
XNorthwind: Grammar-driven Synthesis of Large
Datasets for DB Applications

Abejide Ade-Ibijola Member, IAENG, and George Obaido Member, IAENG

Abstract—Relational databases often come with sample
databases. One known example is the Northwind database,
often used as data repository for software testing and develop-
ment purposes. The Northwind database includes hypothetical
records of customers, companies, products, employee and so on.
The number of records in the Northwind is however considered
inadequate for large applications, where a developer or user
may need a lot more, possibly, millions of records. In this paper,
we have used a Context-free Grammar in describing the rules
for the synthesis of exponentially many hypothetical datasets
that are similar to the Northwind database. We referred to
the resulting database as XNorthwind (Extended Northwind).
The new grammar was implemented, resulting in thousands
of unique data values across the eight different Northwind
Data Tables. These datasets will find applications in training
and development environments. A survey of 112 participants’
perceptions showed that 94.6% agreed that the XNorthwind
can be useful.

Index Terms—Northwind, Sample database, Training dataset,
Synthesis of things, Formal grammar applications.

I. INTRODUCTION

With the advent of the Internet and other related technologies,
various applications have emerged which has led to a high
demand for data, stored in various database (DB) technolo-
gies [1]. In testing software applications before release, the
higher the volume of data, the better the result derived from
the system testing [2, 3, 4]. A number of applications
have adopted sample DBs as practice environments for
their testing and development tasks [5, 6, 7]. These sample
DBs include the Sybase’s Pubs, PostgreSQL’s Sakila and
Microsoft’s Northwind [8]. In this work, we are interested
in the Microsoft’s Northwind DB, containing the records
of a fictitious company known as the “Northwind Traders”
[5]. The Northwind DB consist of hypothetical datasets
that educates users with useful illustrations of a typical e-
commerce scenarios and has been extensively used with
many software applications and research projects [8, 9]. A
2018 study conducted on querying property graphs used the
Northwind DB in a tool called Gremlinator, and authors
reported good results [10]. Other tools that have used the
Northwind DB are OntoGrate [11] and SPARK [5].
Despite the capabilities of the Northwind DB to support a
diverse set of applications, the datasets is insufficient to meet
the current demands of technologies that requires more data
for their training needs [12, 13]. A comparative analysis

Manuscript received September 11th, 2018; revised May 7th, 2019.
Abejide Ade-Ibijola is a Senior Lecturer in the Research Cluster on

Formal Structures, Algorithms, and Industrial Applications, Department
of Applied Information Systems, School of Consumer Intelligence and
Information Systems, at the University of Johannesburg, Johannesburg,
South Africa. website: https://www.abejide.org, e-mail: abejideai@uj.ac.za.

George Obaido is a PhD candidate at the School of Computer Science
and Applied Mathematics, University of the Witwatersrand, Johannesburg,
e-mail: rabeshi.george@gmail.com.

study was conducted on the extraction and generation of
Personal Data Reports (PDR) from two relational DBs (i.e.
Northwind and TPC-H) [14]. Interestingly, the study showed
that although, the Northwind possesses 3.7MB (3.7 · 103

tuples) and TPC-H with 1GB (109 tuples) of datasets; the
TPC-H datasets achieved a better accuracy because of the
larger datasets. Roger [12] opined that the Northwind DB
contains fewer records than one may find in most production
DBs; hence, the current limited record size is not ideal
to support a full fledged system. Taking this limitation
into consideration, it has become imperative to create more
datasets that can assist instructors and programmers in their
training or development tasks.
In this work, we have used a Context-free Grammar (CFG)
to describe the syntatic generation of tuples of hypothetical
records, similar to the Northwind DB. This appears to be the
first time such an approach is been extended to the automatic
generation of large datasets to be used as a sample DB. The
contributions are stated as follows.
We have:

1) designed a CFG for the synthesis of datasets for records
of the Northwind DB,

2) implemented the CFG rules and shown that it produced
100,000 tuples (and could produced more) as opposed
to 3,200 of the Northwind DB, and

3) evaluated this approach and shown that developers and
application users agreed that large datasets can be
useful.

The organisation of this paper is as follows. Section II
presents the background to this work. Section III describes
the grammar for the generation of XNorthwind datasets.
Section IV presents the implementation details and result of
the XNorthwind DB. Section V presents possible appli-
cations of the XNorthwind DB. Section VI presents the
evaluation. In Section VII, we present the conclusion and
provide future work.

II. BACKGROUND AND RELATED WORK

In this section, we present the problem and a review of the
relational DB model, focusing on the Northwind DB and
application areas. We also presented definition of used terms.

A. The Problem

One major problem faced with most illustrative DBs such as
the Northwind DB is its inability to provide enough datasets
that meet the demands for testing critical applications before
release [12, 13, 15]. In most cases, the datasets in the North-
wind DB is insufficient to support large-scale applications.
For enterprise applications, Rogers [12] identified that the
Northwind DB does not qualify as a full fledged sample DB
because the datasets is only ideal for small-sized wholesale or

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

retail outfit mapped with procurement and order fulfillment
processes. A similar study by Warren et al. [15] stated that
the Northwind DB contains a small number of datasets,
ideal to support a beginner learning DBs whilst inadequate
to support large scale applications. Recently, an overview
of problems faced while learning DBs indicated that large
sample DB for training are not readily available, and most
textbook examples are too oversimplified, and inadequate to
cope with real-world scenario [16]. The author echoed that
training students with a large sample DB would prepare them
to cope with pressures at the workplace. In view of all these,
synthesis of datasets in the Northwind DB is desirable. One
benefit of this is that, it will provide software developers
with enough datasets to use for deployment and testing
applications. This work explores formal techniques using
CFGs to solve this problem.

