

 In this paper, we introduce DeepSentiment, a dynamic deep
learning model to detect and classify malicious sentiment on
the OSN. We assume that better detection of malicious
sentiment can act as active authentication for the OSN. To
convince the model, we provide experiments result. We will
summarize the main innovations and contributions of our
work, particularly in the OSN malicious sentiment problem
as follows:

Abstract—Current Online Social Network (OSN) needs real-

time and adaptive security model. The tremendous success of
deep learning algorithms at computer vision tasks in recent
years inspires us to adopt the method. It is becoming
increasingly popular for various applications include in OSN
security and privacy-preserving. In this paper, we propose
DeepSentiment, a dynamic deep learning model to detect and
classify malicious sentiment in OSN. Different from
conventional CNN, we introduce RunPool, a dynamic pooling
function to train the sentiment features. By using the function,
we find a significant increase in the graph’s performance with
the DeepSentiment CNN model. Demonstrated by the
experiment, we harvest a higher accuracy and small loss in
malicious sentiment classification with the benchmark dataset.

Index Terms—Neural Networks, Malicious Sentiment,
Dynamic Deep Learning, Online Social Network

I. INTRODUCTION
URRENTLY, almost each of the devices has a security
option to unlock and access the device, such as using a
PIN, a password, keyboard patterns. The current

security techniques put user data at risk because there are no
additional security checks performed after the device
unlocked or login in the application environment.
Unauthorized people may able to crack the simple passwords
or PIN of mobile phone or wearable devices because of
security weaknesses [1]. However, common security
technique as cryptography is no longer suitable for the
dynamic environment.

The rapid growth of Social Network has a potential problem
in security and privacy problem. The OSN environment
remains risky and becomes a target of attacking the public
network such as the internet. Based on a survey, users are
more preferred in social existence, flow, and self-disclosure
than security. It is serious issues for data privacy in the
popular application [2]. As a primary research area in OSN,
Some explorations have been proposed to solve OSN security
and privacy issues [39][41][44].

Manuscript received November 1, 2018; revised March 27, 2018.
Huang Jin Jie (Corresponding Author) / 1 Harbin University of Science &

Technology. He is Professor and Ph.D. Supervisor in School of Computer
Science and Technology; His current research interests include artificial
intelligence and control system (huangjinjie163@163.com).

Putra Wanda/ (2 University of Respati Yogyakarta). He is Ph.D. student
in School of Computer Science and Technology, Harbin University of
Science and Technology, Harbin. China.

Many users utilize public OSN for daily activities, but the

primary concern in these applications is privacy and security.
In the interacting process, the problem appears when the user
can see the received messages of some online users without
any registration [3]. Unluckily, Telegram, one of the famous
OSN, the most encrypted messenger still remains a weakness.
A study reveals a technique that may able to reconstruct the
data log that send or received by the user [4].

Traditionally, authentication is one of the most critical
security services in computer application The conventional
model like onetime authentication remains an issue. There are
password and public/private key authentication as the two
most popular approaches. The method including public-key
cryptography for authentication [6] requires a large
computations memory and time. Computational overhead is
still become the main concerns for public key security.
Therefore, it needs an efficient technique for authenticating
OSN users after logging in to the system. Several studies
propose a security model to address the issue by conducting
continuous authentication [7].

However, the conventional model puts private data at risk
when user attacked after logged in to a system and attacker
pretends as the real user. Another weakness is some public
OSN transmit user data in plaintext over the public network
[5]. Most of OSN does not implement continuous privacy
preserving in the communication process. Luckily,
continuous authentication becomes a hot topic for several
years. Many studies explore the security model in the mobile
context. For example, a paper proposes continuous
authentication by collecting and using biometric information
to classify a genuine or fake user [8].

In recent years, deep learning, specifically Convolutional
Neural Networks [9] are becoming increasingly popular in
solving various applications., The neural networks have
achieved state-of-the-art results on a variety of challenging
problems in computer vision [10] [11]. The CNN runs the
computation by using the convolutional operation in the
hidden layer. By a set of filters, it computes the output feature
maps by convolving the feature maps of the previous layer.

DeepSentiment: Finding Malicious Sentiment in
Online Social Network based on Dynamic Deep

Learning
Putra Wanda1,2, Huang Jin Jie1, Member, IAENG

C

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

1. We demonstrate that DeepSentiment is more efficient
than several learning methods. Instead of using
conventional CNN, we develop a new architecture of
the neural network by adopting a dynamic model of
deep learning architecture.

2. We propose a dynamic pooling method for training the
neural network. It is to calculate and detect the
malicious sentiment on the OSN. Hence, it can
classify malicious content based on the message
sentiment analysis. The pooling manipulation model
achieves state-of-the-art performance in malicious
sentiment problem.

3. We show analysis of the dynamic pooling function can
improve state-of-the-art on the benchmark an OSN
dataset. To convince model classification
performance, we undergo metric evaluation at the end
of this experiment.

Organization: The paper will discuss the introduction of
sentiment analyses in Chapter I, related works in Chapter II.
Chapter III describes the proposed model of CNN and
Chapter IV and Chapter V discusses the experiment result and
analysis of this experiment with detail explanation. In
Chapter VII, we describe the conclusion and future research
directions.

II. RELATED WORKS
OSN applications have grown quickly and significantly.

Unfortunately, it remains anomalous nodes issue. The
anomalous user can spread malicious software or threat, such
as viruses, malware, and so forth over the network. Infected
users will spread malicious software automatically by
sending fake requests to other users. Some studies present a
method to detect OSN activities by constructing a community
detection algorithm [15] or building message classifier with
Naive Bayes [42].

Various research has proposed a diverse OSN protection
strategy. A study proposes a model by adding a secure
module and applying a hash algorithm to maintain the path in
transceiver and routing modules [12]. The paper utilizes the
hash algorithm to secure network conversation and to
produce a private environment. Not just using the hash
protocol, a study constructs security strategy by using the
group authentication model. It is to authenticate all users
simultaneously within the group. Instead of using one-to-one
authentication, it adopts many-to-many authentication [13].
Another model presents an organizing scheme in the OSN
based on trust chain model [14]

In OSN group environment, there are critical elements
including privacy, authenticity, integrity, and non-
repudiation as the important requirements in the system.
Thus, a study implements common cryptography like Elliptic
Curve Cryptosystem (ECC) to build a security scheme. In the
model, an agent creates connectivity anytime, anywhere, any
device [16]. To increase the OSN security level, a paper
employs multiprotocol for OSN. It combines various protocol
including end-to-end encryption and off the record messaging
protocol [17].

In other applications of OSN, a study proposes Mobile
Healthcare Social Networks (MHSNs) security to solve
conflicting privacy concerns on protecting individual

symptoms from strangers. In the process, a similar symptom
matching process to achieve personal health information
(PHI) sharing [18]. Besides, a paper introduces a game-
theoretic framework to model interactions among user in an
OSN. In this framework, the interaction process may
influence decisions to conduct privacy protection [19].

