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Abstract—The k nearest neighbor (kNN) rule is known as its
simplicity, effectiveness, intuitiveness and competitive classifica-
tion performance. Selecting the parameter k with the highest
classification accuracy is crucial for kNN. There’s no doubt that
the leave-one-out cross validation (LOO-CV) is the best method
to do this work as its almost unbiased property. However, it
is too time consuming to be used in practice especially for
large data. In this paper, we propose a new algorithm for
selecting an optimal neighborhood size k. We found that the
classification accuracy of LOO-CV is approximate concave for
the parameter k. And a search method is proposed to pick
out the optimal value of k. An empirical study conducted on
8 standard databases from the UCI repository shows that the
new strategy can find the optimal k with significantly less time
than the LOO-CV method.

Index Terms—k nearest neighbor, leave-one-out cross valida-
tion, selecting the parameter k.

I. INTRODUCTION

THE k nearest neighbor (kNN) rule [1] is a typical non-
parametric algorithm for pattern classification problems

[2], [3], [4]. Fix and Hodges [5] firstly introduced the nearest
neighbor rule in 1951 and then Cover and Hart [6] gener-
alized some important characters such as the upper bound
of asymptotic error rate of kNN in 1967. After then kNN
gained wide attention and rapid development. The condensed
nearest neighbor (CNN) rule [7] proposed by Hart in 1968
is the first algorithm to reduce the model size of kNN. CNN
dose not stop the iteration until all instances that are classified
incorrectly are added to the select set. In order to improve the
effectiveness of CNN, a number of variations of CNN had
been developed, such as the reduced nearest neighbor (RNN)
algorithm, the selective nearest neighbor (SNN) algorithm,
the modified condensed nearest neighbor (MCNN) algorithm,
the pairwise opposite class-nearest neighbor (POC-NN) algo-
rithm and fast condensed nearest neighbor (FCNN) algorithm
et al [8], [9], [10], [11], [12]. Another class of improved
kNN algorithms is based on the fuzzy sets theory. As an
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extension of fuzzy sets theory, the fuzzy nearest neighbor
classifiers use fuzziness to find the neighbors set of a query
point [13], [14], [15], [16], [17]. A detailed survey about the
fuzzy nearest neighbor classification can be found in ref. [3].
Recently, some latest kNN-based algorithms are developed,
such as the probabilistic group nearest neighbor (PGNN)
query algorithm [18], the decrease the size of the training set
for kNN regression (DISKR)[19]and the local mean-based
pseudo nearest neighbor (LMPNN) rule [20].

Although the kNN has its advantages, such as simplic-
ity, effectiveness, intuitiveness and competitive classifica-
tion performance, it also has its drawbacks. To improve
the performance of kNN-based rule, the scholars’ research
mainly focuses on the selection of the appropriate similarity
measures, feature subsets and their weights in the case of
the retrieval step [21], [22], [23], [24], [25], [26], [27], [28].
However, how many cases should be combined to generate
the label of a query point? Many researchers believe that
finding the optimal parameter k is crucial to improve the
performance of kNN rule [26], [28], [29], [30], [31]. When
parameter k is too small, the corresponding kNN classifier
may has the following disadvantages: sensitive to noise
points, data sparseness and data imbalance [20], susceptible
to overfitting [31] and inefficient for representing the general
pattern of the data [28]. When parameter k is too large,
the corresponding kNN classifier may has the following
disadvantage: inclusive many irrelevant or distorted points
from other classes [28]. All of these disadvantages lead to a
low classification accuracy. Hence, the selection of parameter
k is a crucial issue. Unfortunately, there have been few works
that try to optimize the value of k.

Zhang and Song summarize the existing methods and
divide them into four different types [31]. The first one is
the constant value method which is the most straightforward
method, the closest neighbor is used to assign the class for
the query point. For example, the WEKAs default setting is
k = 1. This setting suffers from noise, and cannot reflect
the diversity of different data sets. The second and the
most widely used method is cross-validation that can obtain
different k values for different data sets but consumes much
time. The different k values can be obtained according to
the number of instances in training set or the distribution of
class [32]. The third is the heuristic method. Okamoto and
Satoh point out that the optimum k value increases gradually
as the number of training instances increases [32], they did
not provide a uniform relationship model. And Wettschereck
confirms that a single k value suffices to classify all queries
[33]. The fourth method is the evolutionary parameter op-
timization algorithms [26], [28]. These methods detect k
values by genetic algorithm , which is much time consuming
as well. Zhang and Song propose a novel method of using
back-propagation neural networks to explore the relationship
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between data set characteristics and the optimal values of k,
then the relationship and the data set characteristics of a new
data set are used to recommend the value of k for this data
set.

