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Abstract—Quantum particle swarm optimization (QPSO) 

has disadvantages such as rapid loss of species diversity and  

inability to jump out of local optimum value in the later stage. 

In this paper, a QPSO algorithm based on dynamic 

dual-population joint-search mechanism (DJ-QPSO) is 

proposed. This algorithm establishes two local attraction points 

in the search area to guide the particle search in the population, 

and adjusts the global exploration and local exploitation ability 

by changing the population diversity. Then, the algorithm uses 

a periodic dynamic-sharing strategy to enable information 

exchange between the two subgroups. Finally, a global 

convergence formula is introduced to the search in the later 

stage to improve algorithm precision. The simulation results of 

15 benchmark functions demonstrate that the improved 

algorithm performs better than comparable algorithms and can 

effectively deal with complex optimization problems. 
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I. INTRODUCTION 

uantum particle swarm optimization (QPSO) algorithm 

is a PSO variant algorithm proposed from the 

perspective of quantum mechanics. Sun [1] proposed it after 

studying the results of particle convergence behavior 

reported by Clerc et al [1]. The QPSO algorithm considers 

that the particle has quantum behavior. Particle trajectory 

analysis indicates that the algorithm takes the local attraction 

point as attractor and causes the population to remain 

aggregated by the attraction point. However, the single local 

attraction causes the particles to fall easily into local optimum 

and restricts the global search ability. 

To address the defects of QPSO, many domestic and 

foreign scholars have proposed various improved methods. 

The main improvement directions are control parameter 

design, improved algorithm strategy, and multiple algorithm 

fusion. Li [2] proposed an improved QPSO algorithm, which 

uses Monte Carlo method to first obtain the particles of 

multiple individuals, which then cooperate with one another. 
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Experimental results show that CQPSO is superior to other  

improved QPSO in terms of solving quality and computation 

cost. Inspired by the classical particle swarm method and 

quantum mechanics theories, Coelho [3] presented a new 

quantum-behaved approach using a mutation operator with 

exponential probability distribution; the simulation results 

demonstrate good performance of the proposed algorithm to 

solve a significant benchmark problem in electromagnetic 

devices. Liu [4] proposed a new cultural algorithm and 

introduced cultural evolution mechanism to study QPSO for 

multi-objective problems. In cultural MOQPSO, the 

exemplar positions of each particle are obtained according to 

“belief space,” which contains various types of knowledge. 

Moreover, to increase population diversity and obtain 

continuous and evenly distributed Pareto fronts, a 

combination-based update operator is proposed to update the 

external population in the study. The effectiveness of the 

algorithm is verified by an example. Turgut [5] proposed a 

novel chaotic quantum-behaved PSO algorithm to solve 

nonlinear system of equations. Different chaotic maps are 

introduced to enhance the effectiveness and robustness of the 

algorithm. Comparison results reveal that the proposed 

algorithm can cope with the highly nonlinear problems and 

outperforms many algorithms presented in the literature. 

Huang [6] proposed a QPSO algorithm with adaptive inertia 

weight adjustment, introduces the evolution velocity factor sd 

and aggregation degree factor jd of the QPSO, adjusts the 

inertial weight through these two dynamic parameters, and 

significantly improves the convergence speed of the 

algorithm. Wang [7] proposed a QPSO algorithm with Gauss 

perturbation in the average or global optimal position of 

particles, which can effectively prevent the stagnation of 

particles and prevent particles from falling into local 

optimum; the results show that the algorithm has strong 

global search ability and fast convergence speed. Wu [8] 

proposed an improved QPSO algorithm based on random 

evaluation strategy. The algorithm uses stochastic factors to 

evaluate the innovation of particles and improves the ability 

to eliminate local optimum. Fixed value strategy and linear 

decreasing strategy are proposed to control the unique 

parameters of the QPSO algorithm. Chen [9] proposed a 

QPSO algorithm with crossover operator. A new method of 

calculating the particle attraction point and characteristic 

length of potential well is used. The crossover operator in 

genetic algorithm is introduced and the crossover probability 

adaptive parameter control technology is incorporated to 

ensure the diversity of particle swarm and maintain the 

vitality of the whole particles. Experiments show the 

effectiveness and robustness of the improved algorithm. 

Zhang [10] proposed a QPSO algorithm based on two elite 
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learning strategies. The elite particles are searched by 

dynamic approximation search strategy to avoid falling into  

local optimum and provide good guidance for the population. 