B. Relational Database

The relational DB model is one of the most simple structure
for storing and organising data for easy retrieval [3, 17].
Since released in 1970s, it has found applications in large-
scale commercial implementations of banking systems, air-
line reservation systems and in desktop computers for main-
taining and storing of records [18]. The relational DB that
we are interested in is the Microsoft Northwind DB.
Vicknair et al [19] described the Microsoft SQL Server as
a relational DB that supports both desktop and web applica-
tions. Chung [20] highlighted the benefits of Microsoft SQL
Server over other popular DBs such as tremendous ROI1,
Rapid Application Development; it is also good for data
entry and reporting. The step by step installation guide for
the Northwind DB is provided in [21]. The applications of
Northwind DB is discussed in the next section.

C. Northwind Database and Applications

The Northwind DB contains eight tables and 3,200 tuples
comprising of: Suppliers, Products, Orders, Shippers, Cus-
tomers, OrderDetails, Categories and Employees [5]. As an
illustrative DB, Northwind resemble a typical merchandise
firm that undergoes sales transactions that occur between a
company and its customers. This DB provides a model for
table relationships, forms, queries, VBA2, data access, and
manipulation functionalities [22]. Borker [23] regarded the
Northwind as an “intuitive” OLTP3 system that stores and
links tables by means of a primary key. Nelson [24] illustrates
the Northwind DB using a schema showing entities and the
relationship among them as seen in Figure 1. In the schema,
orders are shipped by a Supplier with details stored in the
Shippers table.
The Northwind DB have been extensively used in a number
of applications such as:
Decision Support Systems Angermann et al [26] used the

Northwind DB to demonstrate the efficiency of Taxo-
semantics, a decision support system that was used to
match an expression against other sources of knowledge.
The study concluded that the Northwind DB improved

1Return On Investment
2Visual Basic for Applications
3Online Transaction Processing

the accuracy of the system. A recent study in 2018 by
Runtuwene et al. [7] applied the Northwind DB for a
comparative study for the Extract, Transformation and
Loading (ETL) data integration processes. The study
aimed to assist a BI4 developer in processing data to
produce useful information.

Semantic Web Applications A number of semantic web
applications have used the datasets from the Northwind
DB for their operations. Tools, such as SPARK [5] and
OntoGrate [11] used the Northwind DB as a back-
end for a keyword search and semantic web ontologies
respectively.

Natural Language Systems Lumbantoruan et al [6] ap-
plied the Northwind DB in evaluating a star schema5,
that automatically generates and identifies noun words.
A study conducted by Gelbukh [27] used the Northwind
DB in the translation of queries expressed in natural
languages; using prepositions and conjunctions into
formal languages.

Computer Science Education In an introductory course on
IT Audit, Northwind was used as a tutorial DB for
beginners [28]. The author stressed that although the
Northwind DB was ideal for teaching, its datasets is
inadequate for analysis in a vendor neutral environment.
Similarly, Lavbič [29] proposed a system that applies
hints, meant to assist students to solve SQL-related
exercises. The system adopted the Northwind DB as
the backend in solving problems in SQL related tasks.

Healthcare Systems Kaddoura et al [30] conducted a study
that involved tracking and repairing damaged health
care databases, the Northwind DB was used as the
experimental db. The study showed that the Northwind
DB performed better because of its data consistency.
The result of this study were further replicated in similar
studies [31, 32].

We have presented the application areas of the Northwind
DB. It is important to note that the above-mentioned areas
are some of application of this test DB. Other applications
that have used the Northwind DB are discussed in [33, 34].

D. Definition of Terms

Noam Chomsky coined the term “Context-free Gram-
mars” or CFGs while describing classes of formal gram-
mars [35]. These grammars differs with their generative and
recognitive capacity. Here, we define some terms used in this
paper.

Definition 1. (Context-free grammar [36]). A context-free
grammar or CFG is a four-tuple, G = (N , Σ, P , S) where:

1) N is a finite set of non-terminal symbols.
2) Σ represents a finite set of terminals symbols, disjoint

from N .
3) P is a set of productions.
4) S is the start symbol.

Each non-terminals can be replaced by a string of
terminals to the right of the arrow represented as production
rules. The rule of the form: A −→ α, simply replaces A with

4Business Intelligence
5A form of data warehouse modelling

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

Fig. 1. The database schema of the Northwind DB (This image was redrawn from [25])

α, where A is the non-terminal or a left-hand side symbol
and α are strings of right-hand side symbols or terminals.

E. Related Work

Formal grammars have been used in a wide range of
applications. In this section, we present applications of CFGs
to research similar to that discussed in this work.
Structural 3D Designs Formal Grammars have been ex-

tensively used in the design fields such as product
design [37], architecture [38] and 3D modeling [39].
Christensen [40] extended the use of CFGs in a tool
named Structure Synth for creating 3D images.
The Structure Synth engine uses a recursive de-
scent parser to create and transform rules stored in 4x4
matrices.

Profile Synthesis Ade-Ibijola [41] developed a tool based
on a variation of CFGs, that automatically synthesises
social media profiles using the Facebook user profile
page as a test case. Lin [42] presented a tool aimed at
assisting a digital forensic examiner to build behavioural
profile from analysis of a network traffic. This tool
applied CFGs to compare behavioural patterns and
reduce the volume of evidence needed to analyse a
network traffic.

