

Abstract— Most of the medical diagnostic requires studies of

medical images for to give an accurate treatment. Therefore is

important the improvement of the medical images in terms of

noise, quality, and morphological definition. The medical images

series contains approximately 20% of noise caused by the

equipment itself, especially in the x-ray modality.

Therefore, the principal aim of this project is to develop an

algorithm that helps suppress the noise as a preprocessing stage

before medical analysis. The algorithm for noise reduction

proposed uses classic and optimized mean filter, Gaussian filter,

and median filter.

This project also uses OpenMP parallel programming to

optimize processing time and computational resources. The

parallel implementation results of algorithms with sequential and

classic implementation show great performance in the quality of

the time processing, noise localization, and noise reduction. This

improvement helps medical professionals get better details about

the different pathologies for effective diagnostics and treatment.

Index Terms— medical image, Mean Filter, Median Filter,

Gaussian 2D, parallel programming, OpenMP.

I. INTRODUCTION

N image is a two-dimensional (2D) distribution of small

image points called pixels. Mathematically point view, it

can be considered as a function of two real variables, for

example, f(x,y) with f as the amplitude of the image at position

(x, y) [1-3]. In the last years, image processing has attracted

the attention of multidisciplinary

Manuscript received April 22, 2018; revised July 26, 2019. This work was

supported by Universidad de las Fuerzas Armadas ESPE, Av. Gral Ruminahui

s/n, Sangolqui Ecuador.

L. Cadena, is with Electric and Electronic Department at Universidad de

las Fuerzas Armadas ESPE, Av. Gral Ruminahui s/n, Sangolqui Ecuador.

(phone: +593997221212; e-mail: ecuadorx@gmail.com).

D. Castillo is with the Chemistry and Exact Sciences Department,

Universidad Técnica Particular de Loja UTPL, Av. Marcelino Champagñat

s/n, Loja Ecuador (e-mail: dpcastillo@utpl.edu.ec). Also D. Castillo are with

Instituto de Instrumentación para Imagen Molecular (i3M) Universitat

Politècnica de València – Consejo Superior de Investigaciones Científicas

(CSIC), Camino de Vera s/n 46022 Valencia, Spain.

A. Zotin is with Department of Informatics and Computer Techniques,

Reshetnev Siberian State University of Science and Technology, 31

krasnoyarsky rabochу av., Krasnoyarsk 660037, Russian Federation (e-mail:

zotin@sibsau.ru).

F. Cadena is with College Unidad Educativa Atahualpa. Oyacoto-Quito,

Ecuador. (e-mail: fcfc041@gmail.com)

P. Diaz, Health and Medical Science Department at Universidad Técnica

Particular de Loja UTPL, Av. Marcelino Champagñat s/n, Loja Ecuador. (e-

mail: pvdiaz@utpl.edu.ec)

fields such as applied mathematics, computer sciences,

engineering, statistics, physics, biology, and medicine.

Medical imaging is the technique and process used to create

anatomic, physiological or functional images for clinical or

medical purposes. There are many different medical image

modalities like CT, PET, MRI, X-ray, Ultrasound imaging,

fMRI, etc. [2], [4-8].

Computer-aided diagnostic processing has already become

an important part of the clinical routine because the medical

image processing plays an important role in the diagnosis and

detection of the sicknesses and the treatment [4].

For example, in radiology images, the tissues of the human

body absorb radiation and the image is projected in different

shades of black and white; the bone tissue is observed white,

the fat and soft tissues are observed gray and the air is

observed black. This type of image is widely used in trauma

for find infections, benign or malignant bone lesions,

degenerative joint disorders, lung diseases, abdomen and

pelvis lesions, mammary glands, and to locate foreign objects

and guide procedures [5]. Another type of important medical

image is magnetic resonance imaging (MRI) because it

provides anatomical and physiological information in a non-

invasive way. MRI does not use any kind of ionizing

radiation. MRI creates images of structures through the

interactions of magnetic fields and radio waves with tissues

[6].

Medical images independently of their type are often

contaminated by impulsive, additive or multiplicative noise

caused by the imaging process and the equipment itself. The

noise usually corrupts medical images by replacing some of

the pixels of the original image with new pixels having

luminance values near or equal to the minimum or maximum

of the allowable dynamic luminance range. The noise

criterions determine the type of it [3, 19, 20].

Therefore, the principal aim of this work is to develop an

algorithm that helps suppress the noise of different anatomical

structures of X-ray modality, as a pre-processing stage before

medical analysis and diagnostic.

The algorithm for noise reduction uses classic and

optimized mean filter, Gaussian filter, and median filter to

determine the pixel value in the noiseless image and remove it.

Also, this project uses a parallel programming model

(OpenMP) [8-10] to optimize the processing time and

computational resources. The parallel implementation results

of algorithms with sequential and classic implementation show

A

Evaluation of Noise Reduction Filters in

Medical Image Processing using OpenMP

Luis Cadena, Darwin Castillo, Aleksandr Zotin, Franklin Cadena, Patricia Diaz

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

great performance in the quality of the time processing, noise

localization, and noise reduction.

This improvement helps medical professionals get better

details about the different pathologies for effective diagnostics

and treatments.

Applications of Parallel Computing are: Bioscience,

Biotechnology, Genetics, Medical imaging and diagnosis,

Chemistry, Molecular Sciences, Computer Science,

Mathematics, Geology, Seismology, Mechanical and

Aerospace Engineering, Physics/Astrophysics.

This work, also describes the use of OpenMP (Open Multi-

Processing) in multi-thread image processing applications.

OpenMP is an extensive and powerful application-

programming interface (API), supporting much functionality

required for parallel programming [10]. The purpose of this

work is to provide a high level image processing operation to

demonstrate the ease of implementation and effectiveness of

OpenMP in the image processing.

