
 

   In this paper, we introduce DeepSentiment, a dynamic deep 
learning model to detect and classify malicious sentiment on 
the OSN. We assume that better detection of malicious 
sentiment can act as active authentication for the OSN. To 
convince the model, we provide experiments result. We will 
summarize the main innovations and contributions of our 
work, particularly in the OSN malicious sentiment problem 
as follows: 

 

  
Abstract—Current Online Social Network (OSN) needs real-

time and adaptive security model. The tremendous success of 
deep learning algorithms at computer vision tasks in recent 
years inspires us to adopt the method. It is becoming 
increasingly popular for various applications include in OSN 
security and privacy-preserving. In this paper, we propose 
DeepSentiment, a dynamic deep learning model to detect and 
classify malicious sentiment in OSN. Different from 
conventional CNN, we introduce RunPool, a dynamic pooling 
function to train the sentiment features. By using the function, 
we find a significant increase in the graph’s performance with 
the DeepSentiment CNN model. Demonstrated by the 
experiment, we harvest a higher accuracy and small loss in 
malicious sentiment classification with the benchmark dataset. 
 

Index Terms—Neural Networks, Malicious Sentiment, 
Dynamic Deep Learning, Online Social Network 
 

I. INTRODUCTION 
URRENTLY, almost each of the devices has a security 
option to unlock and access the device, such as using a 
PIN, a password, keyboard patterns.  The current 

security techniques put user data at risk because there are no 
additional security checks performed after the device 
unlocked or login in the application environment. 
Unauthorized people may able to crack the simple passwords 
or PIN of mobile phone or wearable devices because of 
security weaknesses [1]. However, common security 
technique as cryptography is no longer suitable for the 
dynamic environment.  

The rapid growth of Social Network has a potential problem 
in security and privacy problem. The OSN environment 
remains risky and becomes a target of attacking the public 
network such as the internet. Based on a survey, users are 
more preferred in social existence, flow, and self-disclosure 
than security. It is serious issues for data privacy in the 
popular application [2]. As a primary research area in OSN, 
Some explorations have been proposed to solve OSN security 
and privacy issues [39][41][44].   
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Many users utilize public OSN for daily activities, but the 

primary concern in these applications is privacy and security. 
In the interacting process, the problem appears when the user  
can see the received messages of some online users without 
any registration [3]. Unluckily, Telegram, one of the famous  
OSN, the most encrypted messenger still remains a weakness. 
A study reveals a technique that may able to reconstruct the 
data log that send or received by the user [4]. 

Traditionally, authentication is one of the most critical 
security services in computer application The conventional 
model like onetime authentication remains an issue. There are 
password and public/private key authentication as the two 
most popular approaches. The method including public-key 
cryptography for authentication [6] requires a large 
computations memory and time. Computational overhead is 
still become the main concerns for public key security. 
Therefore, it needs an efficient technique for authenticating 
OSN users after logging in to the system. Several studies 
propose a security model to address the issue by conducting 
continuous authentication [7]. 

However, the conventional model puts private data at risk 
when user attacked after logged in to a system and attacker 
pretends as the real user. Another weakness is some public 
OSN transmit user data in plaintext over the public network 
[5]. Most of OSN does not implement continuous privacy 
preserving in the communication process. Luckily, 
continuous authentication becomes a hot topic for several 
years. Many studies explore the security model in the mobile 
context. For example, a paper proposes continuous 
authentication by collecting and using biometric information 
to classify a genuine or fake user [8]. 

In recent years, deep learning, specifically Convolutional 
Neural Networks [9] are becoming increasingly popular in 
solving various applications., The neural networks have 
achieved state-of-the-art results on a variety of challenging 
problems in computer vision [10] [11]. The CNN runs the 
computation by using the convolutional operation in the 
hidden layer. By a set of filters, it computes the output feature 
maps by convolving the feature maps of the previous layer.  
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1. We demonstrate that DeepSentiment is more efficient 
than several learning methods. Instead of using 
conventional CNN, we develop a new architecture of 
the neural network by adopting a dynamic model of 
deep learning architecture. 

2. We propose a dynamic pooling method for training the 
neural network. It is to calculate and detect the 
malicious sentiment on the OSN. Hence, it can 
classify malicious content based on the message 
sentiment analysis. The pooling manipulation model 
achieves state-of-the-art performance in malicious 
sentiment problem.  

3. We show analysis of the dynamic pooling function can 
improve state-of-the-art on the benchmark an OSN 
dataset. To convince model classification 
performance, we undergo metric evaluation at the end 
of this experiment.  

Organization: The paper will discuss the introduction of 
sentiment analyses in Chapter I, related works in Chapter II. 
Chapter III describes the proposed model of CNN and 
Chapter IV and Chapter V discusses the experiment result and 
analysis of this experiment with detail explanation. In 
Chapter VII, we describe the conclusion and future research 
directions. 

II. RELATED WORKS 
OSN applications have grown quickly and significantly. 

Unfortunately, it remains anomalous nodes issue. The 
anomalous user can spread malicious software or threat, such 
as viruses, malware, and so forth over the network. Infected 
users will spread malicious software automatically by 
sending fake requests to other users. Some studies present a 
method to detect OSN activities by constructing a community 
detection algorithm [15] or building message classifier with 
Naive Bayes [42].  

Various research has proposed a diverse OSN protection 
strategy. A study proposes a model by adding a secure 
module and applying a hash algorithm to maintain the path in 
transceiver and routing modules [12]. The paper utilizes the 
hash algorithm to secure network conversation and to 
produce a private environment. Not just using the hash 
protocol, a study constructs security strategy by using the 
group authentication model. It is to authenticate all users 
simultaneously within the group. Instead of using one-to-one 
authentication, it adopts many-to-many authentication [13]. 
Another model presents an organizing scheme in the OSN 
based on trust chain model [14]  

In OSN group environment, there are critical elements 
including privacy, authenticity, integrity, and non-
repudiation as the important requirements in the system.  
Thus, a study implements common cryptography like Elliptic 
Curve Cryptosystem (ECC) to build a security scheme. In the 
model, an agent creates connectivity anytime, anywhere, any 
device [16]. To increase the OSN security level, a paper 
employs multiprotocol for OSN. It combines various protocol 
including end-to-end encryption and off the record messaging 
protocol [17]. 