Multimedia Applications A study was conducted by Pu-
daruth et al. [43] using CFGs to automatically generate
song lyrics. The lyrics generator applied grammatical
rules and statistical constraints derived from a song

corpus to generate lyrics. FINCHAN [44] was devel-
oped using CFGs for the automatic comprehension and
summarisation of financial instant messaging.

Natural Language Processing (NLP) A recent study by
Velupillai et al. [45] showed that CFGs was used to
identify pathological findings in radiology reports in
clinical NLP data. The study showed that integrating
CFGs to state-of-the-art NLP tools will advance clinical
tools in the near future. Liang [46] built a parser using
CFGs for natural language understanding in a question
answering system. The study concluded that the CFGs
were an essential component used to parse natural
languages in this system.

Protein Synthesis One notable application of CFGs in
RNA6 structure prediction and detection of patterns
in DNA7 was presented in [47]. Experiments in this
study concluded that the CFG approach was helpful in
producing human-readable descriptors for the analysis
of these protein sequences.

Program Synthesis Butler [48] proposed a system that uses
the CFGs with a domain-specific extension to support
variable binding and a type system to construct a
program. A research study in 2018 by Ade-Ibijola [49]
uses CFGs for the automatic generation of procedural
programs in Python. The study concluded that the CFG
approach used in this research can be applied to generate

6Ribonucleic acid
7Deoxyribonucleic acid

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

programs in many procedural programming languages.
Signal Processing Macko [50] used CFGs to syntactically

analyse a VHDL (VHSIC Hardware Description Lan-
guage) model used for digital signal processing before it
is visualised and simulated. In this work, CFG was used
to transform the VHDL into an intermediate form that
conforms with processing of digital signals. A research
study by Fanaswala and Krishnamurthy [51] extended
the use of a variation of CFG and the reciprocal Markov
model to model long-range signal dependencies. The au-
thors stressed that the CFG possess the added advantage
because of its expressive power and ability to deal with
variable-range dependencies.
Together, all these areas have applied the use of CFGs

for describing the languages used in these domains. Other
applications areas of CFGs include: Fuzzy systems [52, 53],
Safety systems [54, 55] and Software systems [56, 57]. In
the next section, we describe the grammar formalism for
synthesizing large datasets for XNorthwind DB.

III. GRAMMAR DESIGN FOR THE XNORTHWIND
DATABASE

In the previous section, a wide range of applications
areas of CFGs was presented. This section describes the use
of CFGs for the automatic generation of large datasets in the
XNorthwind DB.

<comma> −→, (1)
<wspace> −→ ws (2)
<period> −→ . (3)
<dash> −→ − (4)

<d> −→ 0 |. . . | 9 (5)
<b_slash> −→ \ (6)
<f_slash> −→ / (7)
<colon> −→: (8)
<brac_o> −→ ((9)
<brac_c> −→) (10)

<sup_id> −→ 1 |. . . | 5 · 103 (11)

<cat_id> −→ 1 |. . . | 5 · 103 (12)

<emp_id> −→ 1 |. . . | 2.1 · 104 (13)

<ship_id> −→ 1 |. . . | 103 (14)

<cus_id> −→ 1 |. . . | 2.8 · 104 (15)

<ord_id> −→ 1 |. . . | 2 · 104 (16)

<prod_id> −→ 1 |. . . | 2 · 104 (17)

To generate the datasets, we describe the set of productions
which are rules that make up the grammar. These rules
replace the nonterminal symbols that appear on the left-
hand side with terminal or nonterminals symbols on the
right-hand side of the productions. In Production 1-10, we
present the symbols that appear in some of the rules used
for other productions. The initial productions show comma,
white space (wspace), period (period), hyphen (dash), digits
(d), backslash (b slash), forward slash (f slash), colon
(colon), bracket open (brac o) and bracket close (brac c).
Productions 11-17 is used to present the ids (primary) keys
for each of the eight tables, and in some cases, they appear

as foreign keys in some tables. For example, the <ord_id>
appears as a primary key in the Orders table. Similarly, it is
a foreign key in the Orderdetails table. Productions 11
and 12 allow for random supplier and category ids ∈ [5000].
Production 13 allows for employee ids ∈ [21000]. Production
14 allows for shippers ids ∈ [1000]. Production 15 allows
for customer id ∈ [28,000]. Productions 16 and 17 allow for
order and product ids ∈ [20,000]. This amounts to 100,000
as opposed to 3,200 tuples contained in the Northwind
DB.
In Productions 18-21, the orders and quantity of the tables
are generated within the range presented. The quantity field
is found in the Orderdetails and Products tables.