A common technique to address the threat in OSN is
utilizing cryptography. However, the conventional technique
is no longer suitable for the OSN dynamic environment.
Cryptography is a conventional technique to construct
information security [20], It converts the text (plaintext),
random text (ciphertext) or vice-versa [21]. Authentication is
a process when people and the application are authorized in a
system. Diverse papers introduce various methods to get an
efficient authentication process. They present key agreement
scheme to provide secure roaming services information [22],
to address the problem of quickly detecting intrusions with
lower false detection rates [23].

Nowadays, multimodal continuous authentication is one of
the more promising authentication methods. As systems
begin to support this model of security, users do not need to
memorize their login passwords or tokens, and system
administrators feel more confident when using their accounts.
For several years, continuous authentication or active
authentication has been a hot topic of studies, but research in
the mobile context has only recently still grown. Current
digital interaction is necessary for real-time authentication in
many research areas [24].

For example, the Internet of Things as one of the hottest
topics in computer science. It needs an efficient model for the
authentication process. The future small smart devices lack
the conventional interfaces used for authentication (such as
keyboards, mice, and touchscreens). So, a deep study needs
to ensure how can users be authenticated and authorized
continuously. These issue deal with Continuous
authentication mechanisms [25]. In a mobile environment,
the studies introduce continuous authentication by face
recognition, gait, profiling behavior, and other approaches
such as device movement and the ambient noise [26] [27].

Modern authentication method utilizes learning algorithms
as the classifier. Deep learning is becoming increasingly
popular in solving various applications, one of them is the
authentication process. It is a part of machine learning
algorithms which imitate the structure and function of the
brain. To construct a protection model, a study presents the
Deep Belief Networks for authorship verification model
(CA). It also implements Gaussian-Bernoulli (DBN) units to
model real-valued data [28]

In sentiment analyses problem, Zhang Shan et al [35]
propose a technique to construct Bayes classifier and to
employ the microblog’s emoticons to build the Chinese
sentiment corpus. To improve the performance, it calculates
the particular entropy. A paper explores SVM to compute
sentiment analysis. It calculates three features including the
emoticon, the sentiment lexicon and the hybrid approach over
the hierarchical structure. The experiments show the result
can achieve a good performance [36].

In a large OSN, millions of users posting millions of
messages every day. It requires to know which is normal or
malicious sentiment accurately. Hence, current papers
present diverse sentiment analysis model based on a deep

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

learning algorithm. A study proposes sentiment measurement
with CNN's and SVM. In the paper, they feed the word vector
as the input and calculate the CNN model to conduct
automatic feature learner. At the final step, they implement
the SVM as the text classifier [37]. Another study calculates
CNN with multi-Channel Distributed Representation for
classifying the Tweets [43].

III. MODEL OF CNN

A. Common CNN
Commonly, CNN has many identical copies of the same

neuron. In a CNN, a computational process runs large
models’ computation with a number of hyper-parameters.
CNN has many interleaved convolutional and pooling layers
over the network. The layer receives the feature maps and
computers feature maps as its output by running
convolutional operation. The parameters of the convolution
layer called filters. For testing the loss, it needs back-
propagation to learn during training the model [8].

In the CNN, there are a forward pass and backward pass.
The forward pass computes from the inputs data until the
output layers. To obtain the loss function, it traverses through
all neurons from first to the last layer. In the Forward Pass
process, the learning is usually run in groups of N samples. In
this study denoted by 𝑥"#, the i-th input feature map of sample
n and 𝑦%# the j-th output of n. In this process of the
convolutional layer. The 𝑦%# computed using the
convolutional operator (*). Equation (1) shows forward pass
formulation in Conventional CNN networks.

𝑦%# ='𝑘"% ∗

"

𝑥"#																																								(1)

In the Forward Pass process, the output feature maps are
computed using the summation process. It will calculate the
filter 𝑘"% convolute with input feature map 𝑥"#.

A backward pass is computed from the last layer, move
back to the first layer. The process employs a gradient descent
algorithm or a similar technique. This process will calculate
the gradient descent function denoted by 𝑘"% in these
following formulas. Equation (2), (3), (4) describe how to
calculate Backward Pass in Conventional CNN Networks.

𝜕𝑙
𝜕𝑥"#

='0
𝜕𝑙
𝜕𝑦%#

1
%

∗ 2𝑘"%3																				(2)

𝜕𝑙
𝜕𝑘"%

=
1
𝑁'0

𝜕𝑙
𝜕𝑦%#

1
%

∗ (𝑥"#)																(3)

𝑘"% = 𝑘"% − 𝛼 ∙ 0
𝜕𝑙
𝜕𝑘"%

1																								(4)

In the above formulas, loss function l for the gradient of the
network concerning 𝑥"# calculated with equation (2). Besides,
calculating of loss function with 𝑘"% computed by the next
equation (3) and after calculating ;<

;=>?
, gradient descent will

update parameters 𝑘"% by calculating 𝛼 learning rate shown
with equation (4).

B. Dynamic CNN
In this study, we propose a dynamic CNN to measure

message sentiment of OSN users. Instead of using a linear
parameter, a dynamic CNN computes the CNN layer
according to the length of the input matrix in each layer.
Dynamic CNN alternates between wide convolution layers
with dynamic pooling layers. The dynamic CNN layer
receives two inputs within the operation. The first input is the
previous layer of the features maps and the second is the
filters

We construct a dynamic CNN by formulating a pooling
function to get an appropriate k-max pooling value. By using
dynamic CNN, it can compute the graph by harnessing the
current parameters of each layer. The approach employs
dynamic k-max pooling describe features that correspond to
suitable features in the neural network layer. We implement
the pooling function within the hidden layers. IN the process,
the pooling operator is activated after the topmost
convolutional layer. It makes the input to the fully connected
layers is the independent length of the input message.

We construct an algorithm to calculate the value of K-Max
pooling. The model employs the k value at intermediate
layers (hidden layer). The parameter k is a dynamic value to
enable the extraction of higher order and longer-range
features. The dynamic CNN calculates forward pass with
function 5.

𝑦%# ='𝑘"%# ∗
"

𝑥"#																															(5)	

In this process, the first network computes the features maps
as the input layer to the dynamic CNN. In Equation (5), 𝑥"#is
the i-th input feature map of the sample n and 𝑘"%# is the ij
input kernel of the sample n. then, j-th becomes output feature
map of sample n networks. Operation of backward and
forward pass run simultaneously in one iteration. The
dynamic CNN calculates backward pass with the function (6),
(7).