The disturbance is used for large-scale exploration to ensure 

that the algorithm has higher global search performance. The 

experimental results of benchmark functions show that the 

method has good global convergence and high search 

accuracy. Wei [11] proposed a quantum behavioral particle 

swarm optimization (CLQPSO) algorithm based on 

comprehensive learning strategy, which changes the 

updating method of local attractors in QPSO and fully 

utilizes social information in the group. The performance of 

CLQPSO is tested by several benchmark functions. The 

experimental results show that the algorithm can find an 

improved solution. Jia [12] proposed a niche particle swarm 

optimization (NCPSO) algorithm based on chaotic mutation. 

The algorithm combines niche technology with elimination 

mechanism, which causes the algorithm to have good global 

optimization ability, and the variable scale chaotic mutation 

has fine local traversal search performance, which ensures 

that the algorithm has high search accuracy. The 

experimental results show that the algorithm has the 

advantages of strong optimization ability, high search 

accuracy, and good stability. Wang [13] proposed a 

two-population QPSO algorithm based on chaos 

optimization. The two populations generated by chaotic 

sequences have their own updating strategies, and they 

interact with each other through the fusion of population 

changes. The convergence speed and traversal range of the 

algorithm are improved. Furthermore, binary coded QPSO 

algorithms [14], diversity control QPSO algorithms [15], 

improved artificial bee colony search operator quantum PSO 

algorithm, and others are also available [16]. 

These proposed algorithms have improved the 

optimization algorithm performance to a certain extent, but 

the fundamental limitation of the QPSO algorithm is that the 

global and local searches restrict each other. Thus, in this 

paper, we propose a QPSO algorithm based on dynamic 

dual-population search to balance global exploration ability 

and local exploitation capability. 

The rest of the paper is organized as follows. Section 2 

introduces the basic principle of standard QPSO, Section 3 

describes the basic principle of DJ-QPSO algorithm, 

including the setting of double attraction points, sharing 

strategy, Gaussian chaotic mutation and global convergence 

formula. Section 4 tests the benchmark functions and result 

analysis. Section 5 provides the conclusion and future 

research directions. 

II. QPSO ALGORITHM 

The QPSO algorithm combines standard PSO and 

quantum mechanics. In quantum mechanics, the movement 

of quantum particles to the lowest point of potential energy in 

the potential field is equivalent to the optimization of 

particles. The potential well in quantum mechanics is 

equivalent to the optimum range of particles, and the lowest 

potential energy in the potential field is the global optimal 

solution [1]. 

The QPSO algorithm attracts particles in the population by 

establishing a potential well at the local attraction point pi 

=（pi,1，pi,2，…，pi,N）, where the pi point is 

Nj
rcrc

tGrctPrc
tp

jiji

jiji jiji

ji 



 1,

)()(
)(

,,

,,

2211

,22,11

,  (1) 

where, Pi,j represents the j-dimensional component of the 

particle i’s individual optimal value of the D-dimensional 

search space, and Gi,j represents the j-dimensional 

component of the particle i’s global optimal value of the 

D-dimensional search space. r1 and r2 are independent 

distributed random numbers between [0, 1], which are called 

random factors, and C1 and C2 are acceleration coefficients. 

The evolution equation of particles in QPSO is: 

 )(1ln)()()()1( ,,,, tutXtCtptX jijijjiji  
   

 (2) 

where ui.j(t) is uniformly distributed between [0,1], and  is 

called contraction–expansion coefficient, which has two 

control modes: fixed value and linear reduction. Li,j is the 

potential well length, and the method of evaluation is  
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We introduce an average value C(t) representing the best 

position of all particle individuals, as defined in the 

following: 
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The updating methods of individual optimal value Pi and 

global extreme Gi of particles are exactly the same as those of 

the standard PSO algorithm.The updated formula is: 
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The preceding equation expresses the basic principle of 

QPSO, using which an improved method is proposed in this 

paper. 

III. QUANTUM-BEHAVED PSO ALGORITHM BASED ON 

DYNAMIC DUAL-POPULATION JOINT-SEARCH MECHANISM 

The setting of local attraction points and bound motion of 

quantum particles in QPSO enables the algorithm to have 

good convergence, but at the same time causes the loss of 

population diversity too early and too fast. The algorithm 

converges quickly and has a large probability of falling into 

local optimum value. In this paper, a dynamic 

dual-population joint-search mechanism is introduced to 

QPSO. Two local attraction points are established to divide 

the population into two parts and guide the search. Periodic 

dynamic interaction strategy is used to exchange information 

between subgroups. Finally, the formula of global 

convergence is introduced, and the fine search is performed 

near the global optimal solution. When the global search is 

guaranteed, the large probability of the algorithm converges 

to the global optimal value. 

