
 

Abstract— Most of the medical diagnostic requires studies of 

medical images for to give an accurate treatment. Therefore is 

important the improvement of the medical images in terms of 

noise, quality, and morphological definition. The medical images 

series contains approximately 20% of noise caused by the 

equipment itself, especially in the x-ray modality. 

Therefore, the principal aim of this project is to develop an 

algorithm that helps suppress the noise as a preprocessing stage 

before medical analysis. The algorithm for noise reduction 

proposed uses classic and optimized mean filter, Gaussian filter, 

and median filter. 

This project also uses OpenMP parallel programming to 

optimize processing time and computational resources. The 

parallel implementation results of algorithms with sequential and 

classic implementation show great performance in the quality of 

the time processing, noise localization, and noise reduction. This 

improvement helps medical professionals get better details about 

the different pathologies for effective diagnostics and treatment. 

 
Index Terms— medical image, Mean Filter, Median Filter, 

Gaussian 2D, parallel programming, OpenMP. 

I. INTRODUCTION 

N image is a two-dimensional (2D) distribution of small 

image points called pixels. Mathematically point view, it 

can be considered as a function of two real variables, for 

example, f(x,y) with f as the amplitude of the image at position 

(x, y) [1-3]. In the last years, image processing has attracted 

the attention of multidisciplinary  
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fields such as applied mathematics, computer sciences, 

engineering, statistics, physics, biology, and medicine. 

Medical imaging is the technique and process used to create 

anatomic, physiological or functional images for clinical or 

medical purposes. There are many different medical image 

modalities like CT, PET, MRI, X-ray, Ultrasound imaging, 

fMRI, etc. [2], [4-8]. 

Computer-aided diagnostic processing has already become 

an important part of the clinical routine because the medical 

image processing plays an important role in the diagnosis and 

detection of the sicknesses and the treatment [4].   

For example, in radiology images, the tissues of the human 

body absorb radiation and the image is projected in different 

shades of black and white; the bone tissue is observed white, 

the fat and soft tissues are observed gray and the air is 

observed black. This type of image is widely used in trauma 

for find infections, benign or malignant bone lesions, 

degenerative joint disorders, lung diseases, abdomen and 

pelvis lesions, mammary glands, and to locate foreign objects 

and guide procedures [5]. Another type of important medical 

image is magnetic resonance imaging (MRI) because it 

provides anatomical and physiological information in a non-

invasive way. MRI does not use any kind of ionizing 

radiation. MRI creates images of structures through the 

interactions of magnetic fields and radio waves with tissues 

[6]. 

Medical images independently of their type are often 

contaminated by impulsive, additive or multiplicative noise 

caused by the imaging process and the equipment itself. The 

noise usually corrupts medical images by replacing some of 

the pixels of the original image with new pixels having 

luminance values near or equal to the minimum or maximum 

of the allowable dynamic luminance range. The noise 

criterions determine the type of it [3, 19, 20]. 

Therefore, the principal aim of this work is to develop an 

algorithm that helps suppress the noise of different anatomical 

structures of X-ray modality, as a pre-processing stage before 

medical analysis and diagnostic.  

The algorithm for noise reduction uses classic and 

optimized mean filter, Gaussian filter, and median filter to 

determine the pixel value in the noiseless image and remove it. 

Also, this project uses a parallel programming model 

(OpenMP) [8-10] to optimize the processing time and 

computational resources. The parallel implementation results 

of algorithms with sequential and classic implementation show 
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great performance in the quality of the time processing, noise 

localization, and noise reduction.  

This improvement helps medical professionals get better 

details about the different pathologies for effective diagnostics 

and treatments. 

Applications of Parallel Computing are: Bioscience, 

Biotechnology, Genetics, Medical imaging and diagnosis, 

Chemistry, Molecular Sciences, Computer Science, 

Mathematics, Geology, Seismology, Mechanical and 

Aerospace Engineering, Physics/Astrophysics. 

This work, also describes the use of OpenMP (Open Multi-

Processing) in multi-thread image processing applications. 

OpenMP is an extensive and powerful application-

programming interface (API), supporting much functionality 

required for parallel programming [10]. The purpose of this 

work is to provide a high level image processing operation to 

demonstrate the ease of implementation and effectiveness of 

OpenMP in the image processing. 

II. DIGITAL CLASSIC AND OPTIMIZED 2D FILTERS 

A. Mean (average) filter classic and optimized 

The arithmetic classic mean filter is defined as the average 

of all pixels spectrum within a local region of an image. 

 

 
Fig. 1.  Classic average filter.  

 

Pseudocode of mean (average) classic filter (independent to 

kernel size)  

// A original image in gray value,  

// B processed image and K kernel matrix 

// n, m image dimension 

// kr  kernel rang ( kernel dimension = kr*2+1) 

// ksize   kernel size (  

// xi, yi index pixel of image 

// kx ky virtual element range [-kr,kr] 

ksize=(kr*2+1)*(kr*2+1)    

for yi=0 to m    // correct processing loops        

    for xi=0 to n      

       // 1.- Take pixels from gray value image A  

       // in kernel area and add to sum 

        sum=0 

        for ky=kr- to kr   

            tyi = yi+ky 

            if tyi<0 then tyi=0 

            if tyi>= m then tyi=m-1 

            for ky=kr- to kr   

                   if txi<0 then txi=0 

                   if txi>= m then txi=n-1 

                   sum=sum+A[tyi,txi]  // Get pixels from image 

                                                     // A and add to sum 

             end 

         end 

        // 2.- Evaluate average from kernel matrix size 

         prom=sum/( ksize) 

         // 3.- Take average value and put in study pixel in 

image B 

         B[yi,xi]=prom 

      end 

end 

 

The optimized mean filter obtained by accumulation of the 

neighborhood of pixel P(y,x), shares a lot of pixels in common 

with the accumulation for pixel P(y,x+1). This means that 

there is no need to compute the whole kernel for all pixels 

except only the first pixel in each row. Successive pixel filter 

response values can be obtained with just an add and a 

subtract to the previous pixel filter response value [11-14]. 