II. DIGITAL CLASSIC AND OPTIMIZED 2D FILTERS

A. Mean (average) filter classic and optimized

The arithmetic classic mean filter is defined as the average

of all pixels spectrum within a local region of an image.

Fig. 1. Classic average filter.

Pseudocode of mean (average) classic filter (independent to

kernel size)

// A original image in gray value,

// B processed image and K kernel matrix

// n, m image dimension

// kr kernel rang (kernel dimension = kr*2+1)

// ksize kernel size (

// xi, yi index pixel of image

// kx ky virtual element range [-kr,kr]

ksize=(kr*2+1)*(kr*2+1)

for yi=0 to m // correct processing loops

 for xi=0 to n

 // 1.- Take pixels from gray value image A

 // in kernel area and add to sum

 sum=0

 for ky=kr- to kr

 tyi = yi+ky

 if tyi<0 then tyi=0

 if tyi>= m then tyi=m-1

 for ky=kr- to kr

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 sum=sum+A[tyi,txi] // Get pixels from image

 // A and add to sum

 end

 end

 // 2.- Evaluate average from kernel matrix size

 prom=sum/(ksize)

 // 3.- Take average value and put in study pixel in

image B

 B[yi,xi]=prom

 end

end

The optimized mean filter obtained by accumulation of the

neighborhood of pixel P(y,x), shares a lot of pixels in common

with the accumulation for pixel P(y,x+1). This means that

there is no need to compute the whole kernel for all pixels

except only the first pixel in each row. Successive pixel filter

response values can be obtained with just an add and a

subtract to the previous pixel filter response value [11-14].

Fig. 2. Optimized average filter.

Pseudocode of mean (average) optimized filter

(independent to kernel size)

// A original image in gray value,

// B processed image and K kernel matrix

// n, m image dimension

// kr kernel rang (kernel dimension = kr*2+1)

// ksize kernel size (

// xi, yi index pixel of image

// kx ky virtual element range [-kr,kr]

// txi tyi temporal index values to correct

// indexes which is out of image area

ksize=(kr*2+1)*(kr*2+1)

for yi=0 to m.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

// 1.- Take pixels from gray value image A

// (in kernel area) and add to sum

 /// only for first pixel in the row

 xi=0

 for ky=kr- to kr

 tyi = yi+ky

 if tyi<0 then tyi=0

 if tyi>= m then tyi=m-1

 for ky=kr- to kr

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 sum=sum+A[tyi,txi] // Get pixels from image A

 // and add to sum

 end

 end

 // 2.- Evaluate average from kernel matrix

 // size

 prom=sum/(ksize)

 // 3.- Take average value and put in study

 // pixel in image B

 B[yi,xi]=prom

 for xi=1 to n

 // 4.- recursive recalculation of sum

 for ky=kr- to kr

 tyi = yi+ky

 if tyi<0 then tyi=0

 if tyi>= m then tyi=m-1

 ky=xi-kr-1

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Subtract from the sum of the value of the pixel

 // from image A which is out of the kernel area

 sum=sum-A[tyi,txi]

 ky=xi+kr

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Add to sum of the value of the pixel from image

 // A which is come into of the kernel area

 sum=sum+A[tyi,txi]

 end

 // 5.- Evaluate average from kernel matrix size

 prom=sum/(ksize)

 // 6.- Take average value and put in study

 // pixel in image B

 B[yi,xi]=prom

 end

end

B. Median filter classic and optimized

Classic median filter replaces the value of a pixel spectrum

by the median of the spectrum levels in the neighborhood of

that pixel.

Pseudocode of median classic filter

// A original image in gray value,

// B processed image and K kernel matrix

// n, m image dimension

// kd kernel dimension

// xi, yi index pixel of image

// n, m image dimension

// kr kernel rang (kernel dimension = kr*2+1)

// ksize kernel size (kr*2+1)*(kr*2+1)

// kx ky virtual element range [-kr,kr]

// txi tyi temporal index values to correct

// indexes which is out of image area

// imed index of median value

ksize = (kr*2+1)*(kr*2+1)

imed = (ksize-1)/2

for yi=0 to m

 for xi=0 to n

 // 1.- Take pixels from gray image A to array 1D

 ind=0

 for ky=-kr to kr

 tyi = yi+ky

 if tyi<0 then tyi=0

 if tyi>= m then tyi=m-1

 for kx=-kr to kr

 txi=xi+kx

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Get pixels from image A and add to array

 vec[ind] =A[tyi,txi]

 end

 end

 // 2. sort array 1D

 Sort(vec)

 // 3.- Take middle term from 1D array

 // and put in study pixel in image B

 B[xi,yi]=vec[imed] // put processed pixel in

 // processed image B

 end

end

Fig. 3. Classic median filter.

Median filtering is a commonly applied non-linear filtering

technique that is particularly useful in removing speckle and

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

salt and pepper noise. It works by moving through the image

pixel by pixel, and replacing each value with the median value

of neighbouring pixels.

The optimized median filter is obtained trough the

histogram of spectrum for median calculation can be far more

efficient because it is simple to update the histogram from

window to window. Thus the histogram used for accumulating

pixels in the kernel and only a part of it is modified when

moving from one pixel to another [8-13], [16].

Fig. 4. Optimized median filter.