A. Exploitation and exploration subgroups   

In QPSO, the average best position C and individual 

learning tendency point P are used to evaluate the particles. 

DJ-QPSO evenly divides the population particles into two 

subgroups. The two subgroups are attracted by the attraction 
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points for searching. The particle swarm guided by the 

attraction point P of the average best position C is the 

exploitation subgroup N1. The subgroup N1 is assisted by a 

small step size near the average best position C. The 

subgroup N2 guided by the local search point Q is the 

exploration subgroup, and the subgroup N2 is guided by the 

average best position D. The subgroup N2 searches the entire 

solution space in a large scale with a large step size, trying to 

find the possible region of the optimal solution, where N1 = 

N2. The population number is N = N1+N2. The 

dual-population joint search not only improves the search 

precision but also prevents the search particle from falling 

into local optimum too quickly. 

The evaluation method of  local attraction point P is: 
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    The evolution equation of local attraction point P guidance 

is as follows: 

ijijjiji utXtCwtptX ln)()()()1( ,,, 
 
 (8) 

where in QPSO, the value of α can be set by means of a fixed 

value and a linear reduction control method, and in 

DJ-QPSO, the inertia factor w is introduced to replace the 

value of α, where 
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With the increase in the number of iterations, the inertia 

factor w decreases gradually. The value of  inertia factor w in 

the early stage of the search is larger, which is conducive to 

global search, thereby increasing the diversity of the 

population and decreasing the value in the later stage of the 

search is conducive to local search. 

The evaluation method of  local search point Q is 
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The evolutionary equation of Q guided by local search 

points is: 
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where Ri,j(t) is the individual optimal value of a randomly 

selected particle; Dj(t) is the average optimal value for 

exploration subgroup particles, and the evaluation method is 

the same as C(t). 

In the iterative search process, two subgroups adopt 

different optimization strategies. The exploitation subgroup 

N1 is mainly responsible for fine search. Around the 

logarithmic curve, the search step continuously decreases as 

the number of iterations increases, and can be clustered near 

the optimal value. Exploration subgroup N2 is responsible for 

large-scale rough search, and the position update formula is a 

sinusoidal exponential function. As the search step of the 

optimization process increases, it can be developed globally 

in new fields. 

B. Periodic information sharing strategy 

In the optimization process, the two subgroups are 

searched independently, and each of them takes the subgroup 

optimal solution as the goal to make decisions. To improve 

the global optimization ability, the two subgroups must 

establish a good information sharing mechanism. 

In the optimization process of QPSO, the position 

information of individual optimum value and global optimum 

value is updated with each iteration. That is, the best location 

currently searched will soon be replaced by a new location, 

which cannot play its role. When the particle is trapped in the 

local optimal value, the algorithm can hardly continue to 

search, thereby greatly affecting the global search ability of 

the algorithm [17]. 

To solve this problem, the DJ-QPSO algorithm uses 

periodic update strategy. The periodic update strategy 

contains a fault-tolerant mechanism, which allows or 

tolerates a fault occurrence within limits, that is, it allows to 

miss some of the optimal positions during the current period 

and continues to be optimal in the previous week. The 

specific sharing mechanism is such that the two subgroups do 

not exchange positions after an iteration; however, they share 

positions after an iteration cycle. To a certain extent, the 

algorithm not only fully utilizes the best historical position to 

search and guide but also enables the particles to find the 

optimal value by sharing the best global position. This 

periodic updating strategy can improve the global search 

performance of the algorithm [18][19]. 

The setting of the sharing period C0 should also consider 

its rationality. The sharing period is too small to give full play 

to the ideological advantages, and the sharing period is too 

large to miss the optimal location of the sharing, thereby 

affecting the convergence performance of the algorithm. 