 

 
 

 
Fig. 2.  Optimized average filter.  

 

Pseudocode of mean (average) optimized filter 

(independent to kernel size)  

// A original image in gray value,  

// B processed image and K kernel matrix 

// n, m image dimension 

// kr  kernel rang ( kernel dimension = kr*2+1) 

// ksize   kernel size (  

// xi, yi index pixel of image 

// kx ky virtual element range [-kr,kr] 

// txi tyi   temporal index values to correct  

// indexes which is out of image area 

ksize=(kr*2+1)*(kr*2+1)    

for yi=0 to m. 
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// 1.- Take pixels from gray value image A  

// (in kernel area) and add to sum   

     /// only for first pixel in the row 

     xi=0 

      for ky=kr- to kr   

      tyi = yi+ky 

         if tyi<0 then tyi=0 

         if tyi>= m then tyi=m-1 

         for ky=kr- to kr   

            if txi<0 then txi=0 

            if txi>= m then txi=n-1 

            sum=sum+A[tyi,txi]  // Get pixels from image A 

                                             // and add to sum 

         end 

      end 

      // 2.- Evaluate average from kernel matrix  

      // size   

      prom=sum/( ksize) 

      // 3.- Take average value and put in study  

      // pixel in image B 

      B[yi,xi]=prom 

   for xi=1 to n      

      // 4.- recursive recalculation of sum 

      for ky=kr- to kr   

         tyi = yi+ky 

         if tyi<0 then tyi=0 

         if tyi>= m then tyi=m-1 

         ky=xi-kr-1 

         if txi<0 then txi=0 

         if txi>= m then txi=n-1 

         // Subtract from the sum of the value of the pixel  

         // from image A which is out of the kernel area 

         sum=sum-A[tyi,txi]    

         ky=xi+kr 

         if txi<0 then txi=0 

         if txi>= m then txi=n-1 

         // Add to sum of the value  of the pixel from image 

         // A which is come into of the kernel area 

         sum=sum+A[tyi,txi] 

      end 

      // 5.- Evaluate average from kernel matrix size 

      prom=sum/(ksize) 

      // 6.- Take average value and put in study  

      // pixel in image B 

      B[yi,xi]=prom 

   end 

end 

B. Median filter classic and optimized   

Classic median filter replaces the value of a pixel spectrum 

by the median of the spectrum levels in the neighborhood of 

that pixel. 

 

Pseudocode of median classic filter 

// A original image in gray value,  

// B processed image and K kernel matrix 

// n, m image dimension 

// kd    kernel dimension 

// xi, yi index pixel of image 

// n, m image dimension 

// kr  kernel rang ( kernel dimension = kr*2+1) 

// ksize   kernel size (kr*2+1)*(kr*2+1) 

// kx ky virtual element range [-kr,kr] 

// txi tyi   temporal index values to correct  

// indexes which is out of image area 

// imed  index of median value 

ksize = (kr*2+1)*(kr*2+1)   

imed = (ksize-1)/2 

for yi=0 to m   

   for xi=0 to n  

      // 1.- Take pixels from gray image A to array 1D 

     ind=0 

      for ky=-kr to kr   

      tyi = yi+ky 

         if tyi<0 then tyi=0 

         if tyi>= m then tyi=m-1 

         for kx=-kr to kr   

           txi=xi+kx 

           if txi<0 then txi=0 

            if txi>= m then txi=n-1 

            // Get pixels from image A and add to array 

            vec[ind] =A[tyi,txi]  

         end 

      end 

         // 2. sort array 1D 

         Sort(vec) 

         // 3.- Take middle term from 1D array  

         // and put in study pixel in image B  

         B[xi,yi]=vec[imed] // put processed pixel in  

                                       // processed image B 

    end 

end 

 

 
Fig. 3.  Classic median filter.  

 

Median filtering is a commonly applied non-linear filtering 

technique that is particularly useful in removing speckle and 
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salt and pepper noise. It works by moving through the image 

pixel by pixel, and replacing each value with the median value 

of neighbouring pixels.  

The optimized median filter is obtained trough the 

histogram of spectrum for median calculation can be far more 

efficient because it is simple to update the histogram from 

window to window. Thus the histogram used for accumulating 

pixels in the kernel and only a part of it is modified when 

moving from one pixel to another [8-13], [16].  

 

 
Fig. 4.  Optimized median filter.  