Pseudocode of median optimized filter

// A original image in gray value,

// B processed image and K kernel matrix

// n, m image dimension

// kd kernel dimension

// xi, yi index pixel of image

// n, m image dimension

// kr kernel rang (kernel dimension = kr*2+1)

// ksize kernel size (kr*2+1)*(kr*2+1)

// kx ky virtual element range [-kr,kr]

// txi tyi temporal index values to correct indexes

// which is out of image area

// imed index of median value

// Hist histogram of intensity [0..255]

// medV value of median

// delta

ksize = (kr*2+1)*(kr*2+1)

for yi=0 to m

// 1. Clear histogram and fill it using kernel area values

 Clear(Hist) /// only for first pixel in the row

/// can be conducted as

For i=0; to 256

 Hist[i]=0;

 xi=0;

 for ky=-kr to kr

 tyi = yi+ky

 if tyi<0 then tyi=0

 if tyi>= m then tyi=m-1

 for kx=-kr to kr

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Get pixels from image A to sValue

 sValue =A[tyi,txi]

 Hist[sValue]++ // increase count in histogram

 // in index=sValue

 end

 end

 // 2. Find median index in histogram

 medV = histogram_median(Hist, delta);

 // 3. put median value in study pixel in image B

 B[xi,yi]= medV

 // 4. Recursively change histogram

 for xi=1 to n

 for ky=-k- to kr

 tyi = yi+ky

 if tyi<0 then tyi=0

 if tyi>= m then tyi=m-1

 txi=xi-kr-1

 // Remove element from histogram

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Get pixels from image A to sValue

 sValue =A[tyi,txi]

 Hist[sValue]-- // decrease count in histogram

 // in index=sValue

 if sValue < medV then delta= delta-1

 if sValue > medV then delta= delta+1

 // Add element to histogram

 txi=xi+kr

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Get pixels from image A to sValue

 sValue =A[tyi,txi]

 Hist[sValue]++ // increase count in histogram

 // in index=sValue

 if sValue < medV then delta= delta-1

 if sValue > medV then delta= delta+1

 end

 // 5. Recalculate median index in histogram

 medV = recalculate_histogram_median(Hist, delta);

 // 6. Put median value in study pixel in image B

 B[xi,yi]= medV

 end

end

// Find median index in histogram

histogram_median(Hist,delta);

 MCount=(ksize-1)/2

 Res=0

 Lcount =0;

 for ind=0 to 255

 Lpcount= Lpcount+ Hist[ind]

 If Lcount < MCount then

 continue to next iteration;

 Else

 Res=ind

 break;

 end

 delta= ksize- Hist[res]

return res

// Recalculate median index in histogram

recalculate_histogram_median(Hist, delta);

 MCount=(ksize-1)/2

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

 Tmp_delta= delta

 Tmp_med= medV

 If Tmp_delta> MCount then

 While (Tmp_delta> MCount and Tmp_med>0)

 Tmp_med= Tmp_med-1

 If Hist[Tmp_med] >0 then Tmp_delta= Tmp_delta-

Hist[Tmp_med]

 Else

 While (Tmp_delta+ Hist[Tmp_med] < MCount and

Tmp_med<255)

 If Hist[Tmp_med] >0 then Tmp_delta= Tmp_delta+

Hist[Tmp_med]

 Tmp_med= Tmp_med+1

 delta = Tmp_delta

return Tmp_med

C. Gauss filter 2D and optimized 1Dx2

The Gaussian 2D filter uses a Gaussian function (which also

expresses the normal distribution in statistics) for calculating

the transformation to apply to each pixel in the image.

Fig. 5. Classic Gaussian 2D filter.

Pseudocode of classic Gaussian 2D filter:

// 1.- Calculate kernel Gauss bell G(x,y).

GaussianCoef2D(RH,RW, sigma);

Sum=0;

for y= -RH to RH

 for x= -RW to RW

 Gxy[x+kr,y+kr]=(1/(2*pi*sigma*sigma))*exp(-

(x*x+y*y)/(2*sigma*sigma))

 Sum=Sum+Gxy[x+kr,y+kr]

for y= -RH to RH

 for x= -RW to RW

 Gxy[x+kr,y+kr] = Gxy[x+kr,y+kr]/Sum

end

Gxy=GaussianCoef2D(kr, kr,sigma);

for yi=0 to m // correct processing loops

 for xi=0 to n

 // 2.- Take pixels from gray value image A

 // in kernel area and add to sum considering

 // Gaussian coefficient

 sum=0

 for ky=kr- to kr

 tyi = yi+ky

 if tyi<0 then tyi=0

 if tyi>= m then tyi=m-1

 for kx=kr- to kr

 txi=xi+kx

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Get pixels from image A and multiply

 // it on Gaussian coefficient

 sum=sum+A[tyi,txi]*Gxy[ky+kr][kx+kr]

 end

 end

 // 3.- put obtained value in study pixel in image B

 B[yi,xi]=prom

 end

end

The convolution of Gaussian filter can be performed much

faster since the equation for the 2D isotropic Gaussian is

separable into y and x components [7-13], [15].

GaussianCoef1D(rang, sigma)

Sum=0

for t= -rang to rang

 G[t+rang]=(1/(sqrt(2*pi)*sigma))*exp((-t*t)/(2*sigma

*sigma))

 Sum= Sum + G[t+ rang]

for t= -rang to rang

 G[t+ rang]= G[t+ rang]/ Sum

end

Fig. 6. Optimized Gaussian 2D filter.