C. Gaussian chaotic mutation 

The exploitation subgroups N1 and N2 share the optimal 

value information after sharing period C0. If the exploitation 

subgroup N1 falls into the local optimal value in one iteration 

cycle, it will not be able to provide highly effective optimal 

value information. Therefore, when the exploitation 

subgroup N1 has been iterated for m (m = 7) [20] consecutive 

times, the optimal value of the subgroup is not updated, and 

then the Gaussian chaotic mutation operation is performed, 

and the Gaussian function is introduced into the position 

update formula. It can adjust the trajectory of the particles 

close to the global optimal position Gbest in subgroup N1 by 

a small margin, and adjust the trajectory of the particles far 

from Gbest by a large margin. Chaotic mapping can re-map 

the particles to the search space and continue to optimize by 

calculating logical chaotic mapping, and the omnidirectional 

ergodicity of the particle motion can be achieved. After the 

position of the particle is updated, the trajectory is adjusted 

by using the Gauss function. The formula is as follows: 
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where a is the trajectory correction coefficient and is a 
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random number between intervals [−1,1], which can ensure 

that DJ-QPSO searches from positive or negative directions. 

hi(k) denotes the introduced Gaussian function. 

2
)()( kxkpbest i

 
is the distance between the particle i 

and the best location. 

The Gaussian function hi(k) is shown as 
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where σ0 and τ1 are constants. (13) shows that when this 

particle locates the best position, the Gaussian function hi(k) 

= 1, which means that later modifications do not alter the 

particle trajectory. Moreover, according to the characteristics 

of the Gaussian function, the particles close to the global best 

position adjust further and those far from Gbest modify less. 

Furthermore, according to (13), with the increase in the 

iterative step t, Gaussian function hi(k) becomes steeper 

gradually. Thus, the updating amplitude decreases, 

guaranteeing the approximation capability of DJ-QPSO in 

the later period of optimization. In addition, the chaotic 

map '

ix is introduced into the trajectory modification, as 

follows: 

))(1()(4)1( nznznz jjj 
                               (15) 

))(()( min,max,min,

'

iiiii xxtzxtx 
                      

 (16) 

where zj(n) is an iterative mapping parameter of chaos; j and 

n denote the dimension and index of the particle, respectively; 

n = 1, 2,…, m and xi,min and xi,max are the minimum and 

maximum positions of the particles. (15) shows a logistic 

chaotic map, a property of which is 4 for most values of  r. A 

chaotic system exhibits great sensitivity to the initial 

conditions. Thus, the initial value z is a random number in the 

interval [0, 1] except for 0.25, 0.5, and 0.75, where the 

sequence zj(n) shows the chaotic characteristics, which is 

better than the uniform distribution in the aspect of travel 

ergodicity. However, 0.25, 0.5, and 0.75 must be excluded 

because if these three numbers are chosen as initial values, 

then zj(n) will be fixed as 0.75, 0, and 0.75, respectively. 

First, the chaotic sequence is generated by (15). Then, the 

position of particle trajectory is re-mapped to the search 

space by (16). The ergodicity of the chaotic map is fully 

utilized so that the precocious particles are re-mapped to the 

search space after trajectory correction to improve the 

diversity of the population and ensure the global search 

ability of the population particles [21][22]. 

D. Global convergence formula 

The setting of double subgroups with double attraction 

points cannot guarantee the particle convergence to the 

global optimal value. Thus, we introduced the global 

convergence formula in the algorithm, and the evaluation 

method is as follows: 

tjiji tPtP   ）（）（ ,, 1
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where 
t obeys the Gaussian normal distribution N(0,1) and 

 is the contraction factor, which can control the 

convergence step and take a fixed value of the control mode. 

A probability function b is introduced here, which is a typical 

exponential function 

T
t

e


b                                                                      (18) 

When Rand >b, the algorithm performs a fine search near 

the global optimal solution. When Rand <b, the algorithm 

performs a dual-population search. As the iteration number 

increases, the value of b decreases gradually, and the 

probability that the random number is larger than the function 

value increases. This condition shows that the algorithm is 

likely to implement the global convergence formula in the 

later stage of search. In the early stage, the algorithm is likely 

to implement double population search. By comparing the 

random number with the probability function, the algorithm 

chooses between the dual-population search and the global 

convergence formula. 

E. Algorithm steps 

The implementation steps of the DJ-QPSO algorithm 

proposed in this paper are summarized as follows: 

Step 1: The parameters are set in the problem solution 

space, including Dim, swarm population N, exploitation 

subgroup N1 and exploration subgroup N2, maximum 

iteration number T, and others. 

Step 2: The population is initialized, the initial positions of 

exploitation subgroup N1 and exploration subgroup N2 are 

set, the fitness of each particle is evaluated, and the position 

of the least fitness particle is assigned to the optimal position 

of the subgroup. 

Step 3: The average optimal position C(t) and D(t) of two 

subgroup particles is calculated by (4). 