 

Pseudocode of median optimized filter 

// A original image in gray value,  

// B processed image and K kernel matrix 

// n, m image dimension 

// kd    kernel dimension 

// xi, yi index pixel of image 

// n, m image dimension 

// kr  kernel rang ( kernel dimension = kr*2+1) 

// ksize   kernel size (kr*2+1)*(kr*2+1) 

// kx ky virtual element range [-kr,kr] 

// txi tyi   temporal index values to correct indexes  

// which is out of image area 

// imed  index of median value 

// Hist   histogram of intensity [0..255] 

// medV  value of median 

// delta  

ksize = (kr*2+1)*(kr*2+1)   

for yi=0 to m   

// 1. Clear histogram and fill it using kernel area values  

   Clear(Hist) /// only for first pixel in the row 

/// can be conducted as   

For  i=0; to 256  

   Hist[i]=0; 

   xi=0; 

   for ky=-kr to kr   

      tyi = yi+ky 

      if tyi<0 then tyi=0 

      if tyi>= m then tyi=m-1 

      for kx=-kr to kr   

         if txi<0 then txi=0 

         if txi>= m then txi=n-1 

         // Get pixels from image A to sValue 

         sValue =A[tyi,txi]  

         Hist[sValue]++     // increase count in histogram  

                                     // in index=sValue  

      end 

    end 

   // 2. Find median index in histogram 

   medV = histogram_median(Hist, delta);  

   // 3. put median value in study pixel in image B  

   B[xi,yi]= medV   

   // 4. Recursively change histogram 

   for xi=1 to n  

      for ky=-k- to kr   

         tyi = yi+ky 

         if tyi<0 then tyi=0 

         if tyi>= m then tyi=m-1 

         txi=xi-kr-1 

         // Remove element from histogram 

         if txi<0 then txi=0 

         if txi>= m then txi=n-1 

         // Get pixels from image A to sValue 

         sValue =A[tyi,txi]  

         Hist[sValue]--       // decrease count in histogram 

                                     // in index=sValue  

         if sValue < medV then delta= delta-1 

         if sValue > medV then delta= delta+1 

         // Add element to histogram 

         txi=xi+kr 

         if txi<0 then txi=0 

         if txi>= m then txi=n-1 

         // Get pixels from image A to sValue 

         sValue =A[tyi,txi]  

         Hist[sValue]++    // increase count in histogram  

                                    // in index=sValue  

         if sValue < medV then delta= delta-1 

         if sValue > medV then delta= delta+1 

      end 

   // 5. Recalculate median index in histogram 

   medV = recalculate_histogram_median(Hist, delta);  

   // 6. Put median value in study pixel in image B  

   B[xi,yi]= medV   

   end 

end 

 

// Find median index in histogram 

histogram_median(Hist,delta); 

   MCount=(ksize-1)/2 

   Res=0 

   Lcount =0; 

   for ind=0 to 255 

      Lpcount= Lpcount+ Hist[ind] 

      If Lcount < MCount then  

        continue to next iteration; 

      Else  

         Res=ind 

         break; 

   end 

   delta= ksize- Hist[res] 

return res 

 

// Recalculate median index in histogram 

recalculate_histogram_median(Hist, delta);  

   MCount=(ksize-1)/2 
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   Tmp_delta= delta 

   Tmp_med= medV 

   If  Tmp_delta> MCount then 

      While (Tmp_delta> MCount and Tmp_med>0) 

         Tmp_med= Tmp_med-1 

         If Hist[Tmp_med] >0 then  Tmp_delta= Tmp_delta- 

Hist[Tmp_med] 

   Else 

      While (Tmp_delta+ Hist[Tmp_med] <  MCount and 

Tmp_med<255) 

         If Hist[Tmp_med] >0 then Tmp_delta= Tmp_delta+ 

Hist[Tmp_med] 

         Tmp_med= Tmp_med+1 

   delta = Tmp_delta 

return Tmp_med 

 

C. Gauss filter 2D and optimized 1Dx2 

The Gaussian 2D filter uses a Gaussian function (which also 

expresses the normal distribution in statistics) for calculating 

the transformation to apply to each pixel in the image. 

 

 
Fig. 5.  Classic Gaussian 2D filter.  

 

Pseudocode of classic Gaussian 2D filter: 

// 1.- Calculate kernel Gauss bell G(x,y). 

GaussianCoef2D(RH,RW, sigma); 

Sum=0; 

for y= -RH to RH 

   for x= -RW to RW 

      Gxy[x+kr,y+kr]=(1/(2*pi*sigma*sigma))*exp(-

(x*x+y*y)/(2*sigma*sigma)) 

      Sum=Sum+Gxy[x+kr,y+kr] 

for y= -RH to RH 

   for x= -RW to RW 

      Gxy[x+kr,y+kr] = Gxy[x+kr,y+kr]/Sum 

end 

 

Gxy=GaussianCoef2D(kr, kr,sigma); 

for yi=0 to m    // correct processing loops        

    for xi=0 to n      

       // 2.- Take pixels from gray value image A  

       // in kernel area and add to sum considering  

       // Gaussian coefficient 

        sum=0 

        for ky=kr- to kr   

            tyi = yi+ky 

            if tyi<0 then tyi=0 

            if tyi>= m then tyi=m-1 

            for kx=kr- to kr   

                   txi=xi+kx 

                   if txi<0 then txi=0 

                   if txi>= m then txi=n-1 

                    // Get pixels from image A and multiply  

                    // it on Gaussian coefficient 

                   sum=sum+A[tyi,txi]*Gxy[ky+kr][kx+kr]  

             end 

         end 

         // 3.- put obtained value in study pixel in image B 

         B[yi,xi]=prom 

      end 

end 

 

The convolution of Gaussian filter can be performed much 

faster since the equation for the 2D isotropic Gaussian is 

separable into y and x components [7-13], [15]. 