However, the most important thing for a classifier is a good
classification accuracy, and all methods mentioned above did
not consider the direct relationship between classification
accuracy and the parameter k. It is well known that the
leave one out cross validation (LOO), a special case of cross
validation (CV), is proximately unbiased. That is that LOO
can evaluate the model with the best accuracy. However,
LOO is a costing-time process, conventional methods use
5-fold cross validation or 10-fold cross validation instead of
LOO for reducing the complex, but this sacrifices the main
objective of the classification accuracy.

Fortunately, we have found that there is a close relationship
between the LOO accuracy(LOO-A) and the parameter k
through the experiment. That is the LOO accuracy is approx-
imation concave on the parameter k. This paper proposed a
search strategy to select the optimal k according to the LOO-
A according to the approximation concave relationship. This
search strategy not only greatly reduces the time complexity,
but also ensures that the k value corresponding to the highest
accuracy is guaranteed when the step size is small enough.
The experimental results also show that on the 8 datasets,
the new method stays LOO in time and has the same
classification accuracy as LOO.

The rest of this paper is structured as follows: Section
2 introduces some related basic knowledge. A detailed
description of the new algorithm is listed in Section 3.
The experimental results is given in Section 4. Section 5
concludes the paper with a brief summary and propose the
further works.

II. THE RELATED BASIC KNOWLEDGE

The kNN rule is one of top ten data mining algorithms.
kNN Algorithm does its work by finding the k nearest
neighbors of the query point in the training data. Generally
speaking, the most frequently label in the k nearest neighbors
is the result of classification. The pre-defined category labels
are essential requirement for kNN rule. Three main core
elements of kNN are the training data, similarity measure
or distance between objects and the number of the nearest
neighbors.

In a general classification problem, let T = {xm ∈
Rn}Mm=1 be a training set with M training samples in
n-dimensional feature space, and there are l class labels,
each sample xn corresponds to its class label cn, where
cn ∈ {w1, w2, · · · , wl}. For a query point x, the kNN rule is
implemented as follows:

(1) Compute the distances between the unknown query
point y and samples in training data. Then find k nearest
neighbors set Neighbor{x1, x2, · · · , wk} of y according to
these distances. The distance between y and the neighbor xi

is measured by the Euclidean distance metric by Eq.(1)

d(y, xi) =
√
(y − xi)T (y − xi) (1)

(2)To assign a label to the query point, the following two
strategies are widely used.

c = argmax
i

∑
xj∈Neighbor

sign(xj , ci) (2)

c = argmax
i

∑
xj∈Neighbor

Sim(y, xj)sign(xj , ci) (3)

where xj is one of the neighbors in the training set,
sign(xj , ci) ∈ {0, 1} is a indicator function that implies xj

whether belongs to class ci. Sim(y, xj) is a function that is
used to measure the similarity of y and xj . Eq.(2) means that
the most frequently class label in the nearest neighbors set
will be assigned to the predication. Whereas Eq.(3) means
the class with maximal sum of similarity will be assigned to
the predication. The former is used in this paper as it is the
most classical one.