Step 4: The current fitness of the particle is calculated by 

(8) and (11), and exchange information at the end of sharing 

period C0. A comparison of the fitness of the previous 

iteration cycle, if )()( 21 NN pbestFpbestF  , shows 

that the global optimal position of the exploitation subgroup 

N1 is better than that of exploration subgroup N2 in a sharing 

period C0. Then, the particles of exploration subgroup N2 

inherit the global optimal position at this time and continues 

to search for the next sharing period. If 

)()( 21 NN pbestFpbestF  , then the global optimal 

position of the exploration subgroup N2 is better than that of 

the exploitation subgroup N1 in the iteration period, and the 

exploitation subgroup N1 adds Gaussian chaotic mutation to 

research and the exploration subgroup continues to search. 

Step 5: The current global optimal location of the group is 

calculated, that is, 

)]}([{minarg),()(
1

tPFgtPtG i
Mi

g


 ; 

Step 6: Comparing the current optimal position with the 

previous iterative global optimal position shows that if the 

current global optimal position is better, then the global 

optimal position of the group is updated to its value. 

Step 7: The new position of the particle according to (8) 

and (11). 

Step 8: If the maximum number of iterations given is 

reached, then the search stops. If the termination condition is 
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(a) Sphere                                                         （b）Griewank                                                     （c）Rastrigin 

Fig. 1 Diagram of particle distribution state 

 

 

not met, then the above steps are repeated. 

IV.  EXPERIMENTAL DESIGN AND RESULT ANALYSIS 

A. Diversity analysis 

In the DJ-QPSO algorithm, the diversity of the population 

can be enhanced by the setting of the double subgroups. To 

intuitively present in detail the distribution state of the 

particle diversity in the QPSO and DJ-QPSO, three test 

functions are selected to analyze the diversity of the 

algorithm, the specific function expressions are shown in 

Table I. 

The QPSO and DJ-QPSO can be used to solve the 

multidimensional problem. The population size is 20 and the 

number of iterations is 100. The particle distribution of the 

search results is shown in Fig. 1. The red dots in the figure 

represent the improved DJ-QPSO algorithm, and the blue 

square points represent QPSO, which depicts the distribution 

of all the particles in the entire process from the beginning to 

the end of the iteration [22].

According to the analysis of the particle distribution state 

diagram, Fig. 1(a) shows a unimodal function sphere, in 

which the two algorithms have the same optimization ability 

in the solution space. From the range of particle distribution, 

the two algorithms are roughly the same. From the 

perspective of search precision, the two algorithms can 

gather a large number of particles near the optimal value. The 

precision of the DJ-QPSO algorithm is slightly more 

accurate, but in general, the performance of the two 

algorithms is unequal in the unimodal function. In Fig. 1(b), 

the multimodal function Griewank shows that the search 

precision of the two algorithms is lower than that of the 

unimodal function, but the search range is wider. The 

DJ-QPSO algorithm has better search ability than QPSO in 

terms of search precision and range. In Fig. 1(c), Rastrigin is 

also a multimodal function. The particles of DJ-QPSO have a 

wider search range in the search area and can traverse the 

entire solution area. This condition shows that the DJ-QPSO 

algorithm can help the search particles to jump out of the 

local optimal value. At the same time, a larger number of 

particles can be gathered near the global optimal solution. 

DJ-QPSO has strong convergence ability. We can prove that 

the DJ-QPSO algorithm can effectively disperse the 

population and eventually cause a large number of particles 

to be clustered near the optimal solution, with the ability to 

balance local exploitation and global exploration. 

B. Benchmark function test and analysis 

To confirm the validity of the DJ-QPSO algorithm, we 

select 15 benchmark functions to test its effectiveness. 

Among these functions, F1–F4 are unimodal and F5–F9 are 

multimodal. F10–F12 and F13–F15 are rotation and offset 

functions, respectively. Specific formula expressions and 

ranges are shown in Table I. The experimental arrangements 

are as follows: First, the appropriate sharing period C0 is 

selected through experiments, and then the appropriate 

contraction factor σ is determined by experiments. Finally, 

the DJ-QPSO algorithm is compared with other algorithms 

when the sharing period C0 and contraction factor σ are 

optimal. 