Pseudocode of Gaussian 2D filter in double 1D

interpretation:

// TMP_Image is transposed version of the image

// 1.- Calculate kernel Gauss in 1D.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

Coef1D_1=GaussianCoef1D(kr,sigma);

Coef1D_2=GaussianCoef1D(kr,sigma);

/// Process 1D Gaussian (first)

for yi=0 to m // correct processing loops

 for xi=0 to n

 // 2.- Take pixels from gray value image A

 // in kernel area and add to sum considering

 // Gaussian coefficient

 sum=0;

 for kx=-r to r

 txi=xi+kx

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Get pixels from image A and multiply it on

 // 1D Gaussian coefficient

 sum=sum+A[yi,txi]*Coef1D_1[[kx+kr]

 end

 // 3.- put obtained value in study pixel in

 // temporal image TMP_Image

 TMP_Image [xi,yi]= sum

/// Process 1D Gaussian (second)

for yi=0 to n // correct processing loops

 for xi=0 to m

 // 4.- Take pixels from gray value image TMP_Image

 // in kernel area and add to sum considering

 // Gaussian coefficient

 sum=0;

 for kx=-kr to kr

 txi=xi+kx

 if txi<0 then txi=0

 if txi>= m then txi=n-1

 // Get pixels from image A and multiply it on

 // 1D Gaussian coefficient

 sum=sum+ TMP_Image [yi,txi]*Coef1D_2[[kx+kr]

 end

 // 5.- put obtained value in study pixel in image B

 B[xi,yi]= sum

 end

end

III. OPENMP

Parallel Programming may speed up code. Today computers

have one or more CPUs that have multiple processing cores

(Multi-core processor). This helps with desktop computing

tasks like multitasking (running multiple programs, plus the

operating system, simultaneously). For scientific computing,

this means the ability in principle of splitting up computations

into groups and running each group on its own processor [18].

Two main paradigms talk about here are shared memory

versus distributed memory models. In shared memory models,

all multiple processing units have access to the same memory

space. This is the case on desktop or laptop with multiple CPU

cores. In a distributed memory model, multiple processing

units each of their have their own memory store, and

information is passed between them. This is the model that a

networked cluster of computers operates with. A computer

cluster is a collection of standalone computers that are

connected to each other over a network, and are used together

as a single system.

The methodology in our case of the algorithms (filters) for

processing images is:

1.- Select Kernel

2.- Evaluate denoise filter with parallel OpenMP

#pragma omp parallel for

for (int y=0; y< Image_Height; y++)

 for (int x=0; x< Image_Width; x++)

 {

 // do denoise filters

 }

3.- Processed pixel put in study pixel of image denoise

OpenMP is an API that implements a multi-threaded, shared

memory form of parallelism. It uses a set of compiler

directives that are incorporated at compile-time to generate a

multi-threaded version of program code. OpenMP is designed

for multi-processor/core, shared memory machines [17], [18].

IV. METRICS: PSNR, SSIM

Any processing applied to an image may cause an important

loss of information or quality. Image quality evaluation

methods can be subdivided into objective and subjective

methods. Subjective methods are based on human judgment

and operate without reference to explicit criteria. Objective

methods are based on comparisons using explicit numerical

criteria, and several references are possible such as the ground

truth or prior knowledge expressed in terms of statistical

parameters and tests.

The next equations show the relationship between the SSIM

(structural similarity index measure) and the PSNR (peak-

signal-to-noise ratio) for grey-level (8 bits) images. Given a

reference image f and a test image g, both of size M×N, the

PSNR between f and g is defined by:

𝑃𝑆𝑁𝑅(𝑓, 𝑔) = 10𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸(𝑓, 𝑔)
)

 where

𝑀𝑆𝐸(𝑓, 𝑔) =
1

𝑀𝑁
∑∑(𝑓𝑖𝑗 − 𝑔𝑖𝑗)

2
𝑁

𝑗=1

𝑀

𝑖=1

The PSNR value approaches infinity as the MSE

approaches zero; this shows that a higher PSNR value

provides a higher image quality. At the other end of the scale,

a small value of the PSNR implies high numerical differences

between images. The SSIM is a quality metric used to measure

the similarity between two images. Wang et al. developed it,

and it is correlated with the quality perception of the human

visual system (HVS). Instead of using traditional error

summation methods, the SSIM is designed by modeling any

image distortion as a combination of three factors that are loss

of correlation, luminance distortion and contrast distortion.

The SSIM is defined as:

𝑆𝑆𝐼𝑀(𝑓, 𝑔) = 𝑙(𝑓, 𝑔)𝑐(𝑓, 𝑔)𝑠(𝑓, 𝑔).

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

where:

𝑙(𝑓, 𝑔) =
2𝜇𝑓𝜇𝑔 + 𝐶1

𝜇𝑓
2 + 𝜇𝑔

2 + 𝐶1

𝑐(𝑓, 𝑔) =
2𝜎𝑓𝜎𝑔 + 𝐶2

𝜎𝑓
2 + 𝜎𝑔

2 + 𝐶2

𝑠(𝑓, 𝑔) =
𝜎𝑓𝑔 + 𝐶3

𝜎𝑓𝜎𝑔 + 𝐶3

The first term is the luminance comparison, function that

measures the closeness of the two images’ means luminance

(μf and μg). This factor is maximal and equal to 1 only if

μf=μg. The second term is the contrast comparison, function

that measures the closeness of the contrast of the two images.

Here the contrast is measured by the standard deviation σf

and σg. This term is maximal and equal to 1 only if σf=σg.

The third term is the structure comparison, function that

measures the correlation coefficient between the two images f

and g.

Note that σfg is the covariance between f and g. The

positive values of the SSIM index are in [0,1]. A value of 0

means no correlation between images, and 1 means that f=g.

The positive constants C1, C2 and C3 are used to avoid a null

denominator [21].

V. EXPERIMENTAL RESULTS

Different X-ray images, with different sizes were processed

with the classic and optimized filters: mean, median, Gaussian

2D.

The experiment used a PC based on Intel Core i5 3.1 GHz

with 8 GB RAM. The results were obtained by measuring the

processing time of 80 different images (for each image, 400

measurements were taken).

Fig. 7. Shared memory in OpenMP.

Fig. 8 show processing time of filters classic and optimized

for different image size (4 threads OpenMP). In addition, a

study of optimized filter implementations was made. It

showed the magnitude of the acceleration relative to the

sequential implementation of the classical version of the

filters. The result of this study was represented as the maps of

acceleration of optimized filters, showing acceleration

coefficient depending on the kernel size (Fig. 9). The maps

were generated as average values obtained for different image

sizes.