In other applications of OSN, a study proposes Mobile 
Healthcare Social Networks (MHSNs) security to solve 
conflicting privacy concerns on protecting individual 

symptoms from strangers. In the process, a similar symptom 
matching process to achieve personal health information 
(PHI) sharing [18]. Besides, a paper introduces a game-
theoretic framework to model interactions among user in an 
OSN. In this framework, the interaction process may 
influence decisions to conduct privacy protection [19]. 

A common technique to address the threat in OSN is 
utilizing cryptography. However, the conventional technique 
is no longer suitable for the OSN dynamic environment. 
Cryptography is a conventional technique to construct 
information security [20], It converts the text (plaintext), 
random text (ciphertext) or vice-versa [21]. Authentication is 
a process when people and the application are authorized in a 
system. Diverse papers introduce various methods to get an 
efficient authentication process. They present key agreement 
scheme to provide secure roaming services information [22], 
to address the problem of quickly detecting intrusions with 
lower false detection rates [23]. 

Nowadays, multimodal continuous authentication is one of 
the more promising authentication methods. As systems 
begin to support this model of security, users do not need to 
memorize their login passwords or tokens, and system 
administrators feel more confident when using their accounts. 
For several years, continuous authentication or active 
authentication has been a hot topic of studies, but research in 
the mobile context has only recently still grown. Current 
digital interaction is necessary for real-time authentication in 
many research areas [24].   

For example, the Internet of Things as one of the hottest 
topics in computer science. It needs an efficient model for the 
authentication process. The future small smart devices lack 
the conventional interfaces used for authentication (such as 
keyboards, mice, and touchscreens). So, a deep study needs 
to ensure how can users be authenticated and authorized 
continuously. These issue deal with Continuous 
authentication mechanisms [25]. In a mobile environment, 
the studies introduce continuous authentication by face 
recognition, gait, profiling behavior, and other approaches 
such as device movement and the ambient noise [26] [27].  

Modern authentication method utilizes learning algorithms 
as the classifier. Deep learning is becoming increasingly 
popular in solving various applications, one of them is the 
authentication process. It is a part of machine learning 
algorithms which imitate the structure and function of the 
brain. To construct a protection model, a study presents the 
Deep Belief Networks for authorship verification model 
(CA). It also implements Gaussian-Bernoulli (DBN) units to 
model real-valued data [28] 

In sentiment analyses problem, Zhang Shan et al [35] 
propose a technique to construct Bayes classifier and to 
employ the microblog’s emoticons to build the Chinese 
sentiment corpus. To improve the performance, it calculates 
the particular entropy. A paper explores SVM to compute 
sentiment analysis. It calculates three features including the 
emoticon, the sentiment lexicon and the hybrid approach over 
the hierarchical structure. The experiments show the result 
can achieve a good performance [36]. 

In a large OSN, millions of users posting millions of 
messages every day. It requires to know which is normal or 
malicious sentiment accurately.  Hence, current papers 
present diverse sentiment analysis model based on a deep 
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learning algorithm. A study proposes sentiment measurement 
with CNN's and SVM. In the paper, they feed the word vector 
as the input and calculate the CNN model to conduct 
automatic feature learner. At the final step, they implement 
the SVM as the text classifier [37]. Another study calculates 
CNN with multi-Channel Distributed Representation for 
classifying the Tweets [43]. 

III. MODEL OF CNN 

A. Common CNN 
Commonly, CNN has many identical copies of the same 

neuron. In a CNN, a computational process runs large 
models’ computation with a number of hyper-parameters. 
CNN has many interleaved convolutional and pooling layers 
over the network. The layer receives the feature maps and 
computers feature maps as its output by running 
convolutional operation. The parameters of the convolution 
layer called filters. For testing the loss, it needs back-
propagation to learn during training the model [8].  

In the CNN, there are a forward pass and backward pass. 
The forward pass computes from the inputs data until the 
output layers. To obtain the loss function, it traverses through 
all neurons from first to the last layer. In the Forward Pass 
process, the learning is usually run in groups of N samples. In 
this study denoted by 𝑥"#, the i-th input feature map of sample 
n and 𝑦%#  the j-th output of n. In this process of the 
convolutional layer. The 𝑦%#  computed using the 
convolutional operator (*). Equation (1) shows forward pass 
formulation in Conventional CNN networks. 

 
𝑦%# ='𝑘"% ∗

"

𝑥"#																																								(1) 

  
In the Forward Pass process, the output feature maps are 
computed using the summation process. It will calculate the 
filter 𝑘"% convolute with input feature map 𝑥"#. 

A backward pass is computed from the last layer, move 
back to the first layer. The process employs a gradient descent 
algorithm or a similar technique. This process will calculate 
the gradient descent function denoted by 𝑘"%  in these 
following formulas.  Equation (2), (3), (4) describe how to 
calculate Backward Pass in Conventional CNN Networks.  
 

𝜕𝑙
𝜕𝑥"#

='0
𝜕𝑙
𝜕𝑦%#

1
%

∗ 2𝑘"%3																				(2) 

                               
𝜕𝑙
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=
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𝑁'0

𝜕𝑙
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%

∗ (𝑥"#)																(3) 

   

𝑘"% = 𝑘"% − 𝛼 ∙ 0
𝜕𝑙
𝜕𝑘"%

1																								(4) 

        
In the above formulas, loss function l for the gradient of the 
network concerning 𝑥"# calculated with equation (2). Besides, 
calculating of loss function with 𝑘"%  computed by the next 
equation (3) and after calculating  ;<

;=>?
, gradient descent will 

update parameters 𝑘"%  by calculating 𝛼 learning rate shown 
with equation (4). 

