing one, we employ the following evaluation
metrics that were used by the existing technique: F-measure,
false positive rate (FPR) and false negative rate (FNR). F-
measure is the harmonic mean of Precision and Recall, where
the Precision is computed as TP/(TP+FP); the Recall, namely
the detection rate of malware, is computed as TP/(TP+FN).
In summary, the three metrics are calculated as follows:

F −Measure = 2∗Precision∗Recall
Precision+Recall (2)

FPR = FP
FP+TN (3)

FNR = FN
TP+FN (4)

C. Study1: Parameter-tuning

In this section, we will show how to determine the param-
eters of our malware classifier. We will also demonstrate our
technique’s simplicity on parameter-tuning, compared to that
of the existing technique.

1) Optimizer: The convergence speed of a neural network
may heavily rely on its optimizer. The optimizer determines
the update rules of a neural network, which accelerate the
process of finding a minimum loss function.

In order to achieve an optimized convergence speed of
our neural network, we compare the acceleration effects of
the following four commonly-used optimizers in the Tensor-
flow framework: AdadeltaOptimizer, AdagradOptimizer Gra-
dientDescentOptimizer, and AdamOptimizer. We train the
malware classifier with the four optimizers on a same training
dataset, respectively, and collect the classification accuracies
along with the numbers of training iterations. Figure 2
plots the classification accuracies (in percentage) using the
above four optimizers, respectively. Four types of scatterplots
are drawn with different point types. For example, for the
AdamOptimizer, the scatterplot consists of hollow circle
points.
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Fig. 2. Impacts of optimizer on convergence speed

Fig. 3. Impacts of learning-rate on classification accuracy

As Figure 2 shows, the classifier using the AdamOptimizer
achieves the classification accuracy of 96.

The above results might be explained as follows: Gradi-
entDescentOptimizer employs a gradient descent algorithm
that needs to process all (but not parts of) the training
samples, thus resulting in slower training [47]. AdagradOp-
timizer, AdadeltaOptimizer and AdamOptimizer use similar
algorithms which do well in similar circumstances. But due
to a bias-correction strategy, when gradients become sparse,
the AdamOptimizer outperforms the other two optimizers
towards the end of optimization [48].

In conclusion, based on the above empirical results, we set
the neural network optimizer of our final malware classifier
to AdamOptimizer.

2) Learning rate: During the training of a deep-learning
neural network, the learning rate is an important parameter
that controls the magnitude of the updates to the final layer.
If the learning rate is too low, the convergence will be
very slow; and if the learning rate is too high, the training
precision might be low.

We tune the learning rate of a deep-learning neural net-
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work that has been pre-trained and able to be convergent
fast on the original image dataset, namely lmageNet [40].
To avoid distorting the network’s weights too quickly or too
much, we keep both our learning rate and learning rate decay
very small [49]. In this way, the tuned network might also
be fast convergent on our dataset. We tune the learning rate
from a very small value, gradually to a big one. As Figure
3 shows, we use six values of the learning rate, ranging
from a very small value of 0.00001 to a big one of 0.05,
and experimentally observe the corresponding classification
accuracy when the neural network converges. As Figure 3
demonstrates, when the learning rate is 0.0005, the neural
network achieves the best convergence accuracy.

Next, we empirically evaluate the convergence speed of
our malware classifier on our testing data with the learning
rate of 0.0005. We run the 10-fold cross-validation on
different training data subsets for 10 rounds. Figure 4 shows
the running results of the former 5 and the latter 5 rounds,
respectively, with two sub-figures for clarity. As Figure 4
illustrates, in all the 10 rounds of runs, the malware classifier
converges to the best accuracies (around 96%), and the count
of optimization iterations is between 800 and 1400. Thus,
with the above learning rate, our malware classifier can
converge fast on the testing datasets.

In conclusion, based on the above empirical results, we
set the neural network learning rate of our final malware
classifier to 0.0005.

3) Comparison of two techniques’ parameters: To train
our malware classifier, only 3 hyper-parameters, namely the
optimizer, the learning rate and the number of iterations, need
to be determined by the trainer.

The existing technique employs a GIST algorithm to
extract the features of malware code images and utilizes
a random forest algorithm to train its malware classifier
[10]. Thus, during the training of the classifier, the existing
technique needs to tune at least 8 parameters. The tuned
parameters include those of the random forest algorithm as
follows: the number and the maximum depth of the deci-
sion trees (i.e., n estimators and max depth), the maximum
number of features used by a single decision tree (i.e.,
max features), the minimum number of samples for splitting
inner nodes (i.e., min samples split), and the minimum num-
ber of samples in leaf nodes (i.e., min samples leaf). The
parameters to be determined also include those of the GIST
algorithm as follows: the number of filters (i.e., prefilter), the
count of orientations per scale (i.e., orientationsPerScal), and
the number of image blocks (i.e., numberBlocks).

In conclusion, it is much simpler for users to determine
the classifier parameters by using our classification technique
than using the existing one.