<unit_order> −→ 0 |. . . | 120 (18)
<units_stk> −→ 0 |. . . | 100 (19)
<reorder_l> −→ 0 |. . . | 30 (20)
<quantity> −→ 1 |. . . | 50 (21)

Productions for names specified in the tables are presented
within the range of 22 and 32. The <fname> symbol is
specified as the first name of the field in the table where
n1 is the total number of first names that appear. The
<lname> symbol specifies the last name of the field and n2
is the number of last names in the field. The <cat_name>
symbol represents the category names and n3 is the total
number of all category names contained in the field. In the
<comp_suffix> symbol, this shows the company suffixes
that may appear (e.g. Limited, Services, Agency, Consult-
ing, Advisors, etc.) n4 is the number of such suffixes. In
Production 26, a company name is generated with first name
and arbitrary company suffixes (e.g. Booysen Consulting).
Production 27 shows how a contact is generated while n5
shows the number of generated contacts. In Production 28,
arbitrary ship names are generated and n6 shows the total
number of generated ship names. The ship via symbol,
<ship_via>, is generated in Production 29. n7 is the
total number of such pattern. Production 30 describes the
rules for product names and n8 shows the total number of
product names that appears. The <report_to> symbol
is a concatenation of the first and last names as seen in
Production 31. The <cont_name> holds if the first name
and last name applies, indicated in Production 32.

<fname> −→ fn1 |. . . | fnn1 (22)
<lname> −→ ln1 |. . . | lnn2 (23)

<cat_name> −→ cat1 |. . . | catn3 (24)
<comp_suffix> −→ cf 1 |. . . | cfn4 (25)
<comp_name> −→ <fname><wspace>

<comp_suffix> (26)
<contact> −→ con1 |. . . | conn5

(27)
<ship_name> −→ shp1 |. . . | shpn6

(28)
<ship_via> −→ shv1 |. . . | shvn7

(29)
<prod_name> −→ pname1 |. . . | pnamen8

(30)
<report_to> −→ <fname><comma>

<lname> (31)
<cont_name> −→ <fname><wspace>

<lname> (32)

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

Productions 33-36 is used for titles. The contact title sym-
bol, <cont_title>, is generated in Production 33 (e.g.
Purchasing Manager, Sales Manager, Owner, etc.). n9 is
the total number of contact titles that may appear. The
<title_court> (title of courtesy) as seen in Production
34 holds if the Production 35 is satisfied. The different title
types that we have in this list are: Dr, Mrs, Mr and Miss
followed by a period. Production 36 shows the generation
for employee titles that we may appear (e.g. Sales Represen-
tative, Vice President, Chairman etc.) and n9 shows the total
number of such titles.

<cont_title> −→ cont1 |. . . | contn9
(33)

<title_court> −→ <title_types>

<period> (34)
<title_types> −→ Dr | Mrs | Mr | Ms (35)
<emp_title> −→ empt1 |. . . | emptn10

(36)

Productions for supplier, category, description and notes is
shown in 37-40. Hence, n11 to n14 show the total number
of suppliers, categories, description and notes names.

<supp> −→ sp1 |. . . | spn11 (37)
<categ> −→ ctg1 |. . . | ctgn12 (38)
<desc> −→ desc1 |. . . | descn13 (39)

<notes> −→ not1 |. . . | notn14 (40)

Productions 41-42 holds if either of the entries in the symbols
are generated. Production 41 shows either an individual’s
gender is a male, a female or other as indicated in Production
41. The <discontinue> symbol shows either if a product
should be continued or not as seen in Production 42.

<gender> −→ male | female | other (41)
<discontinue> −→ yes | no (42)

The <price> symbol satisfies the Productions 43-44. In
this case, we opted for the South African currency symbol -
Rands denoted as R (e.g R25.00). The <freight> shows
a price if Productions 43 is satisfied.

<price> −→ R<d>+<period><d><d> (43)
<freight> −→ <price> (44)

Productions 45-49 show country, ship country, region, city
and ship city. The <ship_country> symbol is satisfied
depending on the list of countries specified in Production
45. The countries that were generated in this production
are: UK, USA, Germany, Australia, South Africa, Nigeria
etc. n15 show the number of countries that appear in this
list. Production 47 and 48 describe rules for the formulation
of regions and cities. Here, n16 and n17 are the number
of region and city names respectively. We enforced rules
to ensure that this concatenation exists. For example, the
city, Melbourne, matches with the Australian Victoria region.
Production 49 holds if a city is generated, as seen in

Production 48.

<country> −→ count1 |. . . | countn15
(45)

<ship_country> −→ <country> (46)
<region> −→ reg1 |. . . | regn16

(47)
<city> −→ cty1 |. . . | ctyn17

(48)
<ship_city> −→ <city> (49)

<phone> −→ <s_code><period>

<phone_d> (50)
<phone_d> −→ C ∈ <d>+ : |C|= 7 (51)
<s_code> −→ <brac_o><d>

<brac_c> (52)
<fax> −→ <phone> (53)

<extension> −→ <s_code> (54)
<p_code> −→ pc1 |. . . | pcn18 (55)

<ship_pcode> −→ <ship_pcode><s_code>|
<ship_pcode>

<s_morecode> (56)
<s_morecode> −→ <brac_o><d>+

<brac_c> (57)
<address> −→ <d><wspace><add_list>

<comma><city> (58)
<add_list> −→ addl1 |. . . | addln19

(59)
<ship_add> −→ <address> (60)

Productions 50-57 specifies the symbol for phone, fax, ex-
tension and ship code. Productions 50-52 generates a phone
number where C is a 7-digit pseudorandom number. The
<s_code> symbol shows the prefixes that are used by
service providers in South Africa (e.g. 061, 082, 084, 072,
etc.). Production 53 shows the rules for a fax number. Every
fax number is equivalent to a phone number. Production 54
holds if prefixes are satisfied in Production 52. Production 55
specify the rules for postal codes and n18 is the total number
of postal code names. Productions 56 to 57 are recursively
defined that allows more occurrences of values.