B. Dynamic CNN 
In this study, we propose a dynamic CNN to measure 

message sentiment of OSN users.  Instead of using a linear 
parameter, a dynamic CNN computes the CNN layer 
according to the length of the input matrix in each layer. 
Dynamic CNN alternates between wide convolution layers 
with dynamic pooling layers. The dynamic CNN layer 
receives two inputs within the operation. The first input is the 
previous layer of the features maps and the second is the 
filters 

We construct a dynamic CNN by formulating a pooling 
function to get an appropriate k-max pooling value. By using 
dynamic CNN, it can compute the graph by harnessing the 
current parameters of each layer. The approach employs 
dynamic k-max pooling describe features that correspond to 
suitable features in the neural network layer. We implement 
the pooling function within the hidden layers. IN the process, 
the pooling operator is activated after the topmost 
convolutional layer. It makes the input to the fully connected 
layers is the independent length of the input message.  

We construct an algorithm to calculate the value of K-Max 
pooling. The model employs the k value at intermediate 
layers (hidden layer). The parameter k is a dynamic value to 
enable the extraction of higher order and longer-range 
features. The dynamic CNN calculates forward pass with 
function 5.  
 

𝑦%# ='𝑘"%# ∗
"

𝑥"#																															(5)	

 
In this process, the first network computes the features maps 
as the input layer to the dynamic CNN. In Equation (5), 𝑥"#is 
the i-th input feature map of the sample n and 𝑘"%#  is the ij 
input kernel of the sample n. then, j-th becomes output feature 
map of sample n networks. Operation of backward and 
forward pass run simultaneously in one iteration.  The 
dynamic CNN calculates backward pass with the function (6), 
(7). 
 

𝜕𝑙
𝜕𝑥"#

='0
𝜕𝑙
𝜕𝑦%#

1
%

∗ 2𝑘"%# 3														(6)	

  
𝜕𝑙
𝜕𝑘"%#

= 0
𝜕𝑙
𝜕𝑘%#

1 ∗ 𝑥"#																									(7)	

 
In the Backward Pass process with Equation (6), the layer will 
compute the gradient of the l (loss function) with respect 𝑥"#. 
The values of the gradient calculated by the partial derivative 
function ;<

;C>
D and passed to the first layer of the network. Then 

Equation (7) is used to calculate the gradient of the loss 
function with respect to 𝑘"%#  . Fig. 1 depicts Network topology 
of Convolutional Neural Network with dynamic k-max 
pooling to obtain the output. 
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Fig. 1. The DeepSentiment topology of Neural Network with dynamic k-max 
pooling. In the model, a computational process runs large models’ 
computation with a number of parameters. The network has many interleaved 
convolutional and pooling layers over the network 
 

Fig 1 depicts the computation process in the hidden layer. 
The hidden layer runs the convolution by using filters and 
input matrix. In the model, a set of filters form F ∈ 𝑅H×J will 
be convolved the input matrix S ∈ 𝑅H×|M|. It is to compute 
feature extraction (word sequences) throughout the training 
process. In the input layer, network layer projects text 
extraction as matrices input. 

The main contribution of this model is using RunPool 
pooling function. The RunPool computes the matrices based 
on the feature extraction process. In RunPool, assume k be a 
function of the length of the input and the depth of the 
network as the computing model. l is some current 
convolution in the hidden layer, L is the total number of 
convolution layer, ktop is the fixed max pooling parameter for 
the topmost convolutional layer.  

Table I:  Mathematical Notation of RunPool Pooling  
 

Notation  Description 
f filter size 
s stride 
l index of the current layer 
𝑘< k value of current layer 
𝑘NOP k value of top layer 
𝑘JQP k value after calculation of input features 

L total number of layers 
C length of input matrices 
p padding 
𝑆P Number of padding pixels 
 𝑘NOP and L are constants 

 
The model calculates the RunPool in text input data with 
pooling manipulation function: Hence, we get the “dynamic 
winning out” by calculating the simple pooling function to 
obtain k value of layer l 𝑘<. To get the 𝑘< value, we calculate 
𝑘JQP with the following function: 
 

𝑘JQP = 	S
𝐿 − 𝑙
𝐿 2𝐶 + 𝑆P3W 									𝑘< = 𝑚𝑎𝑥2𝑘NOP, 	𝑘JQP3							(8)	

 
 

The function 8 has task to choose a suitable pooling value, 
the function calculates network elements to determine the 
value of k. It is to find appropriate k-max value in the hidden 
layer.  We optimize the pooling by re-computing the graph 
with the k-max pooling manipulation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

C. General Idea 
Basically, to conduct sentiment analysis, a model should 

analyze, process, summarize and conclude the subjective 
texts [33]. Current studies propose a analyses strategy by 
using machine learning and the rule-based method. As far as 
we know, machine learning is a better model to classify 
feature with emotion words input [34]. However, 
conventional machine learning algorithm requires manual 
feature selection and training for the dataset, so it is not 
appropriate with the dynamic environment like Online Social 
Network. 

Inspired by deep learning success, we propose a deep 
learning algorithm to construct a supervised learning model. 
This study proposes a CNN with dynamic pooling to detect 
anomalies sentiment by analyzing OSN message. The model 
uses wide convolution in each window, to ensures that all 
weights get the entire parameter action. This study adopts k-
max pooling concept to optimize the network performance. 
Choosing a useful value of dynamic k-max pooling is crucial 
to achieving the benchmark result.  