𝜕𝑙
𝜕𝑥"#

='0
𝜕𝑙
𝜕𝑦%#

1
%

∗ 2𝑘"%# 3														(6)	

𝜕𝑙
𝜕𝑘"%#

= 0
𝜕𝑙
𝜕𝑘%#

1 ∗ 𝑥"#																									(7)	

In the Backward Pass process with Equation (6), the layer will
compute the gradient of the l (loss function) with respect 𝑥"#.
The values of the gradient calculated by the partial derivative
function ;<

;C>
D and passed to the first layer of the network. Then

Equation (7) is used to calculate the gradient of the loss
function with respect to 𝑘"%# . Fig. 1 depicts Network topology
of Convolutional Neural Network with dynamic k-max
pooling to obtain the output.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

Fig. 1. The DeepSentiment topology of Neural Network with dynamic k-max
pooling. In the model, a computational process runs large models’
computation with a number of parameters. The network has many interleaved
convolutional and pooling layers over the network

Fig 1 depicts the computation process in the hidden layer.
The hidden layer runs the convolution by using filters and
input matrix. In the model, a set of filters form F ∈ 𝑅H×J will
be convolved the input matrix S ∈ 𝑅H×|M|. It is to compute
feature extraction (word sequences) throughout the training
process. In the input layer, network layer projects text
extraction as matrices input.

The main contribution of this model is using RunPool
pooling function. The RunPool computes the matrices based
on the feature extraction process. In RunPool, assume k be a
function of the length of the input and the depth of the
network as the computing model. l is some current
convolution in the hidden layer, L is the total number of
convolution layer, ktop is the fixed max pooling parameter for
the topmost convolutional layer.

Table I: Mathematical Notation of RunPool Pooling

Notation Description
f filter size
s stride
l index of the current layer
𝑘< k value of current layer
𝑘NOP k value of top layer
𝑘JQP k value after calculation of input features

L total number of layers
C length of input matrices
p padding
𝑆P Number of padding pixels
 𝑘NOP and L are constants

The model calculates the RunPool in text input data with
pooling manipulation function: Hence, we get the “dynamic
winning out” by calculating the simple pooling function to
obtain k value of layer l 𝑘<. To get the 𝑘< value, we calculate
𝑘JQP with the following function:

𝑘JQP = 	S
𝐿 − 𝑙
𝐿 2𝐶 + 𝑆P3W 									𝑘< = 𝑚𝑎𝑥2𝑘NOP, 	𝑘JQP3							(8)	

The function 8 has task to choose a suitable pooling value,
the function calculates network elements to determine the
value of k. It is to find appropriate k-max value in the hidden
layer. We optimize the pooling by re-computing the graph
with the k-max pooling manipulation.

C. General Idea
Basically, to conduct sentiment analysis, a model should

analyze, process, summarize and conclude the subjective
texts [33]. Current studies propose a analyses strategy by
using machine learning and the rule-based method. As far as
we know, machine learning is a better model to classify
feature with emotion words input [34]. However,
conventional machine learning algorithm requires manual
feature selection and training for the dataset, so it is not
appropriate with the dynamic environment like Online Social
Network.

Inspired by deep learning success, we propose a deep
learning algorithm to construct a supervised learning model.
This study proposes a CNN with dynamic pooling to detect
anomalies sentiment by analyzing OSN message. The model
uses wide convolution in each window, to ensures that all
weights get the entire parameter action. This study adopts k-
max pooling concept to optimize the network performance.
Choosing a useful value of dynamic k-max pooling is crucial
to achieving the benchmark result.

The key idea of the experiment is to modify the original
CNN layer into dynamic pooling computation with RunPool
implementation. To construct efficient graph computation,
the model presents dynamic pooling computation. We also
conduct dynamic graph computation. The graph is not fixed
but rather is dynamically updated after each layer of the
network. We hypothesize the advantage of the dynamic graph
which computed with the concept of “Define by Run” is very
efficient for the varying input.

D. RunPool Pooling Manipulation
In this research, we construct RunPool to train the features

of message sentiment. In the DeepSentiment, we set the tweet
of a message as the input feature. Before training and testing
the features, the dataset element such as the character of the
word will be converted into binary value as matrix input. The
model optimizes the number of parameters in the
computation process. We need to tweak the hyper-parameters
in the input layer, hidden layer, and an output layer. A good
network topology is able to efficiently handle the high
dimensionality of raw data. Fig. 2 illustrates the
DeepSentiment network to calculate the message sentiment.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

Fig. 2 The dynamic CNN network while calculating the input matrix. It is to
produce a classification category and to analyze user's messages

Fig 2 depicts the computation process in the visible and the

hidden layer. The hidden layer runs the convolution process
by using filters and input matrix (sentence). In the model, a
set of filters form F ∈ 𝑅H×J will be convolved the input
matrix S ∈ 𝑅H×|M|. The aim of the convolutional layer is to
compute feature extraction (word sequences) throughout the
training process. Consists of three-layer, the input layer,
hidden layer, and an output layer. In the input layer, network
layer projects text extraction as matrices input. In this phase,
the model converts the posting message assigned as word
structure become matrix values before the feature extraction
process.

In the hidden layer, the network runs pooling operation.
The Pooling layer is an operation between the Convolution
and ReLU. It is to subtract the number of parameters, such as
the size of the image (width and height). In this process, the
common technique is Max-pooling operation. Max-pooling
obtains the biggest value within a filter and deletes the other
values. It takes the strongest activations over a neighborhood.
The pooling run in the relative location of a strongly feature.
However, instead of using common max pooling, we
construct RunPool, a dynamic pooling manipulation to train
the sentiment corpus.

The model presents the dynamic k-max pooling concept to
compute the feature extractions. The algorithm utilizes a
dynamic k-max pooling operation to obtain a suitable feature
map in the neural networks. Operation of dynamic k-max
pooling run among hidden layer before fully connected layer.
Dynamic k-max pooling operator determines the
effectiveness of CNN operation. The pooling parameter k can

be dynamically chosen by making k a function of other
aspects of the network. It retrieves k maximum values from
the pooling window.

E. Activation Function
In the hidden layer process, it consists of two primary

operations; convolution and pooling. In the convolutional
process, the network employs wide convolution filtering to
the best local feature in each layer. In pooling layer, it utilizes
an activation function to choose the most informative feature.
To optimize the network, we test some activation functions to
achieve efficient loss and accuracy. There are Sigmoid, Tanh,
and ReLU activation.

Activation Function can limit the output signal to a specific
value based on the input. Recently the application of neural
networks used the non-linear activation functions. In a neural
network like a convolutional neural network, the activation
value of the unit based on input values. It is used to decide
based on the classification or predict the value of several
variables. Activation function has the primary purpose of a
multilayer neural network. It is to separate many successive
linear transformations by nonlinearity function; if not
operate, it would collapse to a single linear transformation.