III. THE EXPLICIT PROCESS OF THE NEW ALGORITHM

A. motivation

kNN is famous for its simplification, high efficiency and
classification accuracy. The unique parameter k is closely
related to the classification results. How to select a optimal
parameter k which can make kNN get a high classification
accuracy for all datasets is our ultimate goal. It is well known
that the Leave-One-Out Cross Validation (LOO-CV) is a
very good way to evaluate the performance of a classifier,
its best advantage lies in the classification error (LOO-CV-
E) is almost unbiased, and Luntz and Brailovsky give a
detailed proof [34]. If the time complexity is not taken
into account, LOO-CV is the best choice to evaluate the
performance of the nearest neighbor classifier. In this case,
we need to perform a traversal test for k within its range D,
that is, for each k∈ D, we must calculate the corresponding
nearest neighbor classifier classification accuracy, and then
select the highest precision corresponding to the k, as the
final parameter selection. Obviously this ensures that the
classifier has the highest classification accuracy, but it takes
a lot of time. If the time required for this process can be
effectively reduced, then a nearest neighbor classifier with
the highest classification accuracy can be obtained. We study
the relationship between the parameter k and the LOO-CV-
E in the nearest neighbor method and find that the LOO-
CV-E is approximation convex on k, so that the LOO-CV
accuracy (LOO-CV-A) is approximation concave on k. 8
representative data in the UCI database are selected to show
the approximation convex relationship. They are Australian
Data, Glass Data, Ionosphere Data, Iris Data, Sonar Data,
Wine Data, Breast Cancer Wisconsin Data and Diabetic
Retinopathy Debrecen Data, abbreviated as Breast Data and
Diabetic Data separately. We draw the images of LOO-CV
accuracy of k nearest neighbor classifier with respect to k on
these datasets, see Figure 1 and Figure 2. These figures show
that the two are roughly concave relationship, so choose a
good optimization search method can avoid traversal search
of k in its range. Inspired by reference [35], we propose a
similar search strategy that can fast converge to the k values
with the highest classification accuracy.

B. Data preprocessing and the range of k

If the value ranges of some attribute variables are very
large, and others are very small, and the differences be-
tween these ranges are significant disparity, then the attribute
variables with big ranges might dominant in leaning and
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Fig. 1. Classification accuracy of LOO-CV on Australian, Glass, Iono-
sphere, Iris
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Fig. 2. Classification accuracy of LOO-CV on Sonar,Wine,Breast,Diabetic

TABLE I
VALUES OF ATTRIBUTE VARIABLE FOR AUSTRALIAN

1 2 3 4 5 6 7 8 9 10 11 12 13 14
minimum 0 13.75 0 1 1 1 0 0 0 0 0 1 0 1
maximum 1 80.25 28 3 14 9 28.5 1 1 67 1 3 2000 100001
difference 1 66.5 28 2 13 8 28.5 1 1 67 1 2 2000 100000

result an unsatisfactory classification result. For example, the
value ranges of the 14 attribute variables in Australian Data
are listed in table I, the first two rows are the minimum
and maximum of variables, the last row is the difference
of maximum and minimum. To avoid this situation, we use
regularization method to process data.

From the table I, the difference of the 14th variable is
10000, and the differences of the first, 4th, 8th, 9th, 11th
and 12th variables are 1 or 2, this situation makes the 14th
variable play a dominant role in the process of determining
the nearest neighbors, and the other first, 4th, 8th, 9th, 11th
and 12th variables have little effect in the same process.
But it’s possible that these variables are closely related to
the classification. According to the above analysis, some

disparate data should be pre-processed in order to get a better
classification effect. In this paper, a linear normalization
method is adopted. We map the data linearly within a
specific range. Let y′max and y′min are the target maximum
and minimum values of the variables to be normalized,
respectively. Thus each variable y to be normalized can be
transformed by the following procedure:

y′ = P (y) = A× y +B (4)

y′ is the normalized value of y. The coefficients A and
B are jointly controlled by ymax, y′max, ymin and y′min.
Calculated as follows:{

A = {y′max − y′min}/{ymax − ymin}
B=y′max−{{y′max−y′min}/{ymax−ymin}}×ymax

(5)

Experiments show that the classification accuracy of LOO-
CV on Australian Data is 71.01%, the run time is 5454.5606
seconds; and the classification accuracy of LOO-CV on nor-
malized Australian Data is 87.54%, the run time is 898.9572
seconds.

Since the class imbalance has a great influence on the k
nearest neighbor algorithm, in order to prevent the influence
of big class on classification, we control the range of k as
following:

kmax = card(minclass) ∗ 2 (6)

card(minclass) is the sample size of the smallest class,
that is the maximum of k is no larger than 2 times
card(minclass). The range of k is [1, kmax].

C. Approximate concave optimization framework for select-
ing the optimal k

Let T = {(x1, c1), · · · , (xn, cn)} is the raw data set, xi is
the value of attribute variable, and ci is the corresponding
class label. When the query Xi is input, the corresponding
c̃i is the classification results of the algorithm [35], [36].

