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Abstract—Black-Scholes partial differential equation is a very
well-known model for pricing European option with the under-
lying financial assets being the stock price. The combination
of the Adomian decomposition method and Laplace transform
is called the Laplace-Adomian decomposition method. This
method is effective and easy to solve ordinary or partial
differential equations. Therefore, the purpose of this paper is
to find the solution to the Black-Scholes equation using the
Laplace-Adomian decomposition method (LADM). The results
show that LADM is able and powerful to solve the Black-Scholes
equation. Furthermore, the solution obtained is used to build
a call and put option price model. The numerical simulation
shows that the proposed model is very useful for pricing option
properly and accurately.

Index Terms—Black-Scholes equation, Adomian decomposis-
tion method, Laplace transform, call and put option.

I. INTRODUCTION

IN recent years, investment has grown rapidly in the
financial and economic fields. This is indicated by the

increasing number of investors and funds involved in in-
vestment activities, as well as the increasingly diverse fi-
nancial derivative products that are developed as alternative
investments. Financial derivatives are investment instruments
which are derivatives of a financial asset, so the value
depends on the price of the financial asset, for example,
an option contract [1]. An option is a right owned by the
holder to call or put an underlying financial asset at a certain
price for a certain period. Options can be used for hedging
or speculation. Based on the implementation, the options
consist of American and European type options. American
options can be exercised at any time during the option period,
while European options can only be exercised at the end
of the option period. Therefore, the most traded option on
the exchange is the American option, but the analysis and
calculation of European options is easier than the American
option. Keep in mind that options give the holder the right
to call or put the underlying assets, the holder does not have
to exercise this right [2].

One very well-known technique for pricing option is a
binomial tree which assumes that time follows a simple
discrete approach and its underlying assets are stock prices
[3]. This tree illustrates that stock price movements during
the option period have a probability to be going up or down.
Other models or techniques that are also very well-known
for pricing option is the Black-Scholes equations. The basic
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concept of this model is to price a European call option
with the underlying asset being the stock price without
paying dividends. The Black-Scholes equatios is a partial
differential equations with a continuous-time approach [4].
Various methods are developed to solve partial differential
equations, such as homotopy pertubation method [5], homo-
topy analysis method [6], variational iteration method [7] and
static hand gesture recognition method based on Gaussian
mixture model [8]. Several methods can also be used to solve
the Black-Scholes partial differential equation.

The numerical solution of Black-Scholes partial differen-
tial equations can be obtained by the Merlin transformation
approach [9] and semi discritization techniques [10]. Ho-
motopy perturbation method [11], [12], homopoty analysis
method, and variational iteration method [13], [14], [15]
can be used to solve the Black-Scholes equation and the
boundary conditions for European option pricing problems
quickly and accurately. The finite difference method ensures
that the scheme is stable for any volatility and interest rates,
and shows accurate and effective method for solving the
Black-Scholes equation [16], [17]. The projected differential
transformation method is a modification of the classical dif-
ferential transformation method applied to solve the Black-
Scholes equation for pricing European and Asian option
[18], [19], [20]. Another method used to find a solution to
the Black-Scholes equation is the Adomian decomposition
method. Analytical solutions from these equations are formed
in infinite series that converge with components that are
easily calculated and obtained by efficient recursive relation-
ships, where nonlinear forms are decomposed into Adomian
polynomials [21], [22], [23], [24].

Adomian decomposition method can be used to solve
differential equations, including nonlinear partial differential
equations. This method was first introduced by George
Adomian to solve the system of stochastic equations [25].
This decomposition method can be an effective procedure for
obtaining analytical solutions without linearization or weak
nonlinear assumptions, perturbation theory, discretization,
transformation or restrictive assumptions on stochastic cases
[26]. This method can be used to solve algebraic, integral,
differential and integrodifferential equations, even systems
of equations. Differential equations that can be solved by
this method can be an integer or fractional order, ordinary or
partial, with initial or boundary value problems, with variable
or constant coefficients, linear or nonlinear, homogeneous or
nonhomogeneous [27], [28], [29]. Adomian decomposition
method is a powerful and useful method for solving wave
[30], Fokker-Planck [31], Riccati [32], heat [33], [34] and
Chi-square quantile differential equations [35].

The numerical or algorithm scheme of the Laplace trans-
form based on the Adomian decomposition method can
be used to obtain an approximate solution of nonlinear
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differential equations. The main idea of this technique is
to apply Laplace transforms to differential equations and
assume the solution can be decomposed into an infinite
series. The main advantage of this technique is that solutions
can be expressed as infinite series that converge rapidly to
exact solutions [36]. The Laplace-Adomian decomposition
method is used to solve the Bratu problem [37], nonlinear
Volterra integrodifferential equation [38], Burgers [39] and
Kundu-Eckhaus differential equation [40].