The function maps negative values to zero and
maintaining positive values in the features. In the process, it
applies each layer learning to detect different features of CNN
networks. Pooling simplifies the output features by
performing nonlinear computation and reducing the number
of parameters. The function can fasten and achieve effective
training result. In the common CNN, it repeats the operation
over tens of layers. The ReLU activation function is defined
as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) where x is the input to the neuron. A
ReLU map has output 0 when the input is less than 0 or minus
values; if the input values are higher than 0, the outputs are
equal to the input. The ReLU process like a switch for
linearity. We also test the other activation functions include
the sigmoid, Tanh, and leaky ReLU,

By using the ReLU activation to capture the valuable
properties of the input values. It can avoid the vanishing
gradient issue, simplifies and accelerates calculations and
training. The function performs efficiently and accurately on
multi-label datasets. ReLU has a significant advantage in
large dataset computation. It has high computational
efficiency. Various research demonstrated that ReLU
outperforms the conventional sigmoid or hyperbolic tangent
function [32].

F. Fully Connected Layer
The Fully Connected Layer is the final layer in a

Convolutional Neural network. In the layer, every neuron in
the preceding layer is connected to every neuron. In the
operation, there can be 1 or more fully connected layers, it is
depending on the level of feature abstraction. This layer gets
the output from the convolutional, ReLU or pooling layer as
its input, and calculates the accuracy and loss score.

Fully Connected (FC) layer computes that outputs a vector
of K (the number of classes) dimensions in the classification
process. The vector owns the probabilities for each class. In
the final phase of the model, uses a designated SoftMax
function to reduce noise signal in the fully connected layer
before producing the classification result.

SoftMax

I Post On The Wall ;-)

Dynamic K-Max
Pooling k

Window
Convolution

m = 2

Dynamic K-Max
Pooling k

Window
Convolution

m=3

Padding Width

RunPool

Output

Input Matrix

FC

RunPool

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

The network acts as a classifier for a problem with classes
𝑐_ … . . 𝑐#, the output layer contains one neuron per class and
building a vector 𝑎 = 𝑎_ … . . 𝑎#. The SoftMax will be used to
convert the values into probabilities, where SoftMax 2𝑎%3 is
the probability of the input to belong to class 𝑐 . We need all
the output neurons to produce values close to zero. Equation
(9) show the SoftMax formulation.

𝑆(𝑎") =
𝑒Q>

∑ 𝑒Q>J
%d_

	,				𝑖 = 1… .𝑚																							(9)

We provide the Softmax Layer to normalize the output of

the fully connected layer. The CNN network has an output
that consists of positive numbers and sum to the one. To
calculate probabilities, the classification layer utilizes the
output result. The model creates the SoftMax layer after the
last fully connected layer in the hidden layer.

G. Avoid Overfitting
To constrains network adaptation to the data, we

implement a regularization. It helps to avoid overfitting while
training the neural network. The role of the hidden unit is to
approximate a function efficiently from the dataset which can
be generalized to unseen data.

In this study, we apply Dropout approaches to obtain
efficient training in the social network dataset. With dropout,
the weights of the nodes in hidden layers become somewhat
more insensitive to the weights of the other nodes and learn
to decide the outcome independent of the other neurons.
Drop-out turns-off some of the hidden units randomly,
therefore the hidden units do not need to learn every
unnecessary detail of instances in the training set. The
dropout operation uses deletion function to each hidden
element. The process used to generate a thinned network
structure. An important purpose of the model is to find the
optimal dropout probability for each hidden element in the
network.

Dropout is a modern and excellent regularizer that is easy
to implement and compatible with many training algorithms
and model. In the experiment, instead of doing it randomly,
we tested some types of dropout with different Dropout value.
Based on the testing of the value, it gives the contribution of
the neuron to the output.

Table II: Mathematical notation of regulizer model

Notation Description
l ∈ {1,⋯ , 𝐿} index the hidden layers of the network

𝑧< the inputs vector into layer l
𝑦< the outputs vector from layer l 	

𝑦< = 𝑥 is the input
𝑟< an independent vector of Bernoulli random varia

bles with probability p of being 1
𝑦l< thinned outputs which calculated by 𝑦l< = 𝑟< ∗ 𝑦<
𝑊< the weights at layer l
𝑏< the biases at layer l
f any activation function

for example:
 f(𝑥) = 1/21 + 𝑒𝑥𝑝(−𝑥)3

On the function, consider a network has L hidden layers.

We use Dropout function to calculate the 𝑦NrQ"# training
process for parameters like input 𝑥 and Bernoulli probability
p. In the standard feedforward as for 𝑙	 ∈ {0,⋯ , 𝐿 − 0} we
calculate:

𝑧"
(<s_) = 𝑧"

(<s_)𝑦<𝜃 + 𝑧"
(<s_)

𝑦"
(<s_) = 𝑓2𝑧"

(<s_)3
In feed forward with Dropout operation, we calculate the
Dropout with the following formula:

𝑟%<~Bernoulli	probability	𝑝
𝑦l< = 𝑟< ∗ 𝑦<

𝑧"
(<s_) = 𝑧"

(<s_)𝑦l<𝜃 + 𝑧"
(<s_)

𝑦"
(<s_) = 𝑓2𝑧"

(<s_)3

To calculate the next layer, the regulizer utilizes the

thinned outputs 𝑦"
(<s_) as new input. The process is applied to

each layer in the hidden layer. This amount is to construct to
a sub-network sampling from a bigger network. In the
training time, it back-propagates the derivatives of the loss
function via the sub-network. At test time, the weights are
multiplied by p and scale the weight as 𝑊N�MN

(<) = 𝑝𝑊(<), so the
unit is always present.

We adopt the regulizer to deal with overfitting issues in
the training process. Provides a way of approximately
combining exponentially many different network
architectures. Applying dropout is to obtaining a \thinned"
network in the training process. The study utilizes the
Dropout regularization during training sample (backward
pass), not in predictions process (forward pass).

We also test a dense layer, a type of hidden layer to
construct a densely connected network. It is a common layer
of neurons where the neuron receives input from all the
neurons in the previous layer, So, the layer connects every
node to every other node in the next layer. The layer consists
of a weight matrix 𝑤, a bias vector 𝑏, and the previous layer
activations 𝑎.

IV. EXPERIMENTAL SETUP

A. Dataset
 This study utilizes the dataset ᴅ consisting of message data
based on OSN posting activities. To achieve a good
classification result, we provide a large corpus OSN for
ᴅNrQ"# and ᴅN�MN. It consists of thousands of sentiments as the
corpus in with a set of pairs 2𝑥("), 𝑦(")3. The sample contains
emoticons, usernames, and message elements in the English
language. We choose and extract many posting messages
from the sample data to build a benchmark dataset. Before
computing, we separate the dataset into ᴅNrQ"# , ᴅ�Q<"H and
ᴅN�MN. By using the extracted features, we undergo sentiment
measurement on the posting messages using diverse learning
algorithms.