The optimal k value means that the nearest k neighbors
contain the most information of the query, which can be
abstracted as the following optimization problem.

max
k∈N+

F (k) = λ ∗ k

n
+ (1− λ) ∗ (1−MAE(D, k)) (7)

where n is the size of the training set, k is the nearest
neighbor number,MAE(D, k) is the average absolute error
of the k nearest neighbor classifier for data set D, λ is
a trade-off between k value and classification accuracy. In
Eq.(7), the first term is the item that controls the size of the
k value, a too large k will result in a significant increase
in the complexity of the algorithm; the second term is
the classification accuracy under k. The model should first
consider the model accuracy, so λ generally takes a smaller
value (close to 0 and no more than 0.5). If set λ = 0, the
model will have the highest classification accuracy, which
is more suitable for the small sample data. In general, the
useful information increases with the increase of k value, but
at the same time the redundant information will increase, that
is, as k from small to large, the initial useful information
dominated, and then reversed. If Eq.(7) is considered as a
continuous function of the variable k, it is clear that there
will be the following properties [35]:
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∂2MAE(k,D)

∂k2
≥ 0 (8)

Use this property for F (k), then:

d2F (k)

dk2
≤ 0 (9)

According to the above analysis we can see that F (k)
is approximately concave on k, so the following search
strategy is proposed to solve the optimal k. It is worth noting
that, because k only takes integer values, the problem is
equivalent to solving integer convex optimization problem,
which also makes the problem more complex. First, we select
three initial k values, denoted as k1, k2, k3, and evaluate the
corresponding MAE of the corresponding k nearest neighbor
model by LOO-CV. Then we calculate the corresponding
objective function value F (k). Shorthand this search strategy
for LOO-O-K(the optimal k based on LOO-CV). The specific
process consists of two subroutines and the main program.
The subroutine 1 listed in table II is the kNN-routine. The
subroutine 2 listed in table III calculates the accuracy and the
MAE of LOO-kNN. Table IV shows the proposed concave
optimization search strategy in detail.

TABLE II
SUBROUTINE 1 KNN-ROUTINE

subroutine 1 kNN
Input: training set Dtrain ; query variable x; k
1 Find the top k nearest neighbors of x on Dtrain by Eq.(1)
2 Assign a label to x according to Eq.(2)
3 If the label assigned to x is right,then result=1;otherwise result=0
Output: result

TABLE III
SUBROUTINE 2 LOO-KNN-ACCURACY

subroutine 2 LOO-kNN-Accuracy
Input: data set D; the number of samples n; k
1 correct=0
2 for i = 1 : n
3 select the ith sample as the inquiry x,

the other samples are the training set Dtrain

4 correct= correct+kNN(Dtrain, x,k)
5 end
6 Accuracy = correct÷n× 100%
Output: MAE=1- Accuracy

Our iterative strategy is to go close to the optimal k value
with respect to the F (k) valuation function each time. The
step size is set in line 9, line 10, line 18, line 19, line 23
and line 24 in main program LOO-O-K. The advantage of
the step-size setting is that it across executes rough and fine
search in the process of model selection. At the beginning of
the search, the three initial values are chosen to be scattered,
and the search step size is large. It is a rough search process,
which is helpful to quickly close to the optimal value and
reduce the time and computational complexity. With the three
k values constantly gather, step change is gradually narrowed
into an accurate search, the three k value converge to a k
value at last.

Figure 1 and Figure 2 show trend of LOO-CV-A with
respect to k. The image is an approximately concave re-
lationship with a zigzag shape, and we suspect that the

TABLE IV
THE PROPOSED CONCAVE OPTIMIZATION SEARCH STRATEGY FOR

OPTIMAL K

routine LOO-O-K
input: data set D; the number of samples n;

the upper bound M of k; threshold α
1 select three initial values k1, k2, k3
2 put k1, k2, k3 in to LOO-kNN-Accuracy respectively,

calculate MAEk1
,MAEk2

,MAEk3

3 Calculate F (k1), F (k2), F (k3) according to Eq.(7)
4 step=0.5
5 while max{F (k1), F (k2), F (k3)} −min{F (k1), F (k2), F (k3)}