The key idea of the experiment is to modify the original 
CNN layer into dynamic pooling computation with RunPool 
implementation. To construct efficient graph computation, 
the model presents dynamic pooling computation. We also 
conduct dynamic graph computation. The graph is not fixed 
but rather is dynamically updated after each layer of the 
network. We hypothesize the advantage of the dynamic graph 
which computed with the concept of “Define by Run” is very 
efficient for the varying input.  

D. RunPool Pooling Manipulation 
In this research, we construct RunPool to train the features 

of message sentiment. In the DeepSentiment, we set the tweet 
of a message as the input feature. Before training and testing 
the features, the dataset element such as the character of the 
word will be converted into binary value as matrix input. The 
model optimizes the number of parameters in the 
computation process. We need to tweak the hyper-parameters 
in the input layer, hidden layer, and an output layer. A good 
network topology is able to efficiently handle the high 
dimensionality of raw data. Fig. 2 illustrates the 
DeepSentiment network to calculate the message sentiment. 
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Fig. 2 The dynamic CNN network while calculating the input matrix. It is to 
produce a classification category and to analyze user's messages 

 
Fig 2 depicts the computation process in the visible and the 

hidden layer. The hidden layer runs the convolution process 
by using filters and input matrix (sentence). In the model, a 
set of filters form F ∈ 𝑅H×J  will be convolved the input 
matrix S ∈ 𝑅H×|M|. The aim of the convolutional layer is to 
compute feature extraction (word sequences) throughout the 
training process. Consists of three-layer, the input layer, 
hidden layer, and an output layer. In the input layer, network 
layer projects text extraction as matrices input. In this phase, 
the model converts the posting message assigned as word 
structure become matrix values before the feature extraction 
process.  

In the hidden layer, the network runs pooling operation. 
The Pooling layer is an operation between the Convolution 
and ReLU. It is to subtract the number of parameters, such as 
the size of the image (width and height). In this process, the 
common technique is Max-pooling operation. Max-pooling 
obtains the biggest value within a filter and deletes the other 
values. It takes the strongest activations over a neighborhood. 
The pooling run in the relative location of a strongly feature. 
However, instead of using common max pooling, we 
construct RunPool, a dynamic pooling manipulation to train 
the sentiment corpus.  

The model presents the dynamic k-max pooling concept to 
compute the feature extractions. The algorithm utilizes a 
dynamic k-max pooling operation to obtain a suitable feature 
map in the neural networks. Operation of dynamic k-max 
pooling run among hidden layer before fully connected layer. 
Dynamic k-max pooling operator determines the 
effectiveness of CNN operation. The pooling parameter k can 

be dynamically chosen by making k a function of other 
aspects of the network. It retrieves k maximum values from 
the pooling window. 

E. Activation Function 
In the hidden layer process, it consists of two primary 

operations; convolution and pooling. In the convolutional 
process, the network employs wide convolution filtering to 
the best local feature in each layer. In pooling layer, it utilizes 
an activation function to choose the most informative feature. 
To optimize the network, we test some activation functions to 
achieve efficient loss and accuracy. There are Sigmoid, Tanh, 
and ReLU activation. 

Activation Function can limit the output signal to a specific 
value based on the input. Recently the application of neural 
networks used the non-linear activation functions. In a neural 
network like a convolutional neural network, the activation 
value of the unit based on input values. It is used to decide 
based on the classification or predict the value of several 
variables. Activation function has the primary purpose of a 
multilayer neural network. It is to separate many successive 
linear transformations by nonlinearity function; if not 
operate, it would collapse to a single linear transformation.   

The function maps negative values to zero and 
maintaining positive values in the features. In the process, it 
applies each layer learning to detect different features of CNN 
networks. Pooling simplifies the output features by 
performing nonlinear computation and reducing the number 
of parameters. The function can fasten and achieve effective 
training result. In the common CNN, it repeats the operation 
over tens of layers. The ReLU activation function is defined 
as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) where x is the input to the neuron. A 
ReLU map has output 0 when the input is less than 0 or minus 
values; if the input values are higher than 0, the outputs are 
equal to the input.  The ReLU process like a switch for 
linearity. We also test the other activation functions include 
the sigmoid, Tanh, and leaky ReLU,  

By using the ReLU activation to capture the valuable 
properties of the input values. It can avoid the vanishing 
gradient issue, simplifies and accelerates calculations and 
training. The function performs efficiently and accurately on 
multi-label datasets. ReLU has a significant advantage in 
large dataset computation. It has high computational 
efficiency. Various research demonstrated that ReLU 
outperforms the conventional sigmoid or hyperbolic tangent 
function [32]. 

F. Fully Connected Layer 
The Fully Connected Layer is the final layer in a 

Convolutional Neural network. In the layer, every neuron in 
the preceding layer is connected to every neuron. In the 
operation, there can be 1 or more fully connected layers, it is 
depending on the level of feature abstraction. This layer gets 
the output from the convolutional, ReLU or pooling layer as 
its input, and calculates the accuracy and loss score. 

Fully Connected (FC) layer computes that outputs a vector 
of K (the number of classes) dimensions in the classification 
process. The vector owns the probabilities for each class. In 
the final phase of the model, uses a designated SoftMax 
function to reduce noise signal in the fully connected layer 
before producing the classification result. 
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The network acts as a classifier for a problem with classes 
𝑐_ … . . 𝑐#, the output layer contains one neuron per class and 
building a vector 𝑎 = 𝑎_ … . . 𝑎#. The SoftMax will be used to 
convert the values into probabilities, where SoftMax 2𝑎%3 is 
the probability of the input to belong to class 𝑐 . We need all 
the output neurons to produce values close to zero. Equation 
(9) show the SoftMax formulation. 

𝑆(𝑎") =
𝑒Q>

∑ 𝑒Q>J
%d_

	,				𝑖 = 1… .𝑚																							(9) 

 
We provide the Softmax Layer to normalize the output of 

the fully connected layer. The CNN network has an output 
that consists of positive numbers and sum to the one. To 
calculate probabilities, the classification layer utilizes the 
output result. The model creates the SoftMax layer after the 
last fully connected layer in the hidden layer. 