We provide the sample data which consists of different
tweets including positive tweets and anomalous tweets. Then,
we classify the polarity to mark either positive or negative. If
the tweet has both positive and negative parts, the model
chooses the more dominant sentiment as the final label. To
obtain more features for this experiment, we provide several
corpora datasets, original posts, and comments. We construct
the training input 2𝑥(") ∈ Ɍ3 as the i-th training sample of ᴅ
and 𝑦" ∈ (0,⋯ , 𝐿) is the label assigned to 𝑥(") . Fig. 3
illustrates the distribution of the sentiment in the corpus.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

Based on the algorithm 1, we construct a DeepSentiment

model with diverse parameters. We test various hyper-
parameters to obtain the optimal result. In the training
process, we test the model different hyper-parameters
includes a hidden layer, filter, kernel size, pooling, activation,
and optimization function.

Principally, to build the DeepSentiment model, we adopt
the dynamic graph in the hidden layer. The DeepSentiment
model undergoes “Downsampling” process by using the
pooling algorithm. The layer also to avoid overfitting in the
neural network. The technique allows us to create static
graphs that emulate dynamic computation graphs of arbitrary
shape and size. In the dynamic graph, the model adopts the
dynamic pooling of k. It is to compute each layer in the neural
network. In the algorithm, parameter 𝑘 is scalar value to
compute the pooling layer. The value of k-max pooling can
be dynamically chosen by making a function based on the
network parameters. The dynamic value of the k determines
the neural network performance.

It is a mutable directed graph that represents operations on
data and the edges (arrows) represent the system output. The
advantage of the graphs appears to include the ability to adapt
to varying quantities in input data. The characterization of the
dynamic graph is an automatic selection of the number of
layers, the number of neurons in each layer, the activation
function, and other neural network parameters, depending on
each input set instance during the training. The framework
consists of a system of libraries, interfaces, and components
that provide a flexible, programmatic, run time interface.

With the dynamic graph, we test several values of max
pooling. As the neural network computation, we also map the
multi-dimensional tensor distribution of k-max pooling.
Tensor is an exchange type for homogenous multi-
dimensional data for 1 to N. We separate the tensor into the
dimension and a type. The dimension refers to the rows and
columns of the tensor. The study utilizes the two-dimensional
tensors in the computing processes.

The simulation calculates average neuron to train the
dataset. It produces relatively high accuracy with k-max
pooling. In our experiment, adding more layers and neuron
numbers in the hidden layer computation cannot improve the
predictive capability. However, it enlarges resource in the

computing process. Therefore a limitation of neuron number
and k-max pooling is an effective method to achieve an
efficient result for the neural network.

B. Initial Test with LSTM
At the initial experiment, we test the LSTM algorithm as a

classifier. We provide a large number of words from the
sample. We add the dense vector representation for training
the models. In further tweaking, we set the dense vector
representation to make it equal to the Max Length parameter
of the network. After computing the LSTM layer, the model
calculates a fully-connected layer and activation function
(ReLU). To reduce the noise in the fully connected layer, we
employ Softmax activation. We also implement dropouts
layer to regularize the network and avoid the overfitting.
Table III depicts the result of different LSTM models

TABLE III

COMPARISON OF LSTM MODEL WITH DIFFERENT LOSS FUNCTION
LSTM Unit Optimizer Loss Positive

Acc.
Negative

Acc.
128 Adam BCE 81.13 % 96.70 %
64 Adam BCE 83.01 % 95.93 %

128 Adagrad MSE 70.75 % 95.43 %
64 Adagrad MSE 78.30 % 93.40 %

128 RMSProp BCE 83.96 95.93 %

To compare loss functions in the neural network, the model

utilizes with Mean Squared Error (MSE) and Binary Cross-
Entropy (CE) loss. Based on the loss accuracy, we achieve
that Binary Cross Entropy works better than the MSE. The
cross-entropy logarithm enables the network to assess the
small errors and try to diminish them. The MSE evaluation is
suitable for a regression problem while for a classification
task, it is compatible to calculate the loss function the cross-
entropy with the function:

J(Ѳ) = −
1
𝑇J�

' ' 𝜕
�(�)
�

���_

�d�

ln ℎ�
(N)

����_

�d�

												(11)

The function (11) consists of 𝑇NrQ"# as the number of

training examples, 𝑇J� represents the number of training
examples in a mini-batch,	ℎ�

(N) represents the hidden neuron
of each layer and 	𝜕��

(�) represents the derivative.
In text processing, LSTM is a new powerful algorithm

which can classify, cluster and make predictions about text
data. Thus, we can feed the engineered features into LSTM
classifier in order to train the network. LSTM mitigates the
vanishing gradient problem. In the operation process, the
algorithm feeds the long-term memory into RNN. It runs by
utilizing a couple of gates and has memory blocks which are
connected through LSTM layers, Fig. 4 displays the
validation accuracy and loss with several popular optimizers
by using LSTM algorithm.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

(a)

(b)

Fig. 4: Validation Accuracy and Loss with LSTM network (128 embedded
dimension).

Fig. 4 depicts that the LSTM suffers from overfitting after
training in 6 epochs. Because the algorithm stops learning
when the updates to the various weights within a given neural
network become smaller and smaller. By computing the
features with LSTM, the model also tries to implement
weight sharing in the hidden layer. It can reduce the number
of parameters in the network, and it can increase the ability
of the network’s generalization. It can substantially lower the
degrees of freedom of network complexity. Thus, the benefit
of applying weight sharing is using fewer parameters to
optimize, it able to faster convergence to some minimal and
avoiding overfitting as the weights are shared with some other
neurons.

C. DeepSentiment CNN Test
By utilizing DeepSentiment CNN with RunPool function,

we test diverse hyper-parameters to the model include
learning rate, batch size, number of hidden layer and epoch.
Selection of hyper-parameter is becoming an important
aspect which can determine the performance of the graph.
Firstly, the model converts the input data into features map.
The model feeds the features into the graph for classification.
Then, we test gradient descent with different hyperparameter.
It is to obtain the highest value of the accuracy and get the
minimum loss function.

DeepSentiment is also testing the optimization algorithm
to measure accuracy and loss in the neural network. The
DeepSentiment model tests several gradient descent
optimization algorithms such as Stochastic Gradient Descent
(SGD) with Momentum, Adam (Adaptive Moment

Estimation), Adagrad, and RMSprop. It is to calculate the
gradient of loss in the training and testing phase.

We consider broad strategies to optimize gradient descent.
We employ the gradient descent to minimize the objective
function 𝑗(𝜃) with model's parameters θ ∈ 𝑅H . The model
updates the parameters in the opposite direction of the
gradient of the objective function ∇𝜃𝑗(𝜃). The study sets the
learning rate η to determine the stride size to reach a (local)
minimum.