D. Study2: Comparison of two techniques’ effectiveness

In this subsection, to compare to the classification results
reported by the existing technique in [10], we will perform
10-fold cross-validation of malware classification on the
same dataset (namely Dataset1) and with the same metrics,
by employing our technique.

We run the cross-validation of our technique for 10 rounds.
In each round, we output a 14*14 confusion matrix which
is the most intuitive method to evaluate the classification
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Fig. 4. Convergence speed on testing dataset with the learning rate of
0.005

model. Each column represents a predicted family name, and
each row represents the actual category. Table III shows a
confusion matrix for one round of experiments. As shown in
the first line, it is the classification result of the malware
family BaseBridge. The first number 29 is the TP value
representing the number of samples correctly classified to
BaseBridge. The values of the other columns are all 0 except
the third column filled 1. It displays that one sample actually
belongs to BaseBridge is classified to the wrong family
DroidKungFu. Thus the FN value is 1. Overall, in this round
of experiments, there are 382 samples correctly classified in
the test set, and the total number of samples in the test set
was 391. The accuracy of this round reaches 97.7%.

Based on the confusion matrix, we firstly collect the
classification results of TP, TN, FP and FN of each malware
family, and then compute the three metrics of F-measure,
FPR and FNR according to the formulas (2)-(4), where
F-measure is computed based on Precision and Recall, as
depicted in Subsection B. Next, we compute the mean metric
values of the 10 rounds for each malware family, as Table IV
shows. In Table IV, the first column indicates the fourteen
malware families, the next two columns show the mean
precisions and the mean recalls of the classification for
each malware family. The next three columns demonstrate
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TABLE III
CONFUSION MATRIX FOR ONE ROUND OF EXPERIMENTS

BaseBridge DroidDream DroidKungFu FakeDoc FakeInstaller FakeRun Iconosys Imlog Kmin MobileTx Opfake Plankton SendPay Gappusin
BaseBridge 29 0 1 0 0 0 0 0 0 0 0 0 0 0
DroidDream 0 7 0 0 0 0 0 0 1 0 0 0 0 0

DroidKungFu 2 0 65 0 1 0 0 0 0 0 0 0 0 0
FakeDoc 0 0 0 11 0 0 0 0 1 0 0 0 0 0

FakeInstaller 0 0 0 0 92 0 0 0 0 0 0 0 0 0
FakeRun 0 0 0 0 0 5 0 0 0 0 0 0 0 0
Iconosys 0 0 0 0 0 0 15 0 0 0 0 0 0 0

Imlog 0 0 0 0 0 0 0 4 1 0 0 0 0 0
Kmin 0 0 0 0 0 0 0 0 15 0 0 0 0 0

MobileTx 0 0 0 0 0 0 0 0 0 6 0 0 0 0
Opfake 0 0 0 0 0 0 0 0 0 0 62 0 0 0

Plankton 0 0 0 0 1 0 0 0 0 0 0 62 0 0
SendPay 0 0 0 0 0 0 0 0 0 0 0 0 5 0
Gappusin 0 0 0 0 0 0 0 0 1 0 0 0 0 4

the mean F-measure, the mean FPR and the mean FNR,
respectively, for each malware family. The last column shows
the AUC value of the classification for each family. Finally,
we compute the average F-measure, the average FPR, the
average FNR, and the average AUC for all the fourteen
malware-families and list the average values at the last row
in the table. As comparison, Table V shows the classification
results of the existing technique. The columns and rows in
Table V have the same meaning as those in Table IV.

To visually compare the malware classification results of
our technique and the existing one, we draw scatterplots in
Figure 5 to show the results of the two techniques. The thick
solid lines that connect solid diamond scatter-points denote
the results of our technique, while the thin solid lines that
connect hollow round scatter-points represent the results of
the existing technique. Figure 5 consists of three sub-figures
that show the results measured in the three metrics of F-
measure, FPR and FNR, respectively. As comparison, Figure
5 also demonstrates the average results of our technique and
the existing one with thick and thin dot lines, respectively.

As Table IV and Figure 5 reveal, our malware classifica-
tion technique is effective: The average F-measure value is
95.2%, indicating that our technique can classify malware
with a high harmonic mean of the precision and the recall
rate; The average FNR value is 4.8%, showing that our
technique fails to report malware family in a low rate; The
average FPR value is 0.2%, implying that our technique clas-
sifies malware wrongly in a very low rate. The AUC of each
families is close to 1 and the average AUC achieves 99.9%,
indicating that our technique has strong generalization ability.

In average, our technique has higher F-measure value,
lower false negative rate, lower false positive rate, and higher
AUC value than the existing technique, as the last rows in
Table IV and Table V demonstrate. On F-measure, our tech-
nique obviously excels the existing one on half of the mal-
ware families (namely DroidDream, DroidKungFu, Iconosys,
Imlog, Opfake, SendPay and Gappusin), and has comparable
results on the other half. On FNR, our technique obviously
outperforms the existing one on 12 malware families and has
comparable results on 2 malware families (namely Kmin and
MobileTx). For FPR, our technique obviously exceeds the
existing one on 5 malware families (namely DroidKungFu,
FakeInstaller, Iconosys, Opfake and Plankton) and has com-
parable results on all the other malware families. For the
AUC indicator, our technique surpasses the existing one on 8

malware families (namely BaseBridge, DroidDream, Droid-
KungFu, FakeDoc, Imlog, Plankton, SendPay and Gappusin)
and has comparable AUC values on all the other families. In
conclusion, our malware classification technique can classify
unknown Android malware into malware families effectively,
and excels the existing technique, with respect to all the
three metrics of F-measure, false negative rate and false
positive rate. In addition, our classification technique has
better generalization ability than the existing technique, in
view of the AUC value.