 

GaussianCoef1D(rang, sigma) 

Sum=0 

for t= -rang to rang 

   G[t+rang]=(1/(sqrt(2*pi)*sigma))*exp((-t*t)/(2*sigma 

*sigma)) 

   Sum= Sum + G[t+ rang] 

for t= -rang to rang 

   G[t+ rang]= G[t+ rang]/ Sum 

end 

 

 

 
Fig. 6.  Optimized Gaussian 2D filter.  

 

Pseudocode of Gaussian 2D filter in double 1D 

interpretation: 

// TMP_Image is transposed version of the image 

// 1.- Calculate kernel Gauss in 1D. 
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Coef1D_1=GaussianCoef1D(kr,sigma); 

Coef1D_2=GaussianCoef1D(kr,sigma); 

///  Process 1D Gaussian (first) 

for yi=0 to m    // correct processing loops        

    for xi=0 to n      

       // 2.- Take pixels from gray value image A  

       // in kernel area and add to sum considering  

       // Gaussian coefficient 

       sum=0; 

       for kx=-r to r      

          txi=xi+kx 

          if txi<0 then txi=0 

          if txi>= m then txi=n-1 

          // Get pixels from image A and multiply it on  

          // 1D Gaussian coefficient 

          sum=sum+A[yi,txi]*Coef1D_1[[kx+kr]  

       end 

       // 3.- put obtained value in study pixel in  

       // temporal image TMP_Image 

       TMP_Image [xi,yi]= sum 

///  Process 1D Gaussian (second) 

for yi=0 to n    // correct processing loops        

   for xi=0 to m      

      // 4.- Take pixels from gray value image TMP_Image  

      // in kernel area and add to sum considering  

      // Gaussian coefficient 

      sum=0; 

      for kx=-kr to kr      

         txi=xi+kx 

         if txi<0 then txi=0 

         if txi>= m then txi=n-1 

         // Get pixels from image A and multiply it on  

         // 1D Gaussian coefficient 

         sum=sum+ TMP_Image [yi,txi]*Coef1D_2[[kx+kr]  

      end 

      // 5.- put obtained value in study pixel in image B  

      B[xi,yi]= sum 

   end 

end 

III. OPENMP 

Parallel Programming may speed up code. Today computers 

have one or more CPUs that have multiple processing cores 

(Multi-core processor). This helps with desktop computing 

tasks like multitasking (running multiple programs, plus the 

operating system, simultaneously). For scientific computing, 

this means the ability in principle of splitting up computations 

into groups and running each group on its own processor [18]. 

Two main paradigms talk about here are shared memory 

versus distributed memory models. In shared memory models, 

all multiple processing units have access to the same memory 

space. This is the case on desktop or laptop with multiple CPU 

cores. In a distributed memory model, multiple processing 

units each of their have their own memory store, and 

information is passed between them. This is the model that a 

networked cluster of computers operates with. A computer 

cluster is a collection of standalone computers that are 

connected to each other over a network, and are used together 

as a single system. 

The methodology in our case of the algorithms (filters) for 

processing images is: 

1.- Select Kernel 

2.- Evaluate denoise filter with parallel OpenMP 

#pragma omp parallel for 

for (int y=0; y< Image_Height; y++) 

  for (int x=0; x< Image_Width; x++) 

   { 

    // do denoise filters 

   } 

3.- Processed pixel put in study pixel of image denoise 

 

OpenMP is an API that implements a multi-threaded, shared 

memory form of parallelism. It uses a set of compiler 

directives that are incorporated at compile-time to generate a 

multi-threaded version of program code. OpenMP is designed 

for multi-processor/core, shared memory machines [17], [18].  

IV. METRICS: PSNR, SSIM 

Any processing applied to an image may cause an important 

loss of information or quality. Image quality evaluation 

methods can be subdivided into objective and subjective 

methods. Subjective methods are based on human judgment 

and operate without reference to explicit criteria. Objective 

methods are based on comparisons using explicit numerical 

criteria, and several references are possible such as the ground 

truth or prior knowledge expressed in terms of statistical 

parameters and tests.  

The next equations show the relationship between the SSIM 

(structural similarity index measure) and the PSNR (peak-

signal-to-noise ratio) for grey-level (8 bits) images. Given a 

reference image f and a test image g, both of size M×N, the 

PSNR between f and g is defined by: 

𝑃𝑆𝑁𝑅(𝑓, 𝑔) = 10𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸(𝑓, 𝑔)
) 

 where 

𝑀𝑆𝐸(𝑓, 𝑔) =
1

𝑀𝑁
∑∑(𝑓𝑖𝑗 − 𝑔𝑖𝑗)

2
𝑁

𝑗=1

𝑀

𝑖=1

 

 

The PSNR value approaches infinity as the MSE 

approaches zero; this shows that a higher PSNR value 

provides a higher image quality. At the other end of the scale, 

a small value of the PSNR implies high numerical differences 

between images. The SSIM is a quality metric used to measure 

the similarity between two images. Wang et al. developed it, 

and it is correlated with the quality perception of the human 

visual system (HVS). Instead of using traditional error 

summation methods, the SSIM is designed by modeling any 

image distortion as a combination of three factors that are loss 

of correlation, luminance distortion and contrast distortion. 