The optimizers are to calculate the gradient of the loss
concerning the layer weight. The adaptive optimizer divides
the learning rate for weight by running an average of the
magnitudes. The learning rate algorithm changes iteration
according to some cyclic function. To measure validation
level between training and test dataset, the study calculates
the gradient of loss. The gradient influence efficiency of the
result between training and test phase The scheme can
enhance the accuracy in DeepSentiment model. We set a local
variable to compute the loss function.

In order to measure the accuracy of the model, we test
several loss gradients in the benchmark datasets with
different amount of hidden layer and gradient descent.
Choosing a starting value for a learning rate is one of the most
important parts of the neural network study. The result
showed that learning rate with dynamic optimizer like Adam
produces a more efficient result than the others. Fig. 5 depicts
the validation accuracy and loss with Adam Optimizer (128
embedded dimension) when training and testing process with
DeepSentiment network.

Fig. 5: Validation Accuracy and Loss with Adam Optimizer (128 embedded
dimension). The graph shows that the adaptive optimizer is more efficient
than the others for this study.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

Fig 5 explains the result with the tweaking parameter of
Adam gradient descent algorithms. We test both Adam
optimizer and SGD with momentum. In the initial process,
we feed Adam optimizer into the graph with different amount
of hidden layers. Adam is an improvement of the RMSProp.
The study finds the Adam optimizer harvests is better and
faster in the network. The result shows a dynamic optimizer
is able to achieve a small loss in a large number of hidden
layers. However, using a large number of hidden layer cause
overhead computation in a particular device.

We also test the SGD optimizer; we get the best value in
the SGD optimization (momentum = 0.8) for the training
process. As incremental gradient descent, it is a repetitive
technique for optimizing a differentiable objective function.
The SGD with momentum produces an efficient result by
adopting weight decay in the hidden layers. The more layers
in SGD cannot achieve efficient loss and accuracy. TABLE 2
describes the comparison of CNN models with different
optimizer. Table IV displays the MSE and BCE calculation
result.

TABLE IV
COMPARISON OF CNN MODEL WITH DIFFERENT OPTIMIZERS

CNN
Embed-dim

Optimizer Loss Positive
Acc.

Negative
Acc.

128 Adam BCE 85.84 % 97.96 %
64 Adam BCE 80.18 % 97.71 %

128 Adagrad MSE 84.90 % 97.46 %
64 Adagrad MSE 74.52 % 97.20 %

128 SGD + Momentum BCE 63.20 % 95.43 %
64 SGD + Momentum BCE 62.26 % 95.13 %

The result shows the adaptive learning rate such as Adam

is more efficient than the others. Adams’ runs by changing
the learning rate every iteration according to some cyclic
function in the network. Dynamic value for calculating
gradient loss more rapid traversal of saddle point plateaus. If
the momentum optimizer runs like a ball running down a
slope, Adam acts like a heavy ball with friction. In the
computation process, 𝑚N represents the mean value and 𝑣N
reflects the un-centered variance of the gradients. It calculates
the decaying averages of past and past squared gradients 𝑚N
and 𝑣N as follows:

𝑚N = 𝛽_𝑚N�_ + (1 − 𝛽_)𝑔N
𝑣N = 𝛽£𝑣N�_ + (1 − 𝛽£)𝑔N£

Toward the testing of the gradient descent optimization, we

obtain the Adam optimizer is more efficient for training and
testing in this case. By using dynamic CNN and tweaking
appropriate hyper-parameter, we obtain the DeepSentiment
CNN can produce better accuracy than LSTM. We find a
significant increase in CNN graph’s performance within
dynamic k-max pooling operation for training data. The
DeepSentiment graph can better deal with the problem of data
noise, alignment, and other data variations.

The DeepSentiment model computes the unstructured text
as the dataset. We find that the dynamic CNN architecture is
extremely useful to deal with the case. It is a method to
minimize data noise in the text dataset and other data
variations. The training and testing results show that the
DeepSentiment algorithm can achieve a promising result in
detecting and classifying OSN sentiment. By conducting an
experiment in the CNN, we can reach better and timelier
results when compared with the common approaches such as
machine learning algorithms.

By using the algorithm, we find the CE is more efficient
than MSE function in loss computation. The CE loss function
evaluates the neural network error when it tries to make a
prediction to the data. In this experiment, we conduct a
classification task, hence, the cross-entropy optimization is
more efficient than MSE. The little error can be produced, the
better the neural network model.

At the final step, we conduct sentiment classification based
on the classifier result. It is to classify sentiment category
whether the normal or malicious content. In real OSN
application, malicious content like sentiment can reflect
malicious activity within the environment. Good monitoring
of sentiment measurement is able to provide an advance
warning about attacker capabilities and intent for system
administrators. The technique can act as one of the active
authentication methods for the OSN environment. The
learning model allows automating extracting and calculating
process for the sentiment. Therefore, in the OSN sentiment
classification issue, the originality of this article is measuring
OSN sentiment with DeepSentiment CNN to solve the
malicious sentiment problem accurately.

D. Evaluation Metric
On the above section, we present how to measure the user

sentiment categories. By feeding the extracted features into
the classifier, we may able to predict the malicious user
categories based on the sentiment analysis. The
DeepSentiment experiment also provides an evaluation of the
performance model by using cross-validation. It is to
measures sensitivity, specificity and accuracy rate. The
evaluation of the model calculates False Positive Rate (FPR),
True Positive Rate (TPR), accuracy, Receiver Operating
Characteristic (ROC) and Area Under Curve (AUC).

The study conducts a performance assessment to evaluate
the performance of classification techniques. It is to help
performance measurement of the model. We construct the
classification model with a supervised learning algorithm and
measure the model performance by using evaluation metrics.
Commonly, an evaluation technique utilizes the confusion
matrix table. A positive value represents the malicious and
normal sentiment assigned as negative. Table V displays the
structure of the confusion matrix.

TABLE V
CONFUSION MATRIX

Predictive class Sentiment Categories
 Malicious Normal
Malicious True Positive (TP) False Positive (FP)
Normal False Negative (FN) True Negative (TN)

The statistical approach is to evaluate the performance of

the malicious account classification. We divide the confusion
matrix into 4 kinds, those are True Positive (TP), False
Negative (TN), True Negative (TN) and False Positive (FP).
Table VI portrays the classification term of the malicious and
normal sentiment.

TABLE VI
CLASSIFICATION TERMS FOR MEASUREMENT

TP Indicates the number of malicious sentiments that is identified
as a malicious sentiment.

FN Indicates the number of malicious sentiments that is identified
as a normal sentiment.