>= α
6 if F (k3) >= F (k2) and F (k2) >= F (k1)
7 Optim−K = k3
8 Optim− F = F (k3)
9 step1 = k2 − k1, step2 = k3 − k2,
10 k1 = k1 + round(step ∗ step1), k2 = k3,

k3 = k3 + round(step ∗ step2)
11 if k3 > M
12 k3 = M
14 end
15 else if F (k2) >= F (k3) and F (k2) >= F (k1)
16 Optim−K = k2
17 Optim− F = F (k2)
18 step1 = k2 − k1, step2 = k3 − k2,
19 k1 = k1+round(step ∗ step1),

k3 = k3−round(step ∗ step2)
20 else
21 Optim−K = k1
22 Optim− F = F (k1)
23 step1 = k2 − k1, step2 = k3 − k2,
24 k3 = k3 − round(step ∗ step2), k2 = k1,

k1 = k1 − round(step ∗ step1)
25 if k1 < 1
26 k1 = 1
27 end
28 end
29 repet line 2 and 3 to calculate the current F (k1),F (k2),F (k3)
30 end
Output: the optimal value Optim−K of k

and the optimal result Optim−F

sawtooth may be caused by a small sample size, which may
disappear at a sufficiently large sample size. If the value of
k is separated by a small segment in its value space, for
example, interval 4, we got Figure 3 and Figure 4. From
these figures, the graphs are approximate smooth concave
functions, so in the initial rough search process, k must
tend to the optimal value, and will not fall into the local
optimum. It is worth noting that the three initial k values
should be distributed in the lower bound, the middle value,
the maximum of the range of k, respectively. If the values
of k are too close, the convergence rate will be reduced.

• We found the approximate concave relationship between
LOO-CV-A and k.

• We given a fast search strategy which across executes
rough and fine search.

IV. EXPERIMENTS

In order to show the advantages of our method, we selected
8 representative data in the UCI Machine Learning Reposito-
ry Data Sets(http://archive.ics.uci.edu/ml/index.php), name-
ly: Australian Data, Glass Data, Ionosphere Data, Iris Data,
Sonar Data, Wine Data, Breast Data, Diabetic Data. The
information for the 8 datasets is shown in the Table V. Where
the column 2 is the number of samples per data, the column
3 is the number of class values, referred to as categories, the
column 4 is sample size of the smallest category, referred to
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Fig. 3. LOO-CV accuracy for 4 intervals of k on Australian, Glass,
Ionosphere, Iris
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Fig. 4. LOO-CV accuracy for 4 intervals of k on
Sonar,Wine,Breast,Diabetic

as the s-c size, the last column is sample size of the largest
category, referred to as the l-c size. Glass data is unbalanced.

TABLE V
INFORMATION FOR THE 8 DATASETS

sample size categories s-c size l-c size
Australian 690 2 307 383

Glass 214 6 9 76
Ionosphere 351 2 126 225

Iris 150 3 50 50
Sonar 208 2 97 111
Wine 178 3 48 71
Breast 569 2 212 357

Diabetic 1151 2 540 611

In the experiment, the range of k is set to be [1, 2× (s-c
size)] for each data, that is, the upper bound of k is M = 2×
(s-c size). The s-c size of Diabetic is set to be 200 as the size
is too big. The termination condition of the iteration is that
the differences of F (k) among the three values of the k are
small. We set the threshold to α = 1/10× n, where n is the

sample size. In general, we recommend that the three initial
values be selected as: 0.2×M , 0.5×M , 0.8×M , or as close
as possible, respectively. Since no particular data is selected,
the parameter λ in Eq.(7) is set λ = 0 in this experiment. If
there is large data, λ should be set appropriately to control
k to be too large. The data Australian, wine, Breast and
Diabetic were normalized and the attribute variables were
linearly mapped to the unit interval.

A. Time and accuracy comparison

Experiments show that the new method can quickly con-
verge, and achieve the same accuracy (mean absolute error)
with LOO-CV. Table VI gives the time consumption, where
tLOO−CV (column 2) gives the time consumptions of LOO-
CV, and tK1, tK2 and tK3 (columns 3, 4, and 5) are
the consumptions of our method in three different initial
values, taverage (column 6) is the average time of LOO-
O-K. tratio(column 7) is the ratio of tLOO−CV to taverage.
The table displays that the new method can save a lot of
time, especially in the relatively large data set. The timings
in Table VI reported in seconds.