G. Avoid Overfitting 
To constrains network adaptation to the data, we 

implement a regularization. It helps to avoid overfitting while 
training the neural network. The role of the hidden unit is to 
approximate a function efficiently from the dataset which can 
be generalized to unseen data.   

In this study, we apply Dropout approaches to obtain 
efficient training in the social network dataset. With dropout, 
the weights of the nodes in hidden layers become somewhat 
more insensitive to the weights of the other nodes and learn 
to decide the outcome independent of the other neurons. 
Drop-out turns-off some of the hidden units randomly, 
therefore the hidden units do not need to learn every 
unnecessary detail of instances in the training set. The 
dropout operation uses deletion function to each hidden 
element. The process used to generate a thinned network 
structure. An important purpose of the model is to find the 
optimal dropout probability for each hidden element in the 
network.  

Dropout is a modern and excellent regularizer that is easy 
to implement and compatible with many training algorithms 
and model. In the experiment, instead of doing it randomly, 
we tested some types of dropout with different Dropout value. 
Based on the testing of the value, it gives the contribution of 
the neuron to the output.  

Table II:  Mathematical notation of regulizer model 
 

Notation  Description 
l ∈ {1,⋯ , 𝐿} index the hidden layers of the network 

𝑧< the inputs vector into layer l 
𝑦< the outputs vector from layer l 	

𝑦< = 𝑥 is the input 
𝑟< an independent vector of Bernoulli random varia

bles with probability p of being 1 
𝑦l< thinned outputs which calculated by 𝑦l< = 𝑟< ∗ 𝑦< 
𝑊< the weights at layer l 
𝑏< the biases at layer l 
f any activation function 

for example: 
 f(𝑥) = 1/21 + 𝑒𝑥𝑝(−𝑥)3 

 
On the function, consider a network has L hidden layers. 

We use Dropout function to calculate the 𝑦NrQ"#  training 
process for parameters like input 𝑥 and Bernoulli probability 
p. In the standard feedforward as for 𝑙	 ∈ {0,⋯ , 𝐿 − 0} we 
calculate: 

𝑧"
(<s_) = 𝑧"

(<s_)𝑦<𝜃 + 𝑧"
(<s_) 

𝑦"
(<s_) = 𝑓2𝑧"

(<s_)3 
In feed forward with Dropout operation, we calculate the 
Dropout with the following formula: 

𝑟%<~Bernoulli	probability	𝑝 
𝑦l< = 𝑟< ∗ 𝑦< 

𝑧"
(<s_) = 𝑧"

(<s_)𝑦l<𝜃 + 𝑧"
(<s_) 

𝑦"
(<s_) = 𝑓2𝑧"

(<s_)3 
 
To calculate the next layer, the regulizer utilizes the 

thinned outputs 𝑦"
(<s_) as new input. The process is applied to 

each layer in the hidden layer. This amount is to construct to 
a sub-network sampling from a bigger network. In the 
training time, it back-propagates the derivatives of the loss 
function via the sub-network. At test time, the weights are 
multiplied by p and scale the weight as 𝑊N�MN

(<) = 𝑝𝑊(<), so the 
unit is always present. 

We adopt the regulizer to deal with overfitting issues in 
the training process. Provides a way of approximately 
combining exponentially many different network 
architectures. Applying dropout is to obtaining a \thinned" 
network in the training process. The study utilizes the 
Dropout regularization during training sample (backward 
pass), not in predictions process (forward pass). 

We also test a dense layer, a type of hidden layer to 
construct a densely connected network. It is a common layer 
of neurons where the neuron receives input from all the 
neurons in the previous layer, So, the layer connects every 
node to every other node in the next layer. The layer consists 
of a weight matrix 𝑤, a bias vector 𝑏, and the previous layer 
activations 𝑎. 

IV. EXPERIMENTAL SETUP  

A. Dataset 
 This study utilizes the dataset ᴅ consisting of message data 
based on OSN posting activities. To achieve a good 
classification result, we provide a large corpus OSN for 
ᴅNrQ"# and ᴅN�MN. It consists of thousands of sentiments as the 
corpus in with a set of pairs 2𝑥("), 𝑦(")3. The sample contains 
emoticons, usernames, and message elements in the English 
language. We choose and extract many posting messages 
from the sample data to build a benchmark dataset. Before 
computing, we separate the dataset into ᴅNrQ"# , ᴅ�Q<"H  and 
ᴅN�MN. By using the extracted features, we undergo sentiment 
measurement on the posting messages using diverse learning 
algorithms.  

We provide the sample data which consists of different 
tweets including positive tweets and anomalous tweets. Then, 
we classify the polarity to mark either positive or negative. If 
the tweet has both positive and negative parts, the model 
chooses the more dominant sentiment as the final label. To 
obtain more features for this experiment, we provide several 
corpora datasets, original posts, and comments. We construct 
the training input 2𝑥(") ∈ Ɍ3  as the i-th training sample of ᴅ 
and 𝑦" ∈ (0,⋯ , 𝐿)  is the label assigned to 𝑥(") . Fig. 3 
illustrates the distribution of the sentiment in the corpus. 
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Based on the algorithm 1, we construct a DeepSentiment 

model with diverse parameters. We test various hyper-
parameters to obtain the optimal result.  In the training 
process, we test the model different hyper-parameters 
includes a hidden layer, filter, kernel size, pooling, activation, 
and optimization function. 

Principally, to build the DeepSentiment model, we adopt 
the dynamic graph in the hidden layer. The DeepSentiment 
model undergoes “Downsampling” process by using the 
pooling algorithm. The layer also to avoid overfitting in the 
neural network. The technique allows us to create static 
graphs that emulate dynamic computation graphs of arbitrary 
shape and size. In the dynamic graph, the model adopts the 
dynamic pooling of k. It is to compute each layer in the neural 
network. In the algorithm, parameter 𝑘  is scalar value to 
compute the pooling layer. The value of k-max pooling can 
be dynamically chosen by making a function based on the 
network parameters. The dynamic value of the k determines 
the neural network performance. 