The <address> symbol satisfies the Productions 58-60. To
generate an address, we specify a house number <d> fol-
lowed by a street name <add_list>, and a city <city>
(e.g. 54, Klein Street, Johannesburg). The <add_list>
symbol holds a street name with n19 specifying the total
number of street names. The <ship_add> holds if Pro-
duction 58 is satisfied.

The <date> symbol satisfies Productions 61-70, and
is composed of the terminal symbol: day of the week
<d_wk>, days of the month <d_mnth>, month of the year
<mnth_y> and year <yr>. The <birth_d> symbol as
indicated in Production 66 holds, if an individual is between
the ages of 18 to a retirement age of 65, according to the
Gregorian calendar. Productions 67 to 70 holds if a date is
satisfied.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

<date> −→ <d_wk><dash><d_mnth>

<dash><mnth_y><dash>

<yr> (61)
<d_wk> −→ Sunday |. . . | Saturday (62)

<d_mnth> −→ <d><d> (63)
<mnth_y> −→ Jan |. . . | Dec (64)

<yr> −→ 1990 |. . . | 2018 (65)
<birth_d> −→ <date> 3: <yr>

∈ [1954, 2000] (66)
<hire_d> −→ <date> (67)
<order_d> −→ <date> (68)
<req_d> −→ <date> (69)

<ship_d> −→ <date> (70)
<name> −→ name1 |. . . | namen20 (71)

<homepage> −→ <protocol><colon>

<f_slash><f_slash>

<host_name><period>

<suffix><f_slash>

<folder><f_slash>

<filename> (72)
<protocol> −→ http | https | ftp (73)
<host_name> −→ <host><period>

<name> (74)
<host> −→ www | ftp | mail (75)

<suffix> −→ com | uk | us | ng | za
| cd (76)

<folder> −→ <name> (77)
<file_suffix> −→ htm | html | jpg | png |

txt (78)
<filename> −→ <name><period>

<file_suffix> (79)

The <homepage> symbol satisfies Productions 72-78.
This rule basically specify use a protocol, followed
by a colon and a double front slash with a host and
domain name. This is followed by a period, a suffix,
a single front slash and a folder, a single front slash
and a file name. An example of the <homepage>
symbol specify a complete web url address (e.g
http://www.mydomain.com/folder/image.png).
Production 79 describe a given name as described in
Production 71 with a period and a file suffix.

Within Productions 1 to 78, we have defined the el-
ements that are used to create the rules for the tables.
Productions 80 to 87 specify the rules for the tables.
The complete formalism for the Shippers table in Production
80 with fields — Shipper ID, Company Name and Phone
is derived from the Productions (14, 26, 50) and presented
below:

<shippers_tb> −→ <ship_id><comp_name>

<phone> (80)

The productions for the Order Details table in Production 81
with fields — OrderID, ProductID, UnitPrice, Quantity are
16, 17, 43, 21 respectively.

<orderdetails_tb> −→ <ord_id><prod_id>

<price><quantity> (81)

The Categories table yields the fields — CategoryID, Cate-
goryName, Description with Productions (12, 24, 39) respec-
tively. The formalism as seen in Production 82 for this table
produces:

<categories_tb> −→ <cat_id><cat_name>

<desc> (82)

The formalism for the Orders table; with fields such as
OrderID, CustomerID, EmployeeID, OrderDate, Required-
Date, ShippedDate, ShipVia, Freight, ShipName, ShipAd-
dress, ShipCity, ShipRegion, ShipPostalCode, and ShipCoun-
try as seen in Production 83.

<orders_tb> −→ <ord_id><cus_id>

<emp_id><order_d><req_d>

<ship_d><ship_via>

<freight><ship_name>

<ship_add><ship_city>

<region><ship_pcode>

<ship_country> (83)

The Customer table is formalised using its fields — Cus-
tomerID, CompanyName, ContactName, ContactTitle, Ad-
dress, Region, Postalcode, Country as presented in Produc-
tion 84.

<customer_tb> −→ <cus_id><comp_name>

<cont_name><cont_title>

<address><region>

<p_code><country>

<phone> (84)

The formalism for the Product table with fields — Pro-
ductID, ProductName, SupplierID, CategoryID, QuantityPer-
Unit, UnitsinStock, UnitsOnOrder, Reorderlevel and Discon-
tinued as displayed in Production 85.

<product_tb> −→ <prod_id><prod_name>

<sup_id><cat_id>

<quantity><units_stk>

<units_order><reorder_l>

<discontinue> (85)

The Employee table is formalised in Production 86 with
fields — EmployeeID, LastName, FirstName, Title, Titleof-
Courtesy, BirthDate, HireDate, Address, City, Region, Postal-
code, Country, Homephone, Extension, Photo, Notes, Report-
sTo. The production for photo is beyond the scope of this
paper.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

<employee_tb> −→ <emp_id><lname><fname>

<title><title_court>

<birth_d><hire_d><address>

<city><region><p_code>

<country><phone><s_code>

<notes><report_to> (86)

The formalism for the Supplier table is derived from the
fields — SupplierID, CompanyName, ContactName, Con-
tactTitle, City, Region, PostalCode, Country, Phone, Fax,
Homepage, as presented in Production 87.