TN Indicates the number of normal sentiments that is identified as
normal sentiment,

FP Indicates the number of normal sentiments that is identified as
a malicious sentiment.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

Sensitivity or True Positive Rate (TPR) defines the
percentage of the datasets. TPR shows the samples belong to
the group and identifies it as such. Equation 12 shows the
TPR computation.

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																					(12)

Specificity or True Negative Rate (TNR) defines the rate
of the datasets which actually do not include the group and
identifies it as such. Equation 13 shows the TPR computation.

TNR =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃																			(13)

In this model, accuracy (ACC) defines the ratio of all
datasets including to the group and the total amount of
datasets. Equation 14 shows the TPR computation.

ACC =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																				(14)

The study presents classification problems in detecting

abnormal tweet. We test the evaluation metric to measure
DeepSentiment performance. This experiment adopts the
binary classification task. The method predicts and classifies
the elements of the dataset into two groups (which group
belongs to positive or negative). It needs to calculate the
classification accuracy of the model. We plot Receiver
Operating Characteristic (ROC) Curves and Area Under
Curve (AUC) [38]. It is able to estimate sensitivity and
specificity in diverse thresholds without truly changing the
threshold.

The ROC in DeepSentiment plots the performance of a
binary classifier. To learn the output, DeepSentiment adopts
binary classification in the classifier. It needs to convert the
output into binaries values to expand the ROC curve. The
ROC enables the model to select a threshold that balances
sensitivity and specificity. It is useful for classification
context. With different threshold tuning, the ROC curve plots
the true positive rate (TPR) against the false positive rate
(FPR). It is a relative operating characteristic curve with
(TPR and FPR) as the criterion changes [40]. The paper
calculates cross-validated AUC to estimate the percentage of
the ROC plot that is underneath the curve. The result shows
some classifiers are more accurate and produce a higher
AUC.

In this part, we display several AUC values from different
classifier's class. The AUC illustrates the percentage of the
area under the ROC curve with ranging between 0~1. The
AUC run by measuring the ranking based on the separation
of the two classes. The AUC reflects the DeepSentiment'
ability to discriminate between positive and negative classes.
The model makes good level predictions because it produces
the area at 0.8 or above. In this experiment, we obtain a value
with an area is larger than 0.5 (AUC= 0.83) for the ROC
curve. It reflects the model to make sense for the sentiment
case. Fig. 6 depicts the ROC to display the evaluation of the
classification model.

Fig. 6: DeepSentiment adopts binary classification in the classifier. It needs
to convert the output into binaries values to expand the ROC curve

VI. CONCLUSION & FUTURE DIRECTION
OSN has dynamic features with the various posting

messages. Inspired by the deep learning success, we present
the DeepSentiment, a classification technique with dynamic
deep learning for detecting malicious sentiment in the OSN.
Instead of using the conventional learning model, we present
dynamic deep learning in the training and testing process.

In the DeepSentiment, we test the RunPool, a novel CNN
network with dynamic pooling layer in the neural network.
We find a significant increase in CNN graph’s performance
with the model. In this study, the model computes the OSN
sentiment as matrix inputs and employs the model to classify
benign or malicious over the posting message. The user
posting message categorizes differ the sentiment as a normal
or suspicious activity.

To test the malicious detection model, we calculate
sentiment analysis by using different gradient descent. We
harvest Adam optimizer is more efficient than others. Adams’
runs by changing the learning rate every iteration according
to some cyclic function. Dynamic value for calculating
gradient loss more rapid traversal of saddle point plateaus. By
using dynamic CNN and tweaking appropriate hyper-
parameter, we obtain the DeepSentiment CNN can produce a
better accuracy and small loss than LSTM. We find a
significant increase in CNN graph’s performance by using
RunPool pooling function for training data. To evaluate the
model performance, we conduct evaluation metrics. The
ROC curve depicts that the model produces the AUC score is
larger than 0.83. Hence, it makes sense as a detection method
for sentiment classification.

As the future directions, to achieve better analysis for OSN
tweet, it needs an exploration for handling emotion ranges.
The emotion reflects polarity of sentiments. Because the
tweets are not only positive or negative sentiment but also it
has no sentiment (neutral) and gradations sentiment. Then,
neural network computation is necessary to calculate with a
new technique like adaptive loss function rather than a
conventional loss function.

ACKNOWLEDGMENT
The paper is conducted in the Institute of Research in

Information Processing Laboratory, Harbin University of
Science and Technology under CSC Scholarship.

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

REFERENCES
[1] Takahashi T, Panta B, Kadobayashi Y, Nakao K. and Web of

cybersecurity. "Linking, locating, and discovering structured
cybersecurity information." Int. J. Commun. Syst. (2018): 31:3470.

[2] S. Park, K. Cho, and B. G. Lee, "What makes smartphone users
satisfied with the mobile instant messenger, Social presence, flow, and
self-disclosure." Int. J. Multimed. Ubiquitous Eng., (2014): 9:11:315–
324

[3] Mehdi Dadkhah, Tole Sutikno, Shahaboddin Shamshirband. "Social
Network Applications and Free Online Mobile Numbers: Real Risk."
International Journal of Electrical and Computer Engineering (2015):
5:2:175-176.

[4] M Al-Qurishi, M Al-Rakhami, A Alamri, M Alrubaian, S. M. M.
Rahman and M. S. Hossain. "Sybil Defense Techniques in Online
Social Networks: A Survey." IEEE Access; (2017): 5:1200-1219.

[5] C. Anglano, M. Canonico, M. Guazzone. "analysis of Telegram
Messenger on Android smartphones." Digital Investigation, Elsevier
(2017): 23, 31-49.

[6] Said, N. B. Al Barghuthi and H. "Social networks IM forensics:
Encryption analysis." J. Commun (2013): 8:11:708–715..

[7] Ren. J, L. Harn, "Generalized Digital Certificate for User
Authentication and Key Establishment for Secure Communications."
IEEE Trans. Wireless Comm. (2011): 10: 7:2372-2379.

[8] M. Frank, R. Biedert, E. Ma, I. Martinovic and D. Song. "Touchalytics:
On the Applicability of Touchscreen Input as a Behavioral Biometric
for Continuous Authentication." Transactions on Information
Forensics and Security (2013): 8:1:136-148.

[9] Kumar M, Verma HK, Sikka G. "A secure lightweight signature-based
authentication for Cloud-IoT crowdsensing environment." Trans
Emerging Tel Tech (2018).

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradientbased
learning applied to document recognition" Proceedings of the IEEE.
1998. 86:11:2278–2324.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich. "Going Deeper with
convolutions." arXiv:1409.4842, (2014).

[12] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. "Deepface: Closing
the gap to human-level performance in face verification." In Computer
Vision and Pattern Recognition (CVPR), IEEE Conference on Pattern
Recognition, (2014): 1701–1708.