It is a mutable directed graph that represents operations on 
data and the edges (arrows) represent the system output. The 
advantage of the graphs appears to include the ability to adapt 
to varying quantities in input data. The characterization of the 
dynamic graph is an automatic selection of the number of 
layers, the number of neurons in each layer, the activation 
function, and other neural network parameters, depending on 
each input set instance during the training. The framework 
consists of a system of libraries, interfaces, and components 
that provide a flexible, programmatic, run time interface.  

With the dynamic graph, we test several values of max 
pooling. As the neural network computation, we also map the 
multi-dimensional tensor distribution of k-max pooling.  
Tensor is an exchange type for homogenous multi-
dimensional data for 1 to N. We separate the tensor into the 
dimension and a type. The dimension refers to the rows and 
columns of the tensor. The study utilizes the two-dimensional 
tensors in the computing processes.  

The simulation calculates average neuron to train the 
dataset. It produces relatively high accuracy with k-max 
pooling. In our experiment, adding more layers and neuron 
numbers in the hidden layer computation cannot improve the 
predictive capability. However, it enlarges resource in the 

computing process. Therefore a limitation of neuron number 
and k-max pooling is an effective method to achieve an 
efficient result for the neural network. 

B. Initial Test with LSTM 
At the initial experiment, we test the LSTM algorithm as a 

classifier. We provide a large number of words from the 
sample. We add the dense vector representation for training 
the models. In further tweaking, we set the dense vector 
representation to make it equal to the Max Length parameter 
of the network. After computing the LSTM layer, the model 
calculates a fully-connected layer and activation function 
(ReLU). To reduce the noise in the fully connected layer, we 
employ Softmax activation. We also implement dropouts 
layer to regularize the network and avoid the overfitting. 
Table III depicts the result of different LSTM models 

 
TABLE III 

COMPARISON OF LSTM MODEL WITH DIFFERENT LOSS FUNCTION 
LSTM Unit Optimizer Loss Positive 

Acc. 
Negative 

Acc. 
128 Adam BCE 81.13 % 96.70 % 
64 Adam BCE 83.01 % 95.93 % 

128 Adagrad MSE 70.75 % 95.43 % 
64 Adagrad MSE 78.30 % 93.40 % 

128 RMSProp BCE 83.96 95.93 % 
 
To compare loss functions in the neural network, the model 

utilizes with Mean Squared Error (MSE) and Binary Cross-
Entropy (CE) loss. Based on the loss accuracy, we achieve 
that Binary Cross Entropy works better than the MSE. The 
cross-entropy logarithm enables the network to assess the 
small errors and try to diminish them. The MSE evaluation is 
suitable for a regression problem while for a classification 
task, it is compatible to calculate the loss function the cross-
entropy with the function: 

 

J(Ѳ) = −
1
𝑇J�

' ' 𝜕
�(�)
�

���_

�d�

ln ℎ�
(N)

����_

�d�

												(11) 

 
The function (11) consists of 𝑇NrQ"#  as the number of 

training examples, 𝑇J�  represents the number of training 
examples in a mini-batch,	ℎ�

(N) represents the hidden neuron 
of each layer and 	𝜕��

(�) represents the derivative.  
In text processing, LSTM is a new powerful algorithm 

which can classify, cluster and make predictions about text 
data. Thus, we can feed the engineered features into LSTM 
classifier in order to train the network. LSTM mitigates the 
vanishing gradient problem. In the operation process, the 
algorithm feeds the long-term memory into RNN. It runs by 
utilizing a couple of gates and has memory blocks which are 
connected through LSTM layers, Fig. 4 displays the 
validation accuracy and loss with several popular optimizers 
by using LSTM algorithm. 
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Fig. 4: Validation Accuracy and Loss with LSTM network (128 embedded 
dimension).  
 

Fig. 4 depicts that the LSTM suffers from overfitting after 
training in 6 epochs. Because the algorithm stops learning 
when the updates to the various weights within a given neural 
network become smaller and smaller. By computing the 
features with LSTM, the model also tries to implement 
weight sharing in the hidden layer. It can reduce the number 
of parameters in the network, and it can increase the ability 
of the network’s generalization. It can substantially lower the 
degrees of freedom of network complexity. Thus, the benefit 
of applying weight sharing is using fewer parameters to 
optimize, it able to faster convergence to some minimal and 
avoiding overfitting as the weights are shared with some other 
neurons.  

C. DeepSentiment CNN Test 
By utilizing DeepSentiment CNN with RunPool function, 

we test diverse hyper-parameters to the model include 
learning rate, batch size, number of hidden layer and epoch. 
Selection of hyper-parameter is becoming an important 
aspect which can determine the performance of the graph. 
Firstly, the model converts the input data into features map. 
The model feeds the features into the graph for classification. 
Then, we test gradient descent with different hyperparameter. 
It is to obtain the highest value of the accuracy and get the 
minimum loss function. 

DeepSentiment is also testing the optimization algorithm 
to measure accuracy and loss in the neural network. The 
DeepSentiment model tests several gradient descent 
optimization algorithms such as Stochastic Gradient Descent 
(SGD) with Momentum, Adam (Adaptive Moment 

Estimation), Adagrad, and RMSprop. It is to calculate the 
gradient of loss in the training and testing phase.  

We consider broad strategies to optimize gradient descent. 
We employ the gradient descent to minimize the objective 
function 𝑗(𝜃) with model's parameters θ ∈ 𝑅H . The model 
updates the parameters in the opposite direction of the 
gradient of the objective function ∇𝜃𝑗(𝜃). The study sets the 
learning rate η to determine the stride size to reach a (local) 
minimum. 