<supplier_tb> −→ <sup_id><comp_name>

<cont_name><cont_title>

<city><region><p_code>

<country><phone><fax>

<homepage> (87)

IV. IMPLEMENTATION AND RESULTS

We have implemented the productions as described
in Section 3 and presented a hypothetical DB called the
XNorthwind (or Extended Northwind). XNorthwind was
implemented using the .Net framework and the synthesized
datasets were stored in Microsoft SQL Server. The synthe-
siser produced 100,000 iterations of datasets as opposed to
3,200 tuples of the Northwind DB. We have presented the
results of two tables: Shippers and Customers table. Figure
2 shows the datasets in the Shippers table with 1,000 tuples
as opposed to three tuples in the Northwind DB. This is
described in Production 80 in Section III. Figure 3 shows
the datasets in the Customers table of the first 10,000 tuples
as opposed to 91 tuples in the Northwind DB. We have
described the Customers table in Production 84 in Section
III.

V. APPLICATIONS OF XNORTHWIND

In this section, we present possible applications of the
XNorthwind DB that was presented in Section IV. Possible
applications of the XNorthwind DB are:

1) new products and services can be tested using this
database,

2) given its volume, it can be widely used in CRM8 and
ERP9 applications, and

3) used in ITS10 as a practice DB for teaching database
concepts to students.

VI. EVALUATION

We obtained the results of the evaluation through an
online survey. This survey was carried out to obtain feed-
back from respondents on their perceptions of the generated
datasets and its usefulness. The respondents were mostly edu-
cators and students’ in the information systems and computer
sciences disciplines from two South African universities

8Customer Relationship Management
9Enterprise Resource Planning
10Intelligent Tutoring Systems

Fig. 2. XNorthwind: Output showing synthesised shippers’ table

namely: the University of Johannesburg and the University
of the Witwatersrand. We received a total of 112 responses
from the respondents. The respondents were initially asked
to rate their knowledge with DBs on a rating scale (for
example: one (1) indicating no experience at all and ten
(10) for strongly experienced). We noticed that they all had
knowledge with databases (See Figure 4(a)). Furthermore,
we asked them if they have used the Northwind DB. 44.6%
acknowledged that they have used the Northwind DB. We
can agree that this number may represent students who may
have only used the Microsoft DB for data storage without a
clue of hypothetical datasets (See Figure 4(b)). Furthermore,
we asked the respondents about the XNorthwind, and
suggested if they think this DB can be useful to have. 94.6%
agreed that the XNorthwind DB can be useful to have,
5.4% stayed indifferent and no respondent indicated that
this DB is unusable (See Figure 4(c) – a combination of
participants who ‘strongly agreed’ and ‘agreed’).

In addition, we asked the respondents if they think that
the XNorthwind has wider application than the orig-
inal Northwind. About 95.5% strongly believed that
XNorthwind has wider application over the Northwind
owing to the extra datasets. 4.5% stayed indifferent and no
respondent agreed that XNorthwind is disadvantageous to
have (See Figure 4(d)). Lastly, we asked the respondents
to suggest an application of large datasets (XNorthwind).
41.1% suggested that large datasets can be used extensively.
58% had no idea and 0.9% stayed indifferent. We believe that
majority of our respondents are students and may not have
used sample DB (See Figure 4(e)). Given these feedback, we
conclude that the generation of large datasets can be useful.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

Fig. 3. XNorthwind: Output showing synthesised customers’ table

VII. CONCLUSION AND FUTURE WORK

This paper has described a new approach for the
generations of datasets using CFGs. The CFG rules were im-
plemented, and large hypothetical data records were injected
into an SQL Server database called the XNorthwind. The
synthesized datasets were stored in Microsoft SQL Server.
We have shown that this approach can be used to synthesise
large datasets. Evaluation results obtained through a survey
showed that majority of the participants agreed that large
datasets can be useful.

In future, we will extend this tool to automatically
generate picture fields as seen in the Category table.

ACKNOWLEDGMENT

This work is based on research supported by the
National Research Foundation (NRF) of South Africa (Grant
Number: 119041). Any opinion, findings and conclusions or
recommendations expressed in this material are those of the
authors and therefore the NRF does not accept liability in
regard thereto.

REFERENCES

[1] M. Keith, M. Schincariol, and M. Nardone, “An in-
depth guide to Java persistence APIs,” in Pro JPA 2 in
Java EE 8. Springer, 2018, pp. 1–24.

[2] G. Bell, T. Hey, and A. Szalay, “Beyond the data
deluge,” Science, vol. 323, no. 5919, pp. 1297–1298,
2009.

[3] E. Meijer and G. Bierman, “A co-relational model of
data for large shared data banks,” Queue, vol. 9, no. 3,
p. 30, 2011.

[4] N. May, W. Lehner, S. Hameed, N. Maheshwari,
C. Müller, S. Chowdhuri, and A. K. Goel, “SAP
HANA-from relational OLAP database to big data
infrastructure.” in EDBT, 2015, pp. 581–592.

[5] Y. Luo, W. Wang, and X. Lin, “Spark: A keyword
search engine on relational databases,” in 24th Interna-
tional Conference on Data Engineering. IEEE, 2008,
pp. 1552–1555.

[6] R. Lumbantoruan, E. M. Sibarani, M. V. Sitorus,
A. Mindari, and S. P. Sinaga, “An approach for automat-
ically generating star schema from natural language,”
Telkomnika, vol. 12, no. 2, p. 501, 2014.

[7] J. Runtuwene, I. Tangkawarow, C. Manoppo, and
R. Salaki, “A comparative analysis of extract, transfor-
mation and loading (ETL) process,” in IOP Conference
Series: Materials Science and Engineering, vol. 306,
no. 1. IOP Publishing, 2018, pp. 1–8.