[13] Abidin, M. Yusof and A. "A secure private instant messenger." Proc.
17th Ascia-Pacific Conference on Communications (2011): 821-825.

[14] L. Ham, “Group Authentication,” IEEE Trans. Vehicular Technology,
(2013): 62: 9.

[15] Li M, Xiang Y, Zhang B, Wei F, Song Q. "A novel organizing scheme
of single topic user group based on trust chain model in social
network." Int. J. Commun. Syst. (2018): 31:3387

[16] Liu, B.-H., Hsu Y.-P., and Ke W.-C. "Virus infection control in online
social networks based on probabilistic communities." Int. J. Commun.
Syst. (2014): 27:4481–4491.

[17] Ham, L. "Agent Based Secured e-Shopping Using Elliptic Curve
Cryptography." International Journal of Advanced Science and
Technology (2012): 38.

[18] K. H. Yeh, C. Su, W. Chiu and L. Zhou. "I Walk, Therefore I Am:
Continuous User Authentication with Plantar Biometrics." IEEE
Communications Magazine (2018): 56:2:150-157

[19] S. Jiang, M. Duan and L. Wang. "Toward Privacy-Preserving
Symptoms Matching in SDN-based Mobile Healthcare Social
Networks." IEEE Internet of Things Journal (2018): 99:1-1.

[20] J. Du, C. Jiang, K. C. Chen, Y. Ren and H. V. Poor. "Community-
Structured Evolutionary Game for Privacy Protection in Social
Networks." IEEE Transactions on Information Forensics and Security
(2018): 574-589.

[21] B, Scheiner. Applied Cryptography Protocols, Algorithms and Source
Code in C. Second Edition. New York: John Wiley Sons, inc, 1996.

[22] Stallings, W. Cryptography and Network Security. Prentice Hall, 2006.
[23] Arshad H, Rasoolzadegan A. "A secure authentication and key

agreement scheme for roaming service with user anonymity." Int. J.
Commun. Sys (2017): 30:3361.

[24] Patel. W. M. P. Perera. "Efficient and Low Latency Detection of
Intruders in Mobile Active Authentication." IEEE Transactions on
Information Forensics and Security (2018): 1392-1405.

[25] K. B. Schaffer, "Expanding Continuous Authentication with Mobile
Devices," Computer (2015):48:11: 92-95.

[26] Singh, M. Shahzad and M. P. "Continuous Authentication and
Authorization for the Internet of Things." IEEE Internet Computing
(2017): 2:1:86-90.

[27] V. M. Patel, R. Chellappa, D. Chandra and B. Barbello. "Continuous
User Authentication on Mobile Devices: Recent progress and

remaining challenges." IEEE Signal Processing Magazine (2016):
33:4:49-61

[28] G. Peng, G. Zhou, D. T. Nguyen, X. Qi, Q. Yang and S. Wang.
"Continuous Authentication With Touch Behavioral Biometrics and
Voice on Wearable Glasses." IEEE Transactions on Human-Machine
System (2017): 47:3, 404-416.

[29] T. Mikolov, K. Chen, G. Corrado, J. Dean, "Efficient Estimation of
Word Representations in Vector Space", Proc. Workshop at ICLR,
2013.

[30] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, "Distributed
Representations of Words and Phrases and their Compositionality",
Proc. NIPS, 2013.

[31] T. Mikolov, W. Yih, G. Zweig, "Linguistic Regularities in Continuous
Space Word Representations", Proc. NAACL HLT, 2013.

[32] LeCun Y, Bengio Y, Hinton G. "Deep learning." Nature (2015): 436–
444.

[33] Y Y Zhao, B Qin, T. Liu, "Sentiment Analysis[J]", Journal of Software,
vol. 21, no. 8, pp. 1834-1848, 2010.

[34] A Yang, J Lin, Y. Zhou, "Method on Building Chinese Text Sentiment
Lexicon[J]", Journal of Frontiers of Computer Science & Technology,
2013.

[35] Zhang Shan, Yu Liubao, Hu Changjun, "Sentiment analysis of Chinese
Mircro-blog based on emotions and emotional words [J]", Computer
Science, vol. 39, no. 11A, pp. 146-148, 2012.

[36] L Xie, M Zhou, M. Sun, "Hierarchical Structure Based Hybrid
Approach to Sentiment Analysis of Chinese Micro Blog and Its Feature
Extraction [J]", Journal of Chinese Information Processing, vol. 26, no.
1, pp. 73-83, 2012.

[37] Y. Chen and Z. Zhang, "Research on text sentiment analysis based on
CNNs and SVM," 2018 13th IEEE Conference on Industrial
Electronics and Applications (ICIEA), Wuhan, 2018, pp. 2731-2734.
doi: 10.1109/ICIEA.2018.8398173

[38] Hanley JA, & McNeil BJ. “The meaning and use of the area under a
receiver operating characteristic (ROC) curve”. Radiology. 143, 29–
36, 1982.

[39] P. Wanda, Selo and B. S. Hantono, "Efficient message security based
Hyper Elliptic Curve Cryptosystem (HECC) for Mobile Instant
Messenger," 2014 The 1st International Conference on Information
Technology, Computer, and Electrical Engineering, Semarang, 2014,
pp. 245-249.

[40] Swets, John A..”Signal detection theory and ROC analysis in
psychology and diagnostics : collected papers”, Lawrence Erlbaum
Associates, Mahwah, NJ, 1996.

[41] P Wanda, H J Jie, “Efficient Data Security for Mobile Instant
Messenger.” Telkomnika Journal, Vol. 16 (3), 2018.

[42] Bin Ning, Wu Junwei, Hu Feng "Spam Message Classification Based
on the Naive Bayes Classification Algorithm". IAENG International
Journal of Computer Science, Vol. 46, No. 1, pp. 46-53, 2019

[43] Hashida S, Tamura K, Sakai T. “Classifying Tweets using
Convolutional Neural Networks with Multi-Channel Distributed
Representation” IAENG International Journal of Computer Science,
Vol. 46, No. 1, pp. 68-75, 2019.

[44] W. Putra, H J Jie, “URLDeep: Continuous Prediction of Malicious
URL with Dynamic Deep Learning in Social Networks.” FEMTO
International Journal of Network Security, Vol. 21 (5), 2019.

Putra Wanda
He received B.Eng in Informatic Engineering in 2011. and M.Eng. degrees
in Information Technology from Gadjah Mada University 2015. Since
August 2016, he is with the School of Computer Science and Technology
from Harbin University of Science and Technology as a Ph.D. candidate.
https://orcid.org/0000-0003-0130-3196.

Huang Jin Jie
He is Professor and Ph.D. Supervisor in School of Science and
Technology, Harbin University of Science and Technology, China. His
current research interests include Deep Learning, Pattern Recognition and
Automation system (https://orcid.org/0000-0002-2107-2690)

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

__