According to the background of the problem and previous
studies that have been presented, we are motivated to solve
the Black-Scholes equation using the Laplace-Adomian de-
composition method (LADM). Then, the solution obtained
is used to build a model for valuing the call and put
options, which did not exist in previous studies. Numerical
simulations are presented to show the accuracy of the pro-
posed Black-Scholes model, and to compare it with existing
classical Black-Scholes models [41].

II. BLACK-SCHOLES EQUATION

This section discusses the Black-Scholes option pricing
equation. The option price is denoted by V (S, t) is a function
that depends on the current value of the underlying asset S
and time t, where C(S, t) and P (S, t) respectively are call
and put options. Option price also depends on the volatility of
the underlying asset σ, exercise price E, expiry or maturity T
and free-risk interest rate r. Black-Scholes partial differential
equation for pricing option can be written [11], [41]

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1)

The Black-Scholes equation for pricing call options based
on Eq. (1) can be rewritten as follows

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (2)

with
C(0, t) = 0, C(S, t) ∼ S as S →∞

and
C(S, T ) = max{S − E, 0}.

Eq. (2) looks like the diffusion equation, but it has more
terms, and each time C is differentiated concerning S it
is multiplied by S, giving non-constant coefficients. Also,
the equation is clearly in backward form, with final data
given at t = T . The first thing to do is to get rid of the
awkward S and S2 terms multiplying ∂C/∂S and ∂2C/∂S2.
At the same time take the opportunity of making the equation
dimensionless, as defined in the technical point below, and
turn it into a forward equation. Suppose

S = Eex, t = T − 2τ

σ2
, C(S, t) = Ev(x, τ). (3)

Use Eq. (3) and the partial derivatives of C is

∂C

∂t
=

∂Ev

∂τ

∂τ

∂t
= −Eσ

2

2

∂v

∂τ
∂C

∂S
=

∂Ev

∂x

∂x

∂S
=
E

S

∂v

∂x
∂2C

∂S2
=

∂

∂S

(
E

S

∂v

∂x

)
= − E

S2

∂v

∂x
+
E

S2

∂2v

∂x2
.

Substitute Eq. (3) dan partial derivatives C to Black-
Scholes Eq. (2), thus obtained

∂v

∂τ
− ∂2v

∂x2
−
(
2r

σ2
− 1

)
∂v

∂x
+

2r

σ2
v = 0.

Suppose k = 2r
σ2 , then the equation above can be written

∂v

∂τ
=
∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv (4)

with the initial condition becomes v(x, 0) = max{ex−1, 0}.
This system of equations contains just two dimensionless

parameters k = 2r
σ2 which k represents the balance between

the rate of interest and the variability of stock returns and
the dimensionless time to expiry σ2T

2 , even though there are
four-dimensional parameters, E, T , σ2 and r, in the original
statement of the problem.

III. LAPLACE-ADOMIAN DECOMPOSITION METHOD

In this section, the Laplace Adomian Decomposition
Method (LADM) discussed to solve the differential equation.
Given a partial differential equation as follows

Mtu(x, t) +Nu(x, t) +Ru(x, t) = g(x, t) (5)

with initial condition

u(x, 0) = f(x)

where u is the two variables function, Mt =
∂
∂t is a partial

derivative operator, N is a nonlinear operator, R is a linear
operator and g is a given function. Solving for Mtu(x, t),
Eq. (5) can be written

Mtu(x, t) = g −Nu−Ru. (6)

The Laplace transform is the transformation of the integral
function of a real variable t to the function of a complex
variable s. Laplace transform can be used to find solutions
to differential equations by turning them into algebraic equa-
tions [42], [43]. Before using the Adomian decomposition
method combined with Laplace transform, first explain some
basic definitions and properties as follows.

Definition 1 Suppose that f is a real or complex function
of variables t > 0 and s is a real or complex parameter.
Laplace transform is defined

F (s) = L[f(t)] =
∞∫
0

e−stf(t)dt = lim
b→∞

b∫
0

e−stf(t)dt

where the limit value exists and finite. If L[f(t)] = F (s),
then the Laplace transform inverse is denoted as

L−1[F (s)] = f(t), t ≥ 0.