TABLE VI
TIME

tLOO−CV tK1 tK2 tK3 taverage tratio
Iris 7.24 1.30 1.71 1.94 1.65 4.39

Sonar 29.36 4.43 3.58 3.55 3.85 7.63
Ionosphere 105.55 10.42 10.45 10.51 10.46 10.09

Glass 2.55 2.13 2.13 2.14 2.13 1.20
Australian 906.31 50.38 46.02 25.13 40.51 22.37

Wine 10.10 1.52 2.13 1.22 1.62 6.23
Breast 523.4303 34.42 36.21 35.64 35.42 14.78

Diabetic 1798.22 165.76 165.54 173.06 168.12 10.70

Table VII lists the optimal k and optimal accuracy of LOO-
CV and LOO-O-K respectively. Where column 2 and 3 is
the optimal k of LOO-CV and LOO-O-K respectively, and
column 4 and 5 is the optimal accuracy of LOO-CV and
LOO-O-K respectively. LOO-O-K gets the optimal accuracy
of each data.

TABLE VII
THE OPTIMAL VALUE OF K AND ACCURACY

k k’ ac. ac.’
Australian 182 182 0.8754 0.8754

Glass 1 1 0.7336 0.7336
Ionosphere 1 1 0.8661 0.8661

Iris 19/20/21 29 0.9800 0.9800
Sonar 2 2 0.8317 0.8317

Wine 13/15/1620
22-30/32 20 0.9775 0.9775

Breast 10/12/17/22/42 15 0.9754 0.9736
Diabetic 37 37 0.6638 0.6638

B. The stability of LOO-O-K

According to the experiments, LOO-O-K has quick con-
vergence, this part discuss the stability of the quick con-
vergence. We select three initial values for each dada set,
see Table VIII. Where each bracket is a set of initial values
in the columns 2, 3 and 4, the three values in the column
5 are the iteration counts of convergence according to the
initial values separately. We draw the iteration process on
different data, see the following graphs: Figure 5 - Figure
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12. The three subgraphs in each graph correspond to three
sets of initial values, respectively. The horizontal axis is the
number of iterations in each subgraph, the vertical axis is
k1, k2, k3 and the optimal value k of each generation. These
graphs shows that we can reach the optimal value under all
situations. The 24 sub-graphs strongly illustrate the stability
of the LOO-O-K.

TABLE VIII
THREE INITIAL VALUES AND THE CORRESPONDING ITERATIVE NUMBER

NO.1 NO.2 NO.3 iterative number
Australian (123,307,491) (61,246,368) (31,184,491) (12,9,6)

Glass (4,9,14) (2,7,11) (1,5,14) (5,5,5)
Ionosphere (50,126,202) (25,101,151) (13,76,202) (9,9,9)

Iris (20,50,80) (10,40,60) (5,30,60) (6,8,9)
Sonar (39,97,155) (19,78,116) (10,58,155) (10,8,8)
Wine (19,48,77) (10,38,58) (2,29,77) (5,7,4)
Breast (42,212,339) (21,254,382) (64,170,360) (10,10,11)

Diabetic (40,240,360) (80,200,320) (60,220,380) (12,12,12)
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Fig. 5. Sensitive Dependence on Initial Condition for Australian Data
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Fig. 6. Sensitive Dependence on Initial Condition for Glass Data

V. CONCLUSION

As k is the only parameter in the kNN algorithm, which
closely affects the effect of kNN. Therefore, this paper
focuses on the selection of k values in k nearest neigh-
bor algorithm. We proposed a new strategy to search the
optimal parameter k according to the approximate concave
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Fig. 7. Sensitive Dependence on Initial Condition for Ionosphere Data
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Fig. 8. Sensitive Dependence on Initial Condition for Iris Data
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Fig. 9. Sensitive Dependence on Initial Condition for Sonar Data

relationship between the LOO-CV-A and k. The amount
of experiments show the advantages in time, accuracy and
stability of LOO-O-K.
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Fig. 10. Sensitive Dependence on Initial Condition for Wine Data
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Fig. 11. Sensitive Dependence on Initial Condition for Breast Data
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Fig. 12. Sensitive Dependence on Initial Condition for Diabetic Data
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