The SSIM is defined as: 

 

𝑆𝑆𝐼𝑀(𝑓, 𝑔) = 𝑙(𝑓, 𝑔)𝑐(𝑓, 𝑔)𝑠(𝑓, 𝑔). 

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



where:  

𝑙(𝑓, 𝑔) =
2𝜇𝑓𝜇𝑔 + 𝐶1

𝜇𝑓
2 + 𝜇𝑔

2 + 𝐶1
 

𝑐(𝑓, 𝑔) =
2𝜎𝑓𝜎𝑔 + 𝐶2

𝜎𝑓
2 + 𝜎𝑔

2 + 𝐶2
 

𝑠(𝑓, 𝑔) =
𝜎𝑓𝑔 + 𝐶3

𝜎𝑓𝜎𝑔 + 𝐶3
 

The first term is the luminance comparison, function that 

measures the closeness of the two images’ means luminance 

(μf and μg). This factor is maximal and equal to 1 only if 

μf=μg. The second term is the contrast comparison, function 

that measures the closeness of the contrast of the two images.  

Here the contrast is measured by the standard deviation σf 

and σg. This term is maximal and equal to 1 only if σf=σg. 

The third term is the structure comparison, function that 

measures the correlation coefficient between the two images f 

and g.  

Note that σfg is the covariance between f and g. The 

positive values of the SSIM index are in [0,1]. A value of 0 

means no correlation between images, and 1 means that f=g. 

The positive constants C1, C2 and C3 are used to avoid a null 

denominator [21]. 

V. EXPERIMENTAL RESULTS 

Different X-ray images, with different sizes were processed 

with the classic and optimized filters: mean, median, Gaussian 

2D. 

The experiment used a PC based on Intel Core i5 3.1 GHz 

with 8 GB RAM. The results were obtained by measuring the 

processing time of 80 different images (for each image, 400 

measurements were taken). 

 
Fig. 7. Shared memory in OpenMP. 

 

Fig. 8 show processing time of filters classic and optimized 

for different image size (4 threads OpenMP). In addition, a 

study of optimized filter implementations was made. It 

showed the magnitude of the acceleration relative to the 

sequential implementation of the classical version of the 

filters. The result of this study was represented as the maps of 

acceleration of optimized filters, showing acceleration 

coefficient depending on the kernel size (Fig. 9). The maps 

were generated as average values obtained for different image 

sizes. 

Also, the acceleration stability of optimized algorithms was 

evaluated depending on the size of the core and the number of 

threads used. To estimate the acceleration, the mean values 

obtained during the 300 measurements were taken for each 

combination of the kernel size and the number of threads. Fig. 

10 shows the average values of the obtained acceleration 

coefficient for optimized versions of filters. 

The experimental results show that the increase in the 

processing speed for different kernel sizes is almost the same. 

Some stability is observed in the acceleration for two threads 

as well as one can see the increase of the acceleration 

coefficient in the case with more than two threads having the 

kernel size larger than 5×5. Acceleration with the usage of 

four threads demonstrates poor efficiency as parts of the CPU 

resources are spent on background tasks (Fig. 10). 

 

 
a) 

 
b) 

Fig. 8. Processing time of filters (ms.) for different image size using 4 threads 

OpenMP: (a) classic implementation; (b) optimized implementation 
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Kernel width  

3 5 7 9 11 

K
er

n
el

 h
ei

g
th

 3 1.14 1.46 1.62 1.82 1.94 

5 1.47 1.95 2.38 2.65 2.85 

7 1.70 2.35 2.88 3.28 3.46 

9 1.91 2.53 3.22 3.61 4.00 

11 1.95 2.74 3.45 4.14 4.72 

b) 

  

Kernel width  

3 5 7 9 11 

K
er

n
el

 h
ei

g
th

 3 4.40 7.60 11.21 14.71 19.22 

5 5.28 9.24 13.91 18.16 22.67 

7 5.88 10.62 15.29 20.09 25.93 

9 6.09 10.98 15.98 21.99 27.59 

11 6.66 11.37 17.48 23.39 29.11 

c) 
Fig. 9. Maps of acceleration of optimized filters compared to classical 

sequential implementation: (a) Mean filter; (b) Gaussian filter; (c) Median 

filter. 

 
a) 

 
b) 

 
c) 

Fig. 10. Evaluation of optimized filters acceleration: (a) Mean filter; (b) 

Gaussian filter; (c) Median filter. 

To assess the overall acceleration, maps were constructed 

showing the acceleration values of the parallel implementation 

of optimized algorithms (4 threads) relative to the classical 

implementation (Fig. 11) for different kernel sizes. 