Also, the acceleration stability of optimized algorithms was

evaluated depending on the size of the core and the number of

threads used. To estimate the acceleration, the mean values

obtained during the 300 measurements were taken for each

combination of the kernel size and the number of threads. Fig.

10 shows the average values of the obtained acceleration

coefficient for optimized versions of filters.

The experimental results show that the increase in the

processing speed for different kernel sizes is almost the same.

Some stability is observed in the acceleration for two threads

as well as one can see the increase of the acceleration

coefficient in the case with more than two threads having the

kernel size larger than 5×5. Acceleration with the usage of

four threads demonstrates poor efficiency as parts of the CPU

resources are spent on background tasks (Fig. 10).

a)

b)

Fig. 8. Processing time of filters (ms.) for different image size using 4 threads

OpenMP: (a) classic implementation; (b) optimized implementation

Kernel width

3 5 7 9 11

K
er

n
el

 h
ei

g
th

 3 1.41 1.97 2.53 3.12 3.68

5 1.56 2.16 2.93 3.63 4.32

7 1.57 2.35 3.11 3.84 4.56

9 1.60 2.39 3.17 3.93 4.68

11 1.61 2.42 3.24 4.06 4.89

a)

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

Kernel width

3 5 7 9 11

K
er

n
el

 h
ei

g
th

 3 1.14 1.46 1.62 1.82 1.94

5 1.47 1.95 2.38 2.65 2.85

7 1.70 2.35 2.88 3.28 3.46

9 1.91 2.53 3.22 3.61 4.00

11 1.95 2.74 3.45 4.14 4.72

b)

Kernel width

3 5 7 9 11

K
er

n
el

 h
ei

g
th

 3 4.40 7.60 11.21 14.71 19.22

5 5.28 9.24 13.91 18.16 22.67

7 5.88 10.62 15.29 20.09 25.93

9 6.09 10.98 15.98 21.99 27.59

11 6.66 11.37 17.48 23.39 29.11

c)
Fig. 9. Maps of acceleration of optimized filters compared to classical

sequential implementation: (a) Mean filter; (b) Gaussian filter; (c) Median

filter.

a)

b)

c)

Fig. 10. Evaluation of optimized filters acceleration: (a) Mean filter; (b)

Gaussian filter; (c) Median filter.

To assess the overall acceleration, maps were constructed

showing the acceleration values of the parallel implementation

of optimized algorithms (4 threads) relative to the classical

implementation (Fig. 11) for different kernel sizes.

Kernel width

3 5 7 9 11

K
er

n
el

 h
ei

g
th

 3 4.80 5.90 7.98 8.49 10.76

5 4.75 7.73 9.41 12.29 12.81

7 5.21 7.65 10.23 12.57 13.78

9 5.39 7.92 10.30 12.52 13.82

11 5.95 6.85 9.28 11.55 14.29
a)

Kernel width

3 5 7 9 11

K
er

n
el

 h
ei

g
th

 3 3.58 4.43 5.15 5.12 5.46

5 4.07 6.36 7.51 7.78 8.35

7 5.14 6.53 8.29 9.11 9.36

9 5.01 8.39 8.64 9.99 10.99

11 5.55 8.41 9.51 10.45 12.23
b)

Kernel width

3 5 7 9 11

K
er

n
el

 h
ei

g
th

 3 13.34 24.92 35.77 44.89 54.31

5 16.47 30.90 44.75 59.71 66.88

7 18.54 30.94 47.84 61.42 71.95

9 18.53 31.35 45.63 67.47 82.21

11 21.47 35.78 49.40 65.77 84.29
c)

Fig. 11. Maps of acceleration of optimized filters (4 threads OpenMP)

compared to classical sequential implementation: (a) Mean filter; (b) Gaussian

filter; (c) Median filter.

In addition, evaluations of noise suppression characteristics

were also performed. To simulate the noise, which may occur

in the equipment, were put layered noise over the image, the

additive noise part was 80%, and while the impulse noise part

was 20%.

A. Processing Medical X-Ray Images

This part shows the results of the suppressing noise of three

X-Ray images of different anatomical structure and with

principal aim to allow the medical expert give us their opinion

about the quality and the utility for diagnostic.

Basically for each image, 300 noise maps were generated,

which were superimposed on the original image. After that,

filters (with different kernel sizes) were applied to the noisy

image and the PSNR and SSIM metrics were calculated.

Pelvis X-Ray image:

The figure 12 presents the images of a Pelvis, (a) is the

original image obtained from the equipment; (b), (c), (d) show

the image processing through algorithms: Gaussian filter,

Mean filter and Median filter respectively; (e) is the image

added noise and (f) is the original image again.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Processing of Pelvis image: (a) original image obtained of equipment.

(b) Image processing using the Gaussian filter algorithm; (c) Image processing

using the Mean filter algorithm; (d) Image processing using the Median filter

algorithm; (e) Original image added noise over 20%.; (f) Original image

again. All processing were did it using the OpenMP.

Table I demonstrates average PSNR values in dB for

optimized filters when processing noise images with size

4280×3520 pixels. Table II demonstrates average SSIM values

(multiplied by 100).

TABLE I

PSRN VALUES (DB) OF OPTIMIZED FILTERS.