Based on Definition 1, for f(t) = tn where t ≥ 0, Laplace
transform f(t) is

L[tn] = n!

sn+1
, s > 0

and Laplace transform for n-th derivative is

L[f (n)(t)] = snF (s)−
n∑
k=1

sn−kf (n−1)(0).
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Apply the Laplace transform to Eq. (6), so that it is
obtained

L[Mtu(x, t)] = L[g −Nu−Ru]

or equivalent with

su(x, s)− u(x, 0) = L[g −Nu−Ru]. (7)

Substitute intial condition, Eq. (7) can be written

u(x, s) =
f(x)

s
+

1

s
L[g]− 1

s
L[Nu]− 1

s
L[Ru] (8)

furthermore, apply inverse Laplace transform to Eq. (8)

u(x, t) = f(x) + L−1
[
1

s
L[g]− 1

s
L[Nu]− 1

s
L[Ru]

]
. (9)

Adomian decomposition method assumes that u(x, t) can
be decomposed into an infinite series [26], [28]

u(x, t) =
∞∑
n=0

un(x, t) (10)

and nonlinear term Nu(x, t) is decomposed become

Nu(x, t) =
∞∑
n=0

An (11)

where An = An(u0, u1, ..., un) are the Adomian polynomi-
als defined by

An =
1

n!

dn

dλn

[
N

(
n∑
k=0

λkuk

)]
λ=0

;n = 0, 1, 2, ...

with λ is a parameter, the An Adomian polynomial can be
described as follows

A0 = N(u0),

A1 = u1N
′(u0),

A2 =
u21
2!
N ′(u0) + u2N(u0),

...

Substitute Eq. (10) and Eq. (11) to Eq. (9)
∞∑
n=0

un = f(x)

+ L−1
[
1

s
L[g]− 1

s
L

[ ∞∑
n=0

An

]
− 1

s
L

[
R
∞∑
n=0

un

]]
(12)

therefore based on Eq. (12), a recursive relation of solution
is obtained

u0(x, t) = f(x) + L−1
[
1

s
L[g(x, t)]

]
,

un+1(x, t) = −L−1
[
1

s
L [An] +

1

s
L [Run]

]
,

where n = 0, 1, 2, · · · .
Hence, an approximate solution of Eq. (5) is

u(x, t) ≈
k∑

n=0

un(x, t)

where

lim
k→∞

k∑
n=0

un(x, t) = u(x, t).

The Adomian decomposition method that is combined
with the Laplace transform needs less work in comparison
with the standard Adomian decomposition method. The
decomposition procedure of Adomian will be easy and
efficient technique, without linearization or discretization of
the problem. The approximate solution is found in the form
of a convergent series with easily computed components and
convergence quickly to the exact solution [36], [39], [40].

IV. NUMERICAL SIMULATION

Based on the LADM algorithm, the following is a recur-
sive solution of the Black-Scholes Eq. (4)

v0 = max{ex − 1, 0},

vn+1 = L−1
[
1

s
L
[
∂2vn
∂x2

+ (k − 1)
∂vn
∂x
− kvn

]]
,

where n = 0, 1, 2, · · · .
If the recursive solution is described, then it is obtained

v1 = L−1
[
1

s
L
[
∂2v0
∂x2

+ (k − 1)
∂v0
∂x
− kv0

]]
= L−1

[
1

s
L [kmax{ex, 0} − kmax{ex − 1, 0}]

]
= L−1

[
kmax{ex, 0} − kmax{ex − 1, 0}

s2

]
= kτ max{ex, 0} − kτ max{ex − 1, 0}

because ∂v1
∂x = kτ max{ex, 0} − kτ max{ex, 0} = 0, so

v2 = L−1
[
1

s
L
[
∂2v1
∂x2

+ (k − 1)
∂v1
∂x
− kv1

]]
= L−1

[
−k2 max{ex, 0}+ k2 max{ex − 1, 0}

s3

]
= −1

2
(kτ)2 max{ex, 0}+ 1

2
(kτ)2 max{ex − 1, 0}

v3 = L−1
[
1

s
L
[
∂2v2
∂x2

+ (k − 1)
∂v2
∂x
− kv2

]]
= L−1

[
k3 max{ex, 0} − k3 max{ex − 1, 0}

s4

]
=

1

6
(kτ)3 max{ex, 0} − 1

6
(kτ)2 max{ex − 1, 0}

...

Hence the solution of the Black-Scholes Eq. (4) can be
formed into an infinite series that is convergent as follows

v(x, τ) = lim
k→∞

k∑
n=0

vn(x, τ)

= max{ex − 1, 0}e−kτ +max{ex, 0}(1− e−kτ )

with

ex =
S

E
, τ =

σ2

2
(T − t), k =

2r

σ2

where S is asset price, t is time or date, E is excercise
price, T is maturity date, σ is volatility of asset price and r
is interest rate.