  

Kernel width  

3 5 7 9 11 

K
er

n
el

 h
ei

g
th

 3 4.80 5.90 7.98 8.49 10.76 

5 4.75 7.73 9.41 12.29 12.81 

7 5.21 7.65 10.23 12.57 13.78 

9 5.39 7.92 10.30 12.52 13.82 

11 5.95 6.85 9.28 11.55 14.29 
a) 

  

Kernel width  

3 5 7 9 11 

K
er

n
el

 h
ei

g
th

 3 3.58 4.43 5.15 5.12 5.46 

5 4.07 6.36 7.51 7.78 8.35 

7 5.14 6.53 8.29 9.11 9.36 

9 5.01 8.39 8.64 9.99 10.99 

11 5.55 8.41 9.51 10.45 12.23 
b) 

  

Kernel width  

3 5 7 9 11 

K
er

n
el

 h
ei

g
th

 3 13.34 24.92 35.77 44.89 54.31 

5 16.47 30.90 44.75 59.71 66.88 

7 18.54 30.94 47.84 61.42 71.95 

9 18.53 31.35 45.63 67.47 82.21 

11 21.47 35.78 49.40 65.77 84.29 
c) 

Fig. 11. Maps of acceleration of optimized filters (4 threads OpenMP) 

compared to classical sequential implementation: (a) Mean filter; (b) Gaussian 

filter; (c) Median filter. 
 

In addition, evaluations of noise suppression characteristics 

were also performed. To simulate the noise, which may occur 

in the equipment, were put layered noise over the image, the 

additive noise part was 80%, and while the impulse noise part 

was 20%.  

A. Processing Medical X-Ray Images 

This part shows the results of the suppressing noise of three 

X-Ray images of different anatomical structure and with 

principal aim to allow the medical expert give us their opinion 

about the quality and the utility for diagnostic.  

Basically for each image, 300 noise maps were generated, 

which were superimposed on the original image. After that, 

filters (with different kernel sizes) were applied to the noisy 

image and the PSNR and SSIM metrics were calculated. 

 

Pelvis X-Ray image:  

The figure 12 presents the images of a Pelvis, (a) is the 

original image obtained from the equipment; (b), (c), (d) show 

the image processing through algorithms: Gaussian filter, 

Mean filter and Median filter respectively; (e) is the image 

added noise and (f) is the original image again. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 12. Processing of Pelvis image: (a) original image obtained of equipment.  

(b) Image processing using the Gaussian filter algorithm; (c) Image processing 

using the Mean filter algorithm; (d) Image processing using the Median filter 

algorithm; (e) Original image added noise over 20%.; (f) Original image 

again. All processing were did it using the OpenMP.  

 

Table I demonstrates average PSNR values in dB for 

optimized filters when processing noise images with size 

4280×3520 pixels. Table II demonstrates average SSIM values 

(multiplied by 100). 

 
TABLE I 

PSRN VALUES (DB) OF OPTIMIZED FILTERS. 

Noise data Kernel 

Size 

Filter 

Level PSNR Mean Gauss Median 

10% 19.4337 

3×3 29.4861 29.4266 48.3976 
5×5 33.4550 32.9562 48.7454 

7×7 35.4710 34.8571 46.1494 

9×9 36.4492 35.7210 46.2457 

11×11 36.8100 35.6927 44.9220 

15% 17.7498 

3×3 27.8072 27.8463 46.9735 

5×5 31.8449 31.6124 48.2768 
7×7 34.0264 33.6532 45.9774 

9×9 35.2106 34.0320 45.9569 

11×11 35.7759 34.1073 44.7179 

20% 16.4937 

3×3 26.6220 26.5610 44.6786 

5×5 30.6763 30.5295 47.8836 

7×7 32.9232 32.4805 45.7714 
9×9 34.2034 33.8636 45.6254 

11×11 34.8803 34.0940 44.4509 

25% 15.6150 

3×3 25.7089 25.6483 41.9746 

5×5 29.7512 29.5002 47.4195 

7×7 32.0137 31.5455 45.5098 

9×9 33.3342 32.9273 45.2661 

11×11 34.0708 33.0036 44.1495 

TABLE II 

SSIM PERCENT VALUES OF OPTIMIZED FILTERS. 

Noise data Kernel  
Size 

Filter 
Level SSIM Mean Gauss Median 

10% 18.8959 

3×3 58.9344 58.9526 98.1160 

5×5 80.4354 78.9749 97.2779 

7×7 88.9184 85.1330 96.8562 
9×9 92.2250 86.5102 96.6490 

11×11 93.6385 86.7419 96.5242 

15% 12.3248 

3×3 49.1308 49.1249 97.8409 
5×5 74.5419 73.6822 97.2388 

7×7 85.8297 84.5850 96.8320 

9×9 90.5334 86.3964 96.6290 
11×11 92.6264 89.7023 96.5052 

20% 9.2232 

3×3 42.2185 42.2055 97.2208 

5×5 69.6078 67.5101 97.1962 
7×7 83.0469 82.6568 96.8051 

9×9 88.9499 84.8045 96.6074 

11×11 91.6793 87.1676 96.4844 

25% 6.4762 

3×3 37.1053 37.0847 96.1048 

5×5 65.4875 64.2323 97.1492 

7×7 80.5558 78.2772 96.7751 

9×9 87.4868 79.6765 96.5805 

11×11 90.7826 80.0833 96.4585 

 

Tibia Fracture X-Ray image:  

The figure 13 shows the images of a Tibia fracture, (a) is 

the original image obtained from the equipment; (b), (c), (d) 

show the image processing through algorithms: Gaussian 

filter, Mean filter and Median filter respectively; (e) is the 

image added noise and (f) is the original image again.  