The optimizers are to calculate the gradient of the loss 
concerning the layer weight. The adaptive optimizer divides 
the learning rate for weight by running an average of the 
magnitudes. The learning rate algorithm changes iteration 
according to some cyclic function. To measure validation 
level between training and test dataset, the study calculates 
the gradient of loss. The gradient influence efficiency of the 
result between training and test phase The scheme can 
enhance the accuracy in DeepSentiment model. We set a local 
variable to compute the loss function.  

In order to measure the accuracy of the model, we test 
several loss gradients in the benchmark datasets with 
different amount of hidden layer and gradient descent. 
Choosing a starting value for a learning rate is one of the most 
important parts of the neural network study. The result 
showed that learning rate with dynamic optimizer like Adam 
produces a more efficient result than the others. Fig. 5 depicts 
the validation accuracy and loss with Adam Optimizer (128 
embedded dimension) when training and testing process with 
DeepSentiment network. 

 
Fig. 5: Validation Accuracy and Loss with Adam Optimizer (128 embedded 
dimension). The graph shows that the adaptive optimizer is more efficient 
than the others for this study. 

 
 

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



 

Fig 5 explains the result with the tweaking parameter of 
Adam gradient descent algorithms. We test both Adam 
optimizer and SGD with momentum. In the initial process, 
we feed Adam optimizer into the graph with different amount 
of hidden layers. Adam is an improvement of the RMSProp.  
The study finds the Adam optimizer harvests is better and 
faster in the network. The result shows a dynamic optimizer 
is able to achieve a small loss in a large number of hidden 
layers. However, using a large number of hidden layer cause 
overhead computation in a particular device. 

We also test the SGD optimizer; we get the best value in 
the SGD optimization (momentum = 0.8) for the training 
process. As incremental gradient descent, it is a repetitive 
technique for optimizing a differentiable objective function. 
The SGD with momentum produces an efficient result by 
adopting weight decay in the hidden layers. The more layers 
in SGD cannot achieve efficient loss and accuracy. TABLE 2 
describes the comparison of CNN models with different 
optimizer. Table IV displays the MSE and BCE calculation 
result. 

TABLE IV 
COMPARISON OF CNN MODEL WITH DIFFERENT OPTIMIZERS 

CNN  
Embed-dim 

Optimizer Loss Positive 
Acc. 

Negative 
Acc. 

128 Adam BCE 85.84  % 97.96  % 
64 Adam BCE 80.18  % 97.71  % 

128 Adagrad MSE 84.90  % 97.46  % 
64 Adagrad MSE 74.52  % 97.20  % 

128 SGD + Momentum BCE 63.20  % 95.43  % 
64 SGD + Momentum BCE 62.26  % 95.13  % 

 
The result shows the adaptive learning rate such as Adam 

is more efficient than the others. Adams’ runs by changing 
the learning rate every iteration according to some cyclic 
function in the network. Dynamic value for calculating 
gradient loss more rapid traversal of saddle point plateaus. If 
the momentum optimizer runs like a ball running down a 
slope, Adam acts like a heavy ball with friction. In the 
computation process, 𝑚N  represents the mean value and 𝑣N 
reflects the un-centered variance of the gradients. It calculates 
the decaying averages of past and past squared gradients 𝑚N 
and 𝑣N as follows: 

𝑚N = 𝛽_𝑚N�_ + (1 − 𝛽_)𝑔N 
𝑣N = 𝛽£𝑣N�_ + (1 − 𝛽£)𝑔N£ 

 
Toward the testing of the gradient descent optimization, we 

obtain the Adam optimizer is more efficient for training and 
testing in this case. By using dynamic CNN and tweaking 
appropriate hyper-parameter, we obtain the DeepSentiment 
CNN can produce better accuracy than LSTM. We find a 
significant increase in CNN graph’s performance within 
dynamic k-max pooling operation for training data. The 
DeepSentiment graph can better deal with the problem of data 
noise, alignment, and other data variations. 

The DeepSentiment model computes the unstructured text 
as the dataset. We find that the dynamic CNN architecture is 
extremely useful to deal with the case. It is a method to 
minimize data noise in the text dataset and other data 
variations. The training and testing results show that the 
DeepSentiment algorithm can achieve a promising result in 
detecting and classifying OSN sentiment. By conducting an 
experiment in the CNN, we can reach better and timelier 
results when compared with the common approaches such as 
machine learning algorithms. 

 
 

By using the algorithm, we find the CE is more efficient 
than MSE function in loss computation. The CE loss function 
evaluates the neural network error when it tries to make a 
prediction to the data. In this experiment, we conduct a 
classification task, hence, the cross-entropy optimization is 
more efficient than MSE. The little error can be produced, the 
better the neural network model. 

At the final step, we conduct sentiment classification based 
on the classifier result.  It is to classify sentiment category 
whether the normal or malicious content. In real OSN 
application, malicious content like sentiment can reflect 
malicious activity within the environment. Good monitoring 
of sentiment measurement is able to provide an advance 
warning about attacker capabilities and intent for system 
administrators. The technique can act as one of the active 
authentication methods for the OSN environment. The 
learning model allows automating extracting and calculating 
process for the sentiment. Therefore, in the OSN sentiment 
classification issue, the originality of this article is measuring 
OSN sentiment with DeepSentiment CNN to solve the 
malicious sentiment problem accurately.  

D. Evaluation Metric 
On the above section, we present how to measure the user 

sentiment categories. By feeding the extracted features into 
the classifier, we may able to predict the malicious user 
categories based on the sentiment analysis. The 
DeepSentiment experiment also provides an evaluation of the 
performance model by using cross-validation. It is to 
measures sensitivity, specificity and accuracy rate. The 
evaluation of the model calculates False Positive Rate (FPR), 
True Positive Rate (TPR), accuracy, Receiver Operating 
Characteristic (ROC) and Area Under Curve (AUC).  