 

TABLE  I 

BENCHMARK TEST FUNCTIONS 

Function name Function formula Search space Optimal value 
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TABLE II 

EXPERIMENT RESULTS BY DJ-QPSO USING DIFFERENT VALUES FOR C0 

Functions 
Statistical 

characteristics
 

100 C  200 C  500 C  1000 C  2000 C  

1F  
Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

rank 1 1 1 1 1 

 2F  
Mean 9.8950e–33 1.2664e–27 2.1253e–31 1.3256e–14 6.7769e–09 

rank 1 3 2 4 5 

3F  
Mean 3.6434e–47 6.3528e–52 8.2670e–56 2.8287e–38 1.4979e–27 

rank 3 2 1 4 5 

4F  
Mean 9.9499e+00 1.5293e–01 1.1617e–02 3.0809e+02 3.3926e+02 

rank 3 2 1 4 5 

5F  
Mean 1.7811e–−11 1.5919e−10 2.9962e−14 4.6619e−07 3.7809e−09 

rank 2 3 1 5 4 

6F  
Mean 2.0489e−01 1.7236e−02 6.7756e−03 4.6707e−02 2.7093e−01 

rank 4 2 1 3 5 

7F  
Mean 1.0009e−11 5.0718e−12 7.3065e−15 3.7388e−07 2.1535e−04 

rank 3 2 1 4 5 

8F  
Mean 3.1796e−03 2.6162e−03 5.9370e−03 4.6099e−03 6.1722e−02 

rank 2 1 4 3 5 

9F  
Mean 5.3975e−17 6.7708e−23 1.3497e−32 2.3660e−10 5.3832e−15 

rank 3 2 1 5 4 

10F  
Mean 1.0686e−04 4.5056e−03 7.4536e−04 6.3683e−03 2.1106e−03 

rank 1 4 2 5 3 

11F  
Mean 2.3349e+03 3.0042e+03 4.1790e+03 5.5886e+04 1.6489e+03 

rank 2 3 4 5 1 

12F  
Mean 4.9747e+00 1.4924e+01 2.9848e+00 3.2833e+00 6.0701e+01 

rank 3 4 1 2 5 

13F  
Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

rank 1 1 1 1 1 

14F  
Mean 1.1717e+02 2.3288e+03 4.5271e+01 3.4565e+03 3.9356e+02 

rank 5 4 3 2 1 

15F  
Mean 1.6914e+01 7.8580e+02 7.8614e+00 3.1527e+03 5.3930e+03 

rank 2 3 1 4 5 

 Total rank 36 37 25 52 55 

 Final rank 2 3 1 4 5 

This paper determines the value of the shared period C0 by 

means of experimental verification because no mature theory 

can prove the scientificity of the value of the iteration 

interval. DJ-QPSO is tested under the condition of Dim = 30 

and T = 1000 iterations, and DJ-QPSO algorithm runs 

independently 30 times on each test function. Contraction 

factor σ = 0.01 is selected to ensure the reliability of the 

experiment. 

The experimental results of the DJ-QPSO algorithm using 

different values of C0 are shown in Table II. 

The Friedman test is used to evaluate the influence of the 

sharing period C0. According to the calculation, the 

chi-squared approximation with F-score = 33.662 (four 

degrees of freedom) yielded P = 0.000. Therefore, when the 

significance level P = 0.05, the choice of C0 has a significant 

difference. 

When the sharing period is C0 = 50, the DJ-QPSO 

algorithm ranks the highest. 10 of the 15 benchmark 

functions of the DJ-QPSO algorithm achieve the optimal 

accuracy, and the optimization performance is better than 

other values. The experimental results show that the optimal 

performance of the DJ-QPSO algorithm is the best when the 

sharing period is C0 = 50. 

The value of σ in the convergence formula also adopts the 

experimental method. In theory, the smaller the value of σ, 

the better the final search, but an extremely small value of σ  

leads to a longer search time. Thus, selecting the appropriate 

value of σ is important. The experimental conditions remain 

unchanged. DJ-QPSO are tested under the condition of Dim 

= 30 and T = 1000 iterations, and the DJ-QPSO algorithm 

runs independently 30 times on each test function. 