 

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Fig. 13. Processing of Tibia Fracture image: (a) original image obtained of 

equipment.  (b) Image processing using the Gaussian filter algorithm; (c) 

Image processing using the Mean filter algorithm; (d) Image processing using 

the Median filter algorithm; (e) Original image added noise over 20%.; (f) 

Original image again. All processing were did it using the OpenMP.  

 

Table III demonstrates average PSNR values in dB for 

optimized filters when processing noise image of the fracture 

with size 3157×3831 pixels. Table IV demonstrates average 

SSIM values (multiplied by 100). 

 
TABLE III 

PSRN VALUES (DB) OF OPTIMIZED FILTERS. 

Noise data 

Kernel 

Size 

Filter 

Leve

l PSNR Mean Gauss Median 

10% 19.9981 

3×3 29.4861 29.4266 48.3976 
5×5 33.4550 32.9562 48.7454 

7×7 35.4710 34.2571 46.1494 
9×9 36.4492 34.6210 46.2457 

11×11 36.8100 34.6927 44.9220 

15% 18.4005 

3×3 27.8072 27.7463 46.9735 
5×5 31.8449 31.3124 48.2768 

7×7 34.0264 32.6532 45.9774 

9×9 35.2106 33.0320 45.9569 
11×11 35.7759 33.1073 44.7179 

20% 17.1854 

3×3 26.6220 26.5610 44.6786 

5×5 30.6763 30.1295 47.8836 
7×7 32.9232 31.4805 45.7714 

9×9 34.2034 31.8636 45.6254 

11×11 34.8803 31.9400 44.4509 

25% 16.3125 

3×3 25.7089 25.6483 41.9746 

5×5 29.7512 29.2002 47.4195 

7×7 32.0137 30.5455 45.5098 

9×9 33.3342 30.9273 45.2661 

11×11 34.0708 31.0036 44.1495 

 

Chest and lung X-Ray image:  

The figure 14 shows the images of a Chest and lung, (a) is 

the original image obtained from the equipment; (b), (c), (d) 

show the image processing through algorithms: Gaussian 

filter, Mean filter and Median filter respectively; (e) is the 

image added noise and (f) is the original image again.   

Table V demonstrates average PSNR values in dB for 

optimized filters when processing noise image of the chest 

with size 3944×3205 pixels. Table VI demonstrates average 

SSIM values (multiplied by 100). 

 
 
 

 

TABLE IV 

SSIM PERCENT VALUES OF OPTIMIZED FILTERS. 

Noise data 
Kernel  
Size 

Filter 
Leve

l SSIM Mean Gauss Median 

10% 26.1078 

3×3 59.3201 59.4820 97.5145 

5×5 73.8881 73.3950 96.0445 
7×7 80.0669 79.0125 95.3139 

9×9 82.4815 80.0887 94.9174 

11×11 83.4067 81.2753 94.6504 

15% 16.9308 

3×3 48.3178 48.4803 97.2321 

5×5 65.6506 64.9316 95.9766 

7×7 73.5446 71.6578 95.2698 
9×9 76.7519 72.9867 94.8832 

11×11 78.0389 73.2093 94.6234 

20% 11.7219 

3×3 40.1032 40.2447 96.6667 
5×5 58.7710 57.8933 95.9006 

7×7 67.8365 65.3275 95.2220 

9×9 71.6773 66.9346 94.8471 
11×11 73.3007 68.0833 94.5919 

25% 8.0893 

3×3 34.1450 34.2658 95.7343 

5×5 53.3073 52.3242 95.8238 

7×7 63.2273 60.2271 95.1706 

9×9 67.5862 62.8587 94.8050 

11×11 69.5085 64.1283 94.5542 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 14. Processing of Chest and lung X-Ray image: (a) original image 

obtained of equipment.  (b) Image processing using the Gaussian filter 

algorithm; (c) Image processing using the Mean filter algorithm; (d) Image 

processing using the Median filter algorithm; (e) Original image added noise 

over 20%; (f) Original image again. All processing were did it using the 

OpenMP.  
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TABLE V 

PSRN VALUES (DB) OF OPTIMIZED FILTERS. 

Noise data Kernel 

Size 

Filter 

Level PSNR Mean Gauss Median 

10% 20.0350 

3×3 29.4543 29.3957 50.4992 

5×5 33.5793 33.0090 47.8523 

7×7 35.9817 34.4005 46.2378 
9×9 37.4995 34.8000 45.4176 

11×11 38.4829 34.8804 44.8985 

15% 18.3514 

3×3 27.7304 27.6728 48.6415 
5×5 31.8051 31.2383 47.7588 

7×7 34.1776 32.6040 46.1992 

9×9 35.6807 32.9949 45.3953 
11×11 36.6673 33.0734 44.8836 

20% 17.0729 

3×3 26.5007 26.4438 45.7565 

5×5 30.4996 29.9449 47.6548 
7×7 32.7961 31.2705 46.1544 

9×9 34.2348 31.6478 45.3676 

11×11 35.1740 31.7236 44.8635 

25% 16.2156 

3×3 25.5474 25.4912 42.6366 

5×5 29.4652 28.9248 47.5473 

7×7 31.6746 30.2088 46.1113 

9×9 33.0452 30.5753 45.3394 

11×11 33.9270 30.6481 44.8421 

 

TABLE VI 
SSIM PERCENT VALUES OF OPTIMIZED FILTERS. 