[8] R. A. Pazos R, J. J. González B, M. A. Aguirre L,
J. A. Martı́nez F, and H. J. Fraire H, “Natural language
interfaces to databases: an analysis of the state of the
art,” Recent Advances on Hybrid Intelligent Systems,
pp. 463–480, 2013.

[9] J. Raissi, “IPSec offload performance,” in Proceedings
of the IEEE Southeast Conference. IEEE, 2004, pp.
222–228.

[10] H. Thakkar, D. Punjani, Y. Keswani, J. Lehmann, and
S. Auer, “A stitch in time saves nine–SPARQL querying
of property graphs using Gremlin traversals,” arXiv
preprint arXiv:1801.02911, pp. 1–24, 2018.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

(a) Rate your experience with databases? (1 for no experience and 10 for strongly experienced)

(b) Usage of the Northwind DB (c) Usefulness of the datasets of XNorthwind

(d) Wider application of XNorthwind (e) Think of any application of large dataset

Fig. 4. The result of the evaluation

[11] D. Dou, H. Qin, and P. Lependu, “OntoGrate: Towards
automatic integration for relational databases and the
semantic web through an ontology-based framework,”
International Journal of Semantic Computing, vol. 4,
no. 01, pp. 123–151, 2010.

[12] R. Jennings, Microsoft Access 2010 in depth. Pearson
Education, 2010.

[13] K. Sankar, Fast Data Processing with Spark 2. Packt
Publishing Ltd, 2016.

[14] G. J. Fakas, B. Cawley, and Z. Cai, “Automated genera-
tion of personal data reports from relational databases,”
Journal of Information & Knowledge Management,
vol. 10, no. 02, pp. 193–208, 2011.

[15] N. P. Warren, M. T. Neto, S. Misner, I. Sanders,
and S. A. Helmers, Business intelligence in Microsoft
Sharepoint 2013. Pearson Education, 2013.

[16] K.-B. Yue, “Using a semi-realistic database to support
a database course,” Journal of Information Systems
Education, vol. 24, no. 4, p. 327, 2013.

[17] J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht,
The structure of the relational database model.
Springer Science & Business Media, 2012, vol. 17.

[18] M. Levene and G. Loizou, A guided tour of relational

Databases and beyond. Springer Science & Business
Media, 2012.

[19] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and
D. Wilkins, “A comparison of a graph database and
a relational database: a data provenance perspective,”
in Proceedings of the 48th Annual Southeast regional
conference. ACM, 2010, p. 42.

[20] L. Chung, “Database evolution: Microsoft Access
within an organization’s database strategy,” Retrieved
October, vol. 29, p. 2012, 2012.

[21] S. F. Gilani, V. V. Agarwal, J. Reid, R. Raghuram,
J. Huddleston, and J. H. Pedersen, Beginning C# 2008
databases: From Novice to Professional. Apress, 2008.

[22] J. N. Dyer and C. Rogers, “Adapting the Access North-
wind database to support a database course,” Journal of
Information Systems Education, vol. 26, no. 2, p. 85,
2015.

[23] S. Borker, “Business intelligence data warehousing,”
Ph.D. dissertation, Citeseer, 2006.

[24] G. S. Nelson, “Planning for and designing a data
warehouse: A hands on workshop,” in Hands on Work-
shop presented at the SAS Global Forum Conference.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

Orlando, Florida, 2007, pp. 1–16.
[25] Microsoft, “Downloading sample databases,”

https://docs.microsoft.com/en-us/dotnet/framework/
data/adonet/sql/linq/downloading-sample-databases,
2017, accessed: 2018-06-05.

[26] H. Angermann, Z. Pervez, and N. Ramzan, “Taxo-
semantics: Assessing similarity between multi-word
expressions for extending e-catalogs,” Decision Support
Systems, vol. 98, pp. 10–25, 2017.

[27] A. Gelbukh, G. Sidorov, H. Fraire et al., “Prepositions
and conjunctions in a natural language interfaces to
databases,” in International Symposium on Parallel and
Distributed Processing and Applications. Springer,
2007, pp. 173–182.

[28] I. H. Elifoglu and A. F. Fitzsimons, “Case study in an
auditing in an ODBC environment: Using Northwind
data for IT Auditing,” ASBBS Proceedings, vol. 20,
no. 1, p. 136, 2013.

[29] D. Lavbič, T. Matek, and A. Zrnec, “Recommender sys-
tem for learning SQL using hints,” Interactive Learning
Environments, vol. 25, no. 8, pp. 1048–1064, 2017.

[30] S. Kaddoura, R. A. Haraty, A. Zekri, and M. Masud,
“Tracking and repairing damaged healthcare databases
using the matrix,” International Journal of Distributed
Sensor Networks, vol. 11, no. 11, pp. 1–8, 2015.

[31] R. A. Haraty, M. Zbib, and M. Masud, “Data damage
assessment and recovery algorithm from malicious at-
tacks in healthcare data sharing systems,” Peer-to-Peer
Networking and Applications, vol. 9, no. 5, pp. 812–
823, 2016.

[32] R. A. Haraty, S. Kaddoura, and A. S. Zekri, “Recovery
of business intelligence systems: Towards guaranteed
continuity of patient centric healthcare systems through
a matrix-based recovery approach,” Telematics and In-
formatics, vol. 35, no. 4, pp. 801–814, 2018.