Experiment results by DJ-QPSO using different values for 

σ are shown in Table III. 
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TABLE III 

EXPERIMENT RESULTS BY DJ-QPSO USING DIFFERENT VALUES FOR σ 

Functions 
Statistical 

characteristics 
     001.0    01.0        1.0  5.0  

1F  
Mean 0.00e+00 0.00e+00 1.4619e−298 6.8845e−85 

rank 1 1 2 3 

 2F  
Mean 2.0405e−34 2.4597e−31 5.8708e−20 1.5701e−10 

rank 1 2 3 4 

3F  
Mean 2.6161e−43 7.8682e−56 4.2633e−26 5.3279e−17 

rank 2 1 3 4 

4F  
Mean 2.3891e−02 2.0652e−03 5.5506e+01 9.4118e+03 

rank 2 1 3 4 

5F  
Mean 1.0066e−10 2.1889e−13 1.0944e−06 8.9546e−04 

rank 2 1 3 4 

6F  
Mean 3.4413e−04 4.4282e−03 4.2972e−01 1.2167e+00 

rank 1 2 3 4 

7F  
Mean 7.3919e−12 4.4408e−14 1.4427e−06 8.4035e−05 

rank 2 1 3 4 

8F  
Mean 2.4622e−01 4.0044e−03 3.1958e+03 5.1603e+03 

rank 2 1 3 4 

9F  
Mean 5.7786e−19 1.0896e−25 2.3614e−08 3.6301e−08 

rank 2 1 3 4 

10F  
Mean 2.2054e−03 4.6510e−04 1.5410e−01 1.1514e+00 

rank 2 1 3 4 

11F  
Mean 1.5308e+03 3.4592e+03 4.0399e+05 7.6715e+06 

rank 1 2 3 4 

12F  
Mean 2.5869e+01 1.1939e+02 2.1179e+04 3.7811e+05 

rank 1 2 3 4 

13F  
Mean 1.1297e−309 0.00e+00 3.4088e−146 2.2727e−87 

rank 2 1 3 4 

14F  
Mean 2.7397e+02 3.2965e+02 9.0455e+05 4.5085e+07 

rank 2 1 3 4 

15F  
Mean 6.9647e+00 1.2934e+00 2.8527e+04 8.3430e+06 

rank 2 1 3 4 

 Total rank 25 19 44 59 

 Final rank 2 1 3 4 

 

The preceding results are also tested by Friedman. 

According to the calculation, the chi-squared approximation 

with F-score = 41.230 (three degrees of freedom) yielded P = 

0.000. Therefore, when the significance level P = 0.05, the 

choice of contraction factor has a significant difference. 

According to the experimental results in the table, the 

DJ-QPSO algorithm has the most comprehensive 

performance when the contraction factor σ is 0.01 because 11 

of the 15 benchmark functions obtain the optimal results. 

In this study, we compare the proposed DJ-QPSO 

algorithm with various QPSOs comprising the QPSO [1], 

MOQPSO [4], LQPSO [5], E-QPSO [3], and CQPSO [9]. 

The specific parameter settings used in each algorithm are the 

same as those in the original studies. To ensure a fair 

comparison, we set the variables used in all the algorithms as 

follows: swarm population N = 50, Dim = 30, and T = 1000 

iterations. Each algorithm runs 50 times independently; the 

best result, mean, and standard deviation errors are  

determined based on the top 25 runs. The parameter 

configurations for all selected algorithms are also given in 

Table IV, which are based on the suggestions in the 

corresponding references. Table V provides the numerical 

statistics of the optimization results of the preceding six 

algorithms. Fig. 2 provides the convergence curve of each 

test algorithm. 
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TABLE Ⅳ  

ALGORITHMS FOR COMPARISON 

Algorithm Reference Parameter settings 

QPSO [1] α∈ [0.6,0.8] 

MOQPSO [4] 
Number of hypercubes: 49 for F1–F5 and 64 for F6–F8 

β: 1.0–0.5, d = 10 

 
LQPSO [5] β0 = 1.0; β1 = 0.5; u, r, rnd∈  (0.1) 

E-QPSO [3] 
R1 = 1.0, R2 = 1.8, h1/2 = 1.0308, h2/2 = 1.8, d1 = 0.5155, 

d2 = 0.2851, J1 = 19.9975, J2 = -6.3571 

CQPSO [9] 

wi,t ~u[0.9,1], 

T

t

N
q 








 5.0

5
5.0

,
 

T

t
minmaxmax  

 

 
DJ-QPSO Present C0 = 50, σ = 0.01 

 