Noise data Kernel

Size

Filter

Level PSNR Mean Gauss Median

10% 19.4337

3×3 29.4861 29.4266 48.3976
5×5 33.4550 32.9562 48.7454

7×7 35.4710 34.8571 46.1494

9×9 36.4492 35.7210 46.2457

11×11 36.8100 35.6927 44.9220

15% 17.7498

3×3 27.8072 27.8463 46.9735

5×5 31.8449 31.6124 48.2768
7×7 34.0264 33.6532 45.9774

9×9 35.2106 34.0320 45.9569

11×11 35.7759 34.1073 44.7179

20% 16.4937

3×3 26.6220 26.5610 44.6786

5×5 30.6763 30.5295 47.8836

7×7 32.9232 32.4805 45.7714
9×9 34.2034 33.8636 45.6254

11×11 34.8803 34.0940 44.4509

25% 15.6150

3×3 25.7089 25.6483 41.9746

5×5 29.7512 29.5002 47.4195

7×7 32.0137 31.5455 45.5098

9×9 33.3342 32.9273 45.2661

11×11 34.0708 33.0036 44.1495

TABLE II

SSIM PERCENT VALUES OF OPTIMIZED FILTERS.

Noise data Kernel
Size

Filter
Level SSIM Mean Gauss Median

10% 18.8959

3×3 58.9344 58.9526 98.1160

5×5 80.4354 78.9749 97.2779

7×7 88.9184 85.1330 96.8562
9×9 92.2250 86.5102 96.6490

11×11 93.6385 86.7419 96.5242

15% 12.3248

3×3 49.1308 49.1249 97.8409
5×5 74.5419 73.6822 97.2388

7×7 85.8297 84.5850 96.8320

9×9 90.5334 86.3964 96.6290
11×11 92.6264 89.7023 96.5052

20% 9.2232

3×3 42.2185 42.2055 97.2208

5×5 69.6078 67.5101 97.1962
7×7 83.0469 82.6568 96.8051

9×9 88.9499 84.8045 96.6074

11×11 91.6793 87.1676 96.4844

25% 6.4762

3×3 37.1053 37.0847 96.1048

5×5 65.4875 64.2323 97.1492

7×7 80.5558 78.2772 96.7751

9×9 87.4868 79.6765 96.5805

11×11 90.7826 80.0833 96.4585

Tibia Fracture X-Ray image:

The figure 13 shows the images of a Tibia fracture, (a) is

the original image obtained from the equipment; (b), (c), (d)

show the image processing through algorithms: Gaussian

filter, Mean filter and Median filter respectively; (e) is the

image added noise and (f) is the original image again.

(a) (b)

(c) (d)

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

(e) (f)

Fig. 13. Processing of Tibia Fracture image: (a) original image obtained of

equipment. (b) Image processing using the Gaussian filter algorithm; (c)

Image processing using the Mean filter algorithm; (d) Image processing using

the Median filter algorithm; (e) Original image added noise over 20%.; (f)

Original image again. All processing were did it using the OpenMP.

Table III demonstrates average PSNR values in dB for

optimized filters when processing noise image of the fracture

with size 3157×3831 pixels. Table IV demonstrates average

SSIM values (multiplied by 100).

TABLE III

PSRN VALUES (DB) OF OPTIMIZED FILTERS.

Noise data

Kernel

Size

Filter

Leve

l PSNR Mean Gauss Median

10% 19.9981

3×3 29.4861 29.4266 48.3976
5×5 33.4550 32.9562 48.7454

7×7 35.4710 34.2571 46.1494
9×9 36.4492 34.6210 46.2457

11×11 36.8100 34.6927 44.9220

15% 18.4005

3×3 27.8072 27.7463 46.9735
5×5 31.8449 31.3124 48.2768

7×7 34.0264 32.6532 45.9774

9×9 35.2106 33.0320 45.9569
11×11 35.7759 33.1073 44.7179

20% 17.1854

3×3 26.6220 26.5610 44.6786

5×5 30.6763 30.1295 47.8836
7×7 32.9232 31.4805 45.7714

9×9 34.2034 31.8636 45.6254

11×11 34.8803 31.9400 44.4509

25% 16.3125

3×3 25.7089 25.6483 41.9746

5×5 29.7512 29.2002 47.4195

7×7 32.0137 30.5455 45.5098

9×9 33.3342 30.9273 45.2661

11×11 34.0708 31.0036 44.1495

Chest and lung X-Ray image:

The figure 14 shows the images of a Chest and lung, (a) is

the original image obtained from the equipment; (b), (c), (d)

show the image processing through algorithms: Gaussian

filter, Mean filter and Median filter respectively; (e) is the

image added noise and (f) is the original image again.

Table V demonstrates average PSNR values in dB for

optimized filters when processing noise image of the chest

with size 3944×3205 pixels. Table VI demonstrates average

SSIM values (multiplied by 100).

TABLE IV

SSIM PERCENT VALUES OF OPTIMIZED FILTERS.

Noise data
Kernel
Size

Filter
Leve

l SSIM Mean Gauss Median

10% 26.1078

3×3 59.3201 59.4820 97.5145

5×5 73.8881 73.3950 96.0445
7×7 80.0669 79.0125 95.3139

9×9 82.4815 80.0887 94.9174

11×11 83.4067 81.2753 94.6504

15% 16.9308

3×3 48.3178 48.4803 97.2321

5×5 65.6506 64.9316 95.9766

7×7 73.5446 71.6578 95.2698
9×9 76.7519 72.9867 94.8832

11×11 78.0389 73.2093 94.6234

20% 11.7219

3×3 40.1032 40.2447 96.6667
5×5 58.7710 57.8933 95.9006

7×7 67.8365 65.3275 95.2220

9×9 71.6773 66.9346 94.8471
11×11 73.3007 68.0833 94.5919

25% 8.0893

3×3 34.1450 34.2658 95.7343

5×5 53.3073 52.3242 95.8238

7×7 63.2273 60.2271 95.1706

9×9 67.5862 62.8587 94.8050

11×11 69.5085 64.1283 94.5542

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Processing of Chest and lung X-Ray image: (a) original image

obtained of equipment. (b) Image processing using the Gaussian filter

algorithm; (c) Image processing using the Mean filter algorithm; (d) Image

processing using the Median filter algorithm; (e) Original image added noise

over 20%; (f) Original image again. All processing were did it using the

OpenMP.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

TABLE V

PSRN VALUES (DB) OF OPTIMIZED FILTERS.