The study conducts a performance assessment to evaluate 
the performance of classification techniques. It is to help 
performance measurement of the model. We construct the 
classification model with a supervised learning algorithm and 
measure the model performance by using evaluation metrics. 
Commonly, an evaluation technique utilizes the confusion 
matrix table. A positive value represents the malicious and 
normal sentiment assigned as negative. Table V displays the 
structure of the confusion matrix.  

TABLE V 
CONFUSION MATRIX 

Predictive class Sentiment Categories 
 Malicious Normal  
Malicious True Positive (TP) False Positive (FP) 
Normal False Negative (FN) True Negative (TN) 
 
The statistical approach is to evaluate the performance of 

the malicious account classification. We divide the confusion 
matrix into 4 kinds, those are True Positive (TP), False 
Negative (TN), True Negative (TN) and False Positive (FP). 
Table VI portrays the classification term of the malicious and 
normal sentiment. 

TABLE VI 
CLASSIFICATION TERMS FOR MEASUREMENT 

TP Indicates the number of malicious sentiments that is identified 
as a malicious sentiment. 

FN Indicates the number of malicious sentiments that is identified 
as a normal sentiment. 

TN Indicates the number of normal sentiments that is identified as 
normal sentiment, 

FP Indicates the number of normal sentiments that is identified as 
a malicious sentiment. 
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Sensitivity or True Positive Rate (TPR) defines the 
percentage of the datasets. TPR shows the samples belong to 
the group and identifies it as such. Equation 12 shows the 
TPR computation. 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																					(12) 
 

Specificity or True Negative Rate (TNR) defines the rate 
of the datasets which actually do not include the group and 
identifies it as such. Equation 13 shows the TPR computation. 

TNR =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃																			(13) 
 

In this model, accuracy (ACC) defines the ratio of all 
datasets including to the group and the total amount of 
datasets. Equation 14 shows the TPR computation. 
 

ACC =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁																				(14) 
 
The study presents classification problems in detecting 

abnormal tweet. We test the evaluation metric to measure 
DeepSentiment performance. This experiment adopts the 
binary classification task. The method predicts and classifies 
the elements of the dataset into two groups (which group 
belongs to positive or negative). It needs to calculate the 
classification accuracy of the model. We plot Receiver 
Operating Characteristic (ROC) Curves and Area Under 
Curve (AUC) [38]. It is able to estimate sensitivity and 
specificity in diverse thresholds without truly changing the 
threshold. 

The ROC in DeepSentiment plots the performance of a 
binary classifier. To learn the output, DeepSentiment adopts 
binary classification in the classifier. It needs to convert the 
output into binaries values to expand the ROC curve. The 
ROC enables the model to select a threshold that balances 
sensitivity and specificity. It is useful for classification 
context. With different threshold tuning, the ROC curve plots 
the true positive rate (TPR) against the false positive rate 
(FPR). It is a relative operating characteristic curve with 
(TPR and FPR) as the criterion changes [40]. The paper 
calculates cross-validated AUC to estimate the percentage of 
the ROC plot that is underneath the curve. The result shows 
some classifiers are more accurate and produce a higher 
AUC.  

In this part, we display several AUC values from different 
classifier's class. The AUC illustrates the percentage of the 
area under the ROC curve with ranging between 0~1. The 
AUC run by measuring the ranking based on the separation 
of the two classes. The AUC reflects the DeepSentiment' 
ability to discriminate between positive and negative classes. 
The model makes good level predictions because it produces 
the area at 0.8 or above. In this experiment, we obtain a value 
with an area is larger than 0.5 (AUC= 0.83) for the ROC 
curve. It reflects the model to make sense for the sentiment 
case. Fig. 6 depicts the ROC to display the evaluation of the 
classification model. 

 
 
 

 
Fig. 6: DeepSentiment adopts binary classification in the classifier. It needs 
to convert the output into binaries values to expand the ROC curve  

VI. CONCLUSION & FUTURE DIRECTION 
OSN has dynamic features with the various posting 

messages. Inspired by the deep learning success, we present 
the DeepSentiment, a classification technique with dynamic 
deep learning for detecting malicious sentiment in the OSN. 
Instead of using the conventional learning model, we present 
dynamic deep learning in the training and testing process.  

In the DeepSentiment, we test the RunPool, a novel CNN 
network with dynamic pooling layer in the neural network. 
We find a significant increase in CNN graph’s performance 
with the model. In this study, the model computes the OSN 
sentiment as matrix inputs and employs the model to classify 
benign or malicious over the posting message. The user 
posting message categorizes differ the sentiment as a normal 
or suspicious activity. 

To test the malicious detection model, we calculate 
sentiment analysis by using different gradient descent. We 
harvest Adam optimizer is more efficient than others. Adams’ 
runs by changing the learning rate every iteration according 
to some cyclic function. Dynamic value for calculating 
gradient loss more rapid traversal of saddle point plateaus. By 
using dynamic CNN and tweaking appropriate hyper-
parameter, we obtain the DeepSentiment CNN can produce a 
better accuracy and small loss than LSTM. We find a 
significant increase in CNN graph’s performance by using 
RunPool pooling function for training data. To evaluate the 
model performance, we conduct evaluation metrics. The 
ROC curve depicts that the model produces the AUC score is 
larger than 0.83. Hence, it makes sense as a detection method 
for sentiment classification. 

As the future directions, to achieve better analysis for OSN 
tweet, it needs an exploration for handling emotion ranges. 
The emotion reflects polarity of sentiments. Because the 
tweets are not only positive or negative sentiment but also it 
has no sentiment (neutral) and gradations sentiment.  Then, 
neural network computation is necessary to calculate with a 
new technique like adaptive loss function rather than a 
conventional loss function.  
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