TABLE IV
CLASSIFICATION RESULTS USING OUR TECHNIQUE

Malware
family Precision Recall F-

Measure FNR FPR AUC

BaseBridge 0.952 0.882 0.916 0.118 0.003 0.999
DroidDream 0.908 0.899 0.903 0.101 0.002 0.999
DroidKungFu 0.95 0.967 0.958 0.033 0.01 0.998
FakeDoc 0.967 0.969 0.968 0.031 0.001 0.999
FakeInstaller 0.985 0.989 0.987 0.011 0.004 0.999
FakeRun 0.923 0.986 0.953 0.014 0.001 1
Iconosys 0.994 0.983 0.988 0.017 0.0002 0.999
Imlog 1 0.897 0.946 0.103 0.0002 1
Kmin 0.952 0.979 0.965 0.021 0.001 1
MobileTx 0.964 1 0.982 0 0.0002 1
Opfake 0.997 0.998 0.997 0.002 0.0006 0.999
Plankton 0.983 0.987 0.985 0.013 0.002 0.999
SendPay 1 0.963 0.981 0.037 0.0003 1
Gappusin 0.786 0.821 0.803 0.179 0.001 1
(Average) 0.954 0.951 0.952 0.048 0.002 0.999

TABLE V
CLASSIFICATION RESULTS USING THE OLD TECHNIQUE

Malware
family Precision Recall F-

Measure FNR FPR AUC

BaseBridge 0.965 0.839 0.898 0.161 0.002 0.984
DroidDream 0.882 0.827 0.854 0.173 0.002 0.983
DroidKungFu 0.733 0.934 0.821 0.066 0.057 0.989
FakeDoc 0.977 0.962 0.969 0.038 0.001 0.995
FakeInstaller 0.956 0.969 0.962 0.031 0.011 0.999
FakeRun 1 0.951 0.975 0.04 0 1
Iconosys 0.885 0.961 0.921 0.039 0.004 0.999
Imlog 1 0.837 0.911 0.163 0 0.984
Kmin 0.973 0.98 0.976 0.02 0.001 1
MobileTx 0.986 1 0.993 0 0 1
Opfake 0.951 0.977 0.964 0.023 0.008 0.999
Plankton 0.965 0.974 0.97 0.026 0.005 0.998
SendPay 0.947 0.915 0.931 0.085 0.001 0.989
Gappusin 1 0.534 0.697 0.466 0 0.954
(Average) 0.944 0.904 0.917 0.096 0.006 0.991
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Fig. 5. Comparison of classification effects using two techniques

E. Study3: Effectiveness for malware families of varying
sizes

In this subsection, we will demonstrate the classification
effectiveness of our technique on malware families of varying
sizes, ranging from large to small families. We employ our
technique on the entire dataset in Table II, including both
Dataset1 and Dataset2. We run the cross-validation for 10
rounds, compute the mean metric values for each malware
family using the same method depicted in Subsection D, and
show the classification results in Table VI.

As Table VI demonstrates, the classification results of our
technique are as follows: The average F-measure value is

TABLE VI
AVERAGE CLASSIFICATION RESULTS OF 20 MALWARE FAMILIES USING

OUR TECHNIQUE

For 20
Malware
families

Precission Recall F-
Measure FNR FPR

(Average) 0.927 0.889 0.905 0.111 0.002

90.5%, the average FNR is 4.8%, and the average FPR is
0.2%. Thus, our technique can classify malware into families
with high harmonic mean of the precision and the recall rate,
very low false negative rate, and very low positive rate.

In summary, our malware family classification technique
is effective even for malware families of varying sizes,
including small families.

V. CONCLUSION AND FUTURE WORK

Due to Android malware’ ever-increasement and the lim-
ited variety of malware families, it is important to au-
tomatically categorize Android malware into families of
close variants. In this paper, we presented an automatic and
effective malware family classification approach based on
deep learning of code images of Android malware. The code
images were grayscale images converted from binary byte-
codes of the malware. A CNN was constructed for the image
classification based on a pre-trained GoogLeNet Inception-
v3 instance. The results of our experiments show that the
proposed approach is effective to identify the families of
Android malware, including small families.

In the future, we plan to conduct the following further
studies: (1) Utilize localized as well as global features of
Android code images to tackle against such malware counter-
measures as relocating binary sections. (2) Construct a large-
scale dataset of Android malware with family labels, and then
evaluate and improve the effectiveness of our approach on
the dataset.
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