Noise data Kernel

Size

Filter

Level PSNR Mean Gauss Median

10% 20.0350

3×3 29.4543 29.3957 50.4992

5×5 33.5793 33.0090 47.8523

7×7 35.9817 34.4005 46.2378
9×9 37.4995 34.8000 45.4176

11×11 38.4829 34.8804 44.8985

15% 18.3514

3×3 27.7304 27.6728 48.6415
5×5 31.8051 31.2383 47.7588

7×7 34.1776 32.6040 46.1992

9×9 35.6807 32.9949 45.3953
11×11 36.6673 33.0734 44.8836

20% 17.0729

3×3 26.5007 26.4438 45.7565

5×5 30.4996 29.9449 47.6548
7×7 32.7961 31.2705 46.1544

9×9 34.2348 31.6478 45.3676

11×11 35.1740 31.7236 44.8635

25% 16.2156

3×3 25.5474 25.4912 42.6366

5×5 29.4652 28.9248 47.5473

7×7 31.6746 30.2088 46.1113

9×9 33.0452 30.5753 45.3394

11×11 33.9270 30.6481 44.8421

TABLE VI
SSIM PERCENT VALUES OF OPTIMIZED FILTERS.

Noise data Kernel
Size

Filter
Level SSIM Mean Gauss Median

10% 20.5374

3×3 59.1579 59.1921 97.5027

5×5 79.7355 78.4048 96.4102
7×7 88.1099 85.4020 95.9796

9×9 91.4174 87.7512 95.7559

11×11 92.8591 88.9772 95.6168

15% 12.9862

3×3 49.2356 49.2464 97.2201

5×5 73.7181 72.9807 96.3685

7×7 84.8214 80.6935 95.9556
9×9 89.4914 82.4693 95.7400

11×11 91.5983 84.7696 95.6063

20% 8.7338

3×3 42.0944 42.0947 96.6034
5×5 68.6288 66.6334 96.3285

7×7 81.8118 76.5684 95.9369

9×9 87.6384 80.6704 95.7251
11×11 90.3543 83.0265 95.5941

25% 6.4832

3×3 36.8985 36.8910 95.4997

5×5 64.4367 62.2856 96.2804

7×7 79.1728 74.0838 95.9109

9×9 85.9831 78.4279 95.7085

11×11 89.2582 81.0263 95.5819

Brief analysis of medical images processing

In order to validate the results of the experiments, after the

processing of the images, it was requested to ten medical

experts people to give their point of view about the quality of

the images. Experts were professionals of different medic

specializations (oncology, traumatology and surgery).

The table VII presents the percentage of the selection of the

image accord the enumeration with figure 12, 13 and 14.

TABLE VII

MEDICAL EVALUATION AND VALIDATION OF IMAGE PROCESSING

Type №
Images

a b c d e f

PELVIS 1 66% 33% 33%

TIBIA 2 66% 33% 33% 33%

CHEST 3 33% 66% 33% 33%

We can see that the percentages of the validation of the

experts are distributed principally around the Original Image

(1-3(a) and 1-3(f)) and the processing images using the Mean

and Median filter algorithms (1-3(c), 1-3(d)).

Accord to the medical experts the “clinical eye” require

training and depend also of the different diseases and tissues

that seeking in the image.

In the daily medical practice by doctors of different

specializations (orthopedist, traumatology, oncologists,

neurologists), imaging studies cover approximately 80%, often

becoming the first requested study, therefore an excessive

amount of noise in a radiography is a limiting factor in the

performance of the doctor, or interfere with the interpretation

of the image.

Pelvis X-Ray image was processed by filters Mean, Gauss

and Median, with kernel size 3×3, 5×5, 7×7, 9×9, 11×11 for

level noise 10%, 15%, 20%, 25%, while the noise level

increases PSNR decreases from 19.422 to 15.6150, and SSIM

decreases from 18.8959 to 6.4762.

Tibia Fracture X-Ray image was processed by filters Mean,

Gauss and Median, with kernel size 3×3, 5×5, 7×7, 9×9,

11×11 for level noise 10%, 15%, 20%, 25%, while the noise

level increases PSNR decreases from 19.9981 to 16.3125, and

SSIM decreases from 26.1078 to 8.0893.

Chest and lung X-Ray image was processed by filters

Mean, Gauss and Median, with kernel size 3×3, 5×5, 7×7,

9×9, 11×11 for level noise 10%, 15%, 20%, 25%, while the

noise level increases PSNR decreases from 20.0350 to

16.2156, and SSIM decreases from 20.5374 to 6.4832.

V. CONCLUSIONS

Experiments were conducted to estimate the processing

time of optimized filtering algorithms (Mean filter, Median

filter, Gaussian Filter) and evaluation of noise suppression.

Since medical point of view any radiological image presents

an acceptable amount of noise, however, the important thing

to considerate when reduce the noise, is that this amount of

noise does not affect the quality of the image and especially

the medical diagnosis.

The filters that were used in the study have been interpreted

by different medical specialists, and depending on the

pathology to be discarded or confirmed, they have validated

the importance of image noise processing; it has also been

possible to identify and have agreed that all radiographic

images have noise, and its increase or decrease will be

according to its diagnosis or interpretation in reference to

identify soft tissue or bone tissue.