Noise data Kernel  
Size 

Filter 
Level SSIM Mean Gauss Median 

10% 20.5374 

3×3 59.1579 59.1921 97.5027 

5×5 79.7355 78.4048 96.4102 
7×7 88.1099 85.4020 95.9796 

9×9 91.4174 87.7512 95.7559 

11×11 92.8591 88.9772 95.6168 

15% 12.9862 

3×3 49.2356 49.2464 97.2201 

5×5 73.7181 72.9807 96.3685 

7×7 84.8214 80.6935 95.9556 
9×9 89.4914 82.4693 95.7400 

11×11 91.5983 84.7696 95.6063 

20% 8.7338 

3×3 42.0944 42.0947 96.6034 
5×5 68.6288 66.6334 96.3285 

7×7 81.8118 76.5684 95.9369 

9×9 87.6384 80.6704 95.7251 
11×11 90.3543 83.0265 95.5941 

25% 6.4832 

3×3 36.8985 36.8910 95.4997 

5×5 64.4367 62.2856 96.2804 

7×7 79.1728 74.0838 95.9109 

9×9 85.9831 78.4279 95.7085 

11×11 89.2582 81.0263 95.5819 

 

Brief analysis of medical images processing 

In order to validate the results of the experiments, after the 

processing of the images, it was requested to ten medical 

experts people to give their point of view about the quality of 

the images. Experts were professionals of different medic 

specializations (oncology, traumatology and surgery). 

The table VII presents the percentage of the selection of the 

image accord the enumeration with figure 12, 13 and 14.  

 
TABLE VII 

MEDICAL EVALUATION AND VALIDATION OF IMAGE PROCESSING 

Type № 
Images 

a b c d e f 

PELVIS  1 66% 33%    33% 

TIBIA 2 66%  33% 33%  33% 

CHEST 3 33%  66% 33%  33% 

 

We can see that the percentages of the validation of the 

experts are distributed principally around the Original Image 

(1-3(a) and 1-3(f)) and the processing images using the Mean 

and Median filter algorithms (1-3(c), 1-3(d)). 

Accord to the medical experts the “clinical eye” require 

training and depend also of the different diseases and tissues 

that seeking in the image. 

In the daily medical practice by doctors of different 

specializations (orthopedist, traumatology, oncologists, 

neurologists), imaging studies cover approximately 80%, often 

becoming the first requested study, therefore an excessive 

amount of noise in a radiography is a limiting factor in the 

performance of the doctor, or interfere with the interpretation 

of the image. 

Pelvis X-Ray image was processed by filters Mean, Gauss 

and Median, with kernel size 3×3, 5×5, 7×7, 9×9, 11×11 for 

level noise 10%, 15%, 20%, 25%, while the noise level 

increases PSNR decreases from 19.422 to 15.6150, and SSIM 

decreases from 18.8959 to 6.4762. 

Tibia Fracture X-Ray image was processed by filters Mean, 

Gauss and Median, with kernel size 3×3, 5×5, 7×7, 9×9, 

11×11 for level noise 10%, 15%, 20%, 25%, while the noise 

level increases PSNR decreases from 19.9981 to 16.3125, and 

SSIM decreases from 26.1078 to 8.0893. 

Chest and lung X-Ray image was processed by filters 

Mean, Gauss and Median, with kernel size 3×3, 5×5, 7×7, 

9×9, 11×11 for level noise 10%, 15%, 20%, 25%, while the 

noise level increases PSNR decreases from 20.0350 to 

16.2156, and SSIM decreases from 20.5374 to 6.4832. 

 

V. CONCLUSIONS 

Experiments were conducted to estimate the processing 

time of optimized filtering algorithms (Mean filter, Median 

filter, Gaussian Filter) and evaluation of noise suppression. 

Since medical point of view any radiological image presents 

an acceptable amount of noise, however, the important thing 

to considerate when reduce the noise, is that this amount of 

noise does not affect the quality of the image and especially 

the medical diagnosis. 

The filters that were used in the study have been interpreted 

by different medical specialists, and depending on the 

pathology to be discarded or confirmed, they have validated 

the importance of image noise processing; it has also been 

possible to identify and have agreed that all radiographic 

images have noise, and its increase or decrease will be 

according to its diagnosis or interpretation in reference to 

identify soft tissue or bone tissue. 

 In order to the processing, the experimental results show 

that the increase in the processing speed for different kernel 

sizes is almost the same. Some stability is observed in the 

acceleration for two threads as well as one can see the increase 

of the acceleration coefficient in the case with more than two 

threads having the kernel size larger than 5×5. Acceleration 

with the usage of four threads demonstrates reduced efficiency 

as parts of the CPU resources are spent on background tasks. 

Using OpenMP, we made parallel implementation of 

optimized algorithms, which gives performance boost up in 

almost two times for two threads and around 3, 2 times for 3 
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and 4 threads. Experimental results demonstrate that the 

optimized version of filter algorithms can well do with the 

noise reduction at appropriate minimum processing time 

compared to classical implementation. The greatest increase of 

processing speed was gained for the median filter.  

The experimental results also show that Median filter 

demonstrates the best noise reduction; though in some cases it 

suppresses details. Also, the Median filter requires the most 

computational time. For median filter optimal kernel size 3×3 

and 5×5. Gaussian and mean filters give good results with 

kernel size 5×5 and larger depending of the image. 
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