[33] M. Nagao and H. Seki, “An FCA approach to min-
ing quantitative association rules from multi-relational
data,” International Journal of Computational Intelli-
gence Studies, vol. 6, no. 4, pp. 366–383, 2017.

[34] C. M. Pompiliu, S. A.-M. Ramona et al., “Business
intelligence integrated solutions,” Ovidius University
Annals, Economic Sciences Series, vol. 17, no. 2, pp.
185–189, 2017.

[35] J. Segovia-Aguas, S. Jiménez, and A. Jonsson, “Gener-
ating Context-free Grammars using classical planning,”
pp. 1–7, 2017.

[36] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers,
principles, techniques,” Addison Wesley, vol. 7, no. 8,
p. 9, 1986.

[37] M. J. Pugliese and J. Cagan, “Capturing a rebel: mod-
eling the Harley-Davidson brand through a motorcy-
cle shape grammar,” Research in Engineering Design,
vol. 13, no. 3, pp. 139–156, 2002.

[38] I. Demir, D. G. Aliaga, and B. Benes, “Procedural-
ization for editing 3D architectural models,” in Fourth
International Conference on 3D Vision. IEEE, 2016,
pp. 194–202.

[39] Y. Dehbi, F. Hadiji, G. Gröger, K. Kersting, and
L. Plümer, “Statistical relational learning of grammar
rules for 3D building reconstruction,” Transactions in
GIS, vol. 21, no. 1, pp. 134–150, 2017.

[40] M. H. Christensen, “Structural Synthesis using a
Context-free design Grammar approach,” in Interna-
tional Conference of Generative Art, 2009, pp. 104–
109.

[41] A. Ade-Ibijola, “Synthesis of social media profiles
using a probabilistic Context-free Grammar,” in Pattern
Recognition Association of South Africa and Robotics
and Mechatronics, 2017. IEEE, 2017, pp. 104–109.

[42] A. C. Lin, “Network Analysis with Stochastic Gram-
mars,” Air Force Institute of Technology Wright-
Patterson AFB OH Graduate School of Engineering and
Management, Tech. Rep., 2015.

[43] S. Pudaruth, S. Amourdon, and J. Anseline, “Automated
generation of song lyrics using CFGs,” in Seventh
International Conference on Contemporary Computing.
IEEE, 2014, pp. 613–616.

[44] A. Ade-Ibijola, “FINCHAN: A grammar-based tool
for automatic comprehension of financial instant mes-
sages,” in Proceedings of the Annual Conference of
the South African Institute of Computer Scientists and
Information Technologists. ACM, 2016, p. 1.

[45] S. Velupillai, D. Mowery, B. R. South, M. Kvist,
and H. Dalianis, “Recent advances in clinical natural
language processing in support of semantic analysis,”
Yearbook of medical informatics, vol. 10, no. 1, p. 183,
2015.

[46] P. Liang, “Learning executable semantic parsers for
natural language understanding,” Communications of
the ACM, vol. 59, no. 9, pp. 68–76, 2016.

[47] W. Dyrka and J.-C. Nebel, “A stochastic Context-
free Grammar based framework for analysis of protein
sequences,” BMC bioinformatics, vol. 10, no. 1, p. 323,
2009.

[48] E. Butler, K. Siu, and A. Zook, “Program synthesis
as a generative method,” in Proceedings of the 12th
International Conference on the Foundations of Digital
Games. ACM, 2017, p. 6.

[49] A. Ade-Ibijola, “Syntactic generation of practice novice
programs in Python,” in Annual Conference of the
Southern African Computer Lecturers’ Association.
Springer, 2018, pp. 158–172.

[50] D. Macko and K. Jelemenská, “HDL model verification
based on visualization and simulation,” in Proceedings
of the World Congress on Engineering, vol. 2, 2012,
pp. 1–6.

[51] M. Fanaswala and V. Krishnamurthy, “Detection of
anomalous trajectory patterns in target tracking via
stochastic Context-free Grammars and reciprocal pro-
cess models,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 1, pp. 76–90, 2013.

[52] H. Liao, Z. Xu, and X.-J. Zeng, “Hesitant fuzzy lin-
guistic VIKOR method and its application in qualitative
multiple criteria decision making,” IEEE Transactions
on Fuzzy Systems, vol. 23, no. 5, pp. 1343–1355, 2015.

[53] H. Wang, Z. Xu, and X.-J. Zeng, “Hesitant fuzzy
linguistic term sets for linguistic decision making: Cur-
rent developments, issues and challenges,” Information
Fusion, vol. 43, pp. 1–12, 2018.

[54] A. Adem, A. Çolak, and M. Dağdeviren, “An integrated
model using SWOT analysis and hesitant fuzzy linguis-
tic term set for evaluation occupational safety risks in

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

life cycle of wind turbine,” Safety science, vol. 106, pp.
184–190, 2018.

[55] E.-R. Olderog, “Space for traffic manoeuvres: An
overview,” in Symposium on Real-Time and Hybrid
Systems. Springer, 2018, pp. 211–230.

[56] K. A. Buragga and N. A. Zafar, “Formal parsing
analysis of Context-free Grammar using left most

derivations,” in International Conference on Software
Engineering Advances, 2011.

[57] A. Sellink and C. Verhoef, “Scaffolding for software
renovation,” in Proceedings of the Fourth European
of Software Maintenance and Reengineering. IEEE,
2000, pp. 161–172.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_05

(Advance online publication: 20 November 2019)

__