 In order to the processing, the experimental results show

that the increase in the processing speed for different kernel

sizes is almost the same. Some stability is observed in the

acceleration for two threads as well as one can see the increase

of the acceleration coefficient in the case with more than two

threads having the kernel size larger than 5×5. Acceleration

with the usage of four threads demonstrates reduced efficiency

as parts of the CPU resources are spent on background tasks.

Using OpenMP, we made parallel implementation of

optimized algorithms, which gives performance boost up in

almost two times for two threads and around 3, 2 times for 3

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

and 4 threads. Experimental results demonstrate that the

optimized version of filter algorithms can well do with the

noise reduction at appropriate minimum processing time

compared to classical implementation. The greatest increase of

processing speed was gained for the median filter.

The experimental results also show that Median filter

demonstrates the best noise reduction; though in some cases it

suppresses details. Also, the Median filter requires the most

computational time. For median filter optimal kernel size 3×3

and 5×5. Gaussian and mean filters give good results with

kernel size 5×5 and larger depending of the image.

REFERENCES

[1] S. Sanjay, S. Neeraj, S. Shiru, “Image Processing Tasks using Parallel

Computing in Multi core Architecture and its Applications in Medical
Imaging”. International Journal of Advanced Research in Computer and

Communication Engineering Vol. 2, Issue 4, April 2013.

[2] H. Zhu, “Medical image processing Overview,” unpublised.
[3] A. S. Y. Bin-Habtoor et al, “Removal Speckle Noise from Medical

Image Using Image Processing Techniques,” (IJCSIT) International

Journal of Computer Science and Information Technologies, Vol. 7 (1) ,
2016, 375-377.

[4] J. Shiraishi, Q. Li, D. Appelbaum, K. Doi, “Computer-aided diagnosis

and artificial intelligence in clinical imaging,” In Seminars in nuclear
medicine 2011 Nov 1 (Vol. 41, No. 6, pp. 449-462). WB Saunders.

[5] A. Drew. M.D. Torigian, M.A. Fsar, “Radiology Secrets Plis [internet],”

Philadelphia: 2017. Chapther 1, Introduction to radiography,
fluorodcopy, and tomosynthesis; [cited from 8 the october 2018]; p.3-7.

Avaible from: https://www.clinicalkey.es/#!/content/book/3-s2.0-

B9780323286381000013
[6] A. Drew. M.D. Torigian, M.A. Fsar, “Radiology Secrets Plis[internet],”

Philadelphia: 2017. Chapther 3, Introduction to Nuclear Medicine and
Molecular Imaging; [cited from 8 the october 2018]; p.14-19. Avaible

from: https://www.clinicalkey.es/#!/content/book/3-s2.0-

B9780323286381000037

[7] R.C. Gonzalez, R.E. Woods, “Digital Image Processing,” 3rd edition,

Prentice-Hall, 2008. ISBN-13: 978-0131687288, 2008.

[8] L. Huang, et al, “Parallelizing Ultrasound Image Processing using
OpenMP on Multicore Embedded Systems,” 978-1-4673-5085-

3/12/$31.00 ©2012 IEEE.

[9] G. Slabaugh, et al., “Multicore Image Processing with OpenMP,”
unpublished.

[10] S. Patel, “A Survey on Image Processing Techniques with OpenMP,” ©

2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939.
[11] A. Zotin, K. Simonov, F. Kapsargin, T. Cherepanova, A. Kruglyakov

and L. Cadena, “Techniques for Medical Images Processing Using

Shearlet Transform and Color Coding,” In: Favorskaya M., Jain L. (eds)
Computer Vision in Control Systems-4. Intelligent Systems Reference

Library, vol 136. Springer, Cham. Chapter First Online: 27 October

2017 DOI https://doi.org/10.1007/978-3-319-67994-5_9.
[12] Chandel et al. Image Filtering Algorithms and Techniques: A Review //

International Journal of Advanced Research in Computer Science and

Software Engineering 3(10), pp. 198-202, 2013.
[13] B. Gupta, N. Singh, “Image Denoising with Linear and Non-Linear

Filters,” A Review // International Journal of Computer Science Issues,

Vol. 10, Issue 6, No 2, pp. 149-154, 2013.
[14] A. Lukin, “Tips & Tricks: Fast Image Filtering Algorithms,” 17-th

International Conference on Computer Graphics GraphiCon'2007: 186–

189, 2007.
[15] G. Pascal, “A Survey of Gaussian Convolution Algorithms,” Image

Processing On Line 3: 286–310, 2013.

[16] S. Perreault, P. Hebert, “Median filtering in constant time,” IEEE
Transactions on Image Processing 16(9): 2389–2394, 2007.

[17] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon,

“Parallel programing in openmp,” Academic Press. USA. 249p ISBN 1-
55860-671-8, 2001.

[18] A. Kiessling, “An Introduction to parallel programming with OpenMP,”

A Pedagogical Seminar. The University of Edinburgh. UK, 2009.

[19] N. M. Thanh and M. S. Chen, “Image Denoising Using Adaptive Neuro-

Fuzzy System,” IAENG International Journal of Applied Mathematics,
vol. 36, no. 1_11, pp 67-73, 2007.

[20] C.U. Lei, C.M. Cheung, and N. Wong, “Efficient 2D Linear-Phase IIR

Filter Design and Application in Image Filtering,” IAENG International
Journal of Applied Mathematics, vol. 37, no. 1_9, pp 56-63, 2007.

[21] A. Horé, D. Ziou, “Image quality metrics: PSNR vs. SSIM,” 2010

International Conference on Pattern Recognition. 2010 IEEE. DOI
10.1109/ICPR.2010.579, 1051-4651/10

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_09

(Advance online publication: 20 November 2019)

__

https://www.clinicalkey.es/#!/content/book/3-s2.0-B9780323286381000013
https://www.clinicalkey.es/#!/content/book/3-s2.0-B9780323286381000013