Based on the solution above, the call and put option price
formula is obtained by the Black-Scholes equation using
LADM and substitution of Eq. (3) are
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C(S, t) = Emax

{
S

E
− 1, 0

}
e−r(T−t)

+ Emax

{
S

E
, 0

}
(1− e−r(T−t)) (13)

and

P (S, t) = Ee−r(T−t) − S + Emax

{
S

E
− 1, 0

}
e−r(T−t)

+ Emax

{
S

E
, 0

}
(1− e−r(T−t)). (14)

The exact solution or we called the classical Black-Scholes
model for pricing call and put option is given in [4], [41]

C(S, t) = SN(d1)− Ee−r(T−t)N(d2)

and
P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1)

with

d1 =
ln S

E +
(
r + σ2

2

)
(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t

where N(d) is the cumulative normal density function.
Fig. 1 shows the call option price C of a stock variable

S from the solution of Black-Scholes equation using LADM
compared with exact solution, where an exercise price E = 5
and a risk-free interest rate r = 0.05 during a three-month
option contract, even Fig. 2 for six months, Fig. 3 for one
year, Fig. 4 for one and a half year.

Fig. 1. The LADM Solution vs. Exact for Three-months Call Option
Contract

Based on the Mean Absolute Error, each error for the
different option contract periods (3 months, 6 months, 1 year
and 1.5 years), respectively is 2%, 3%, 5%, and 8%. Based
on the four case examples, all errors between the proposed
Black-Scholes model and the classical Black-Scholes model
for call option price have a percentage less than 10%.
However, the longer the period of options contract used, then
the error is getting greater. For all options contract periods,
the call option price with the proposed Black-Scholes model
is greater than the call option price with the classical Black-
Scholes model when the stock price is less than the exercise
price (more precisely when S < 4.9).

Fig. 2. The LADM Solution vs. Exact for Six-months Call Option Contract

Fig. 3. The LADM Solution vs. Exact for One-year Call Option Contract

Fig. 4. The LADM Solution vs. Exact for One and a half year Call Option
Contract

In Fig. 1 and 2, the call option prices for the two models
tend to be the same. Whereas in Fig. 3 and 4, the call option
price with the proposed Black-Scholes model has a smoother
graph than the call option price with the classical Black-
Scholes model. Fig. 5 shows the put option price P of a stock
variable S from the solution of Black-Scholes equation using
LADM compared with the exact solution, where an exercise
price E = 5 and a risk-free interest rate r = 0.05 during a
three-month option contract, even Fig. 6 for six months, Fig.
7 for one year, Fig. 8 for one and a half year.
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Fig. 5. The LADM Solution vs. Exact for Three-months Put Option
Contract

Fig. 6. The LADM Solution vs. Exact for Six-months Put Option Contract

Fig. 7. The LADM Solution vs. Exact for One-year Put Option Contract

The same analysis also applies to value the price of put
options. Based on the Mean Absolute Error, each error for
the different option contract periods (3 months, 6 months,
1 year and 1.5 years), respectively is 2%, 3%, 5%, and
8%. Based on the four case examples, all errors between
the proposed Black-Scholes model and the classical Black-
Scholes model for put option price have a percentage less
than 10%. However, the longer the period of options contract
used, then the error is getting greater. For all options contract
periods, the put option price with the proposed Black-Scholes

Fig. 8. The LADM Solution vs. Exact for One and a half year Put Option
Contract

model is greater than the put option price with the classical
Black-Scholes model when the stock price is less than the
exercise price (more precisely when S < 4.9). In Fig. 5 and
6, the put option prices for the two models tend to be the
same. Whereas in Fig. 7 and 8, the put option price with the
proposed Black-Scholes model has a smoother graph than
the put option price with the classical Black-Scholes model.

V. CONCLUSION

Laplace-Adomian decomposition method (LADM) is an
effective and easy algorithm for solving differential equa-
tions. Especially the Black-Scholes partial differential equa-
tion presented in this paper. The solution obtained is used
to build a call and put option price model. Numerical
simulations show that the proposed model is accurate and
powerful for pricing option. Because for all the case studies
presented with various option periods, the model has an
error of less than 10%. However, the longer the period of
options contract used, then the error is getting greater. For
all options contract periods, the call or put option price with
the proposed Black-Scholes model is greater than the call or
put option price with the classical Black-Scholes model when
the stock price is less than the exercise price. Besides that,
it can be concluded that the model obtained using LADM
is better than the classical Black-Scholes model, because it
has smoother graphics, especially for 1 and 1.5-year option
contracts.
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