TABLE V  

STATISTICAL RESULTS OF ALGORITHM COMPARISON 

Functions 
Statistical 

characteristics 
QPSO MOQPSO LQPSO E-QPSO CQPSO DJ-QPSO 

1F  

Mean 2.8721e−02 2.9936e−16 5.3749e−16 1.5197e−04 1.1716e−11 0.00e+00 

Std. 6.6258e−05 1.3827e−31 1.2463e−34 4.5208e−09 1.0520e−23 0.00e+00 

Best 2.3250e−02 3.6416e−17 5.2960e−16 1.0443e−04 9.4221e−12 0.00e+00 

Worst 3.4162e−02 5.6229e−16 5.4539e−16 1.9951e−04 1.4009e−11 0.00e+00 

 2F  

Mean 3.5670e+00 2.1819e−14 2.2969e−15 3.2000e−03 1.1230e−10 2.5342e−35 

Std. 9.6200e−02 7.2684e−29 9.4319e−31 4.3953e−06 5.4679e−21 2.9709e−96 

Best 3.3476e+00 1.5790e−14 1.6101e−15 1.7000e−03 6.0011e−11 2.5342e−35 

Worst 3.7863e+00 2.7847e−14 2.9836e−15 4.7001e−02 1.6458e−10 2.5342e−35 

3F  

Mean 1.8002e−02 1.5870e−24 9.7603e−17 6.2463e−08 1.4639e−16 5.2976e−57 

Std. 5.7881e−06 1.6448e−48 1.6542e−34 5.4346e−15 2.3720e−32 2.7152e−139 

Best 1.6302e−02 6.8017e−25 8.8508e−17 1.0336e−08 3.7483e−17 5.2976e−57 

Worst 1.9703e−02 2.4939e−24 1.0670e−16 1.1459e−07 2.5529e−16 5.2976e−57 

4F  

Mean 5.1741e+02 1.3260e+01 1.2219e+01 6.6010e+01 2.6713e+02 2.7996e−02 

Std. 2.1243e+05 2.5396e+00 4.4639e+00 6.4817e+03 6.1622e+04 8.8853e−04 

Best 1.9150e+02 1.2134e+01 1.0725e+01 9.0813e+00 9.1599e+01 6.9187e−03 

Worst 8.4332e+02 1.4387e+01 1.3713e+01 1.2293e+02 4.4266e+02 4.9074e–02 

5F  

Mean 5.6727e+01 3.0346e+01 6.9653e+00 5.1002e−02 7.1116e+00 4.2633e−14 

Std. 3.3048e+03 1.2374e+01 5.7788e−07 1.6972e−05 3.3023e+00 4.0390e−28 

Best 1.6078e+01 2.7858e+01 6.9647e+00 4.8101e−02 6.7052e+00 2.8422e−14 

Worst 9.7377e+01 3.2833e+01 6.9658e+00 5.3904e−02 7.5179e+00 5.6843e−14 

6F  Mean 2.9761e−02 1.5702e−02 5.2180e−15 5.2314e−01 5.9502e−01 5.3463e−03 

IAENG International Journal of Computer Science, 46:4, IJCS_46_4_24

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



Std. 3.0316e−06 1.0844e−10 2.8498e−29 5.4990e−01 6.1900e−05 2.5815e−25 

Best 2.6072e−02 1.4802e−02 1.4433e−15 1.1008e−03 5.8942e−01 7.4000e−03 

Worst 3.3450e−02 1.6602e−02 8.9928e−15 1.0450e+00 6.0052e−01 9.9526e−02 

7F  

Mean 7.0650e−01 4.3624e−09 9.1742e−10 1.3500e−02 5.7531e−06 7.9936e−15 

Std. 8.1403e−02 1.8507e−17 2.8741e−20 7.8694e−05 3.5242e−12 0.00e+00 

Best 5.0480e−01 1.3204e−09 7.9754e−10 7.2003e−03 4.4257e−06 7.9936e−15 

Worst 9.0820e−01 7.4044e−09 1.0373e−09 1.9703e−02 7.0806e−06 7.9936e−15 

8F  

Mean 3.5684e+03 3.1493e+03 1.6190e+03 2.8737e+03 3.2963e+03 2.5455e−04 

Std. 2.8777e+06 1.8633e+05 2.8100e−07 1.2707e+04 5.0586e+05 1.6544e−24 

Best 2.3688e+03 2.8441e+03 1.4243e+03 2.7940e+03 2.7934e+03 2.5455e−04 

Worst 4.7679e+03 3.4545e+03 1.8153e+03 2.9534e+03 3.7992e+03 2.5455e−04 

9F  

Mean 4.9514e−02 6.5932e−16 6.0546e−16 1.7799e−04 8.5507e−11 1.3498e−32 

Std. 2.1475e−04 2.1424e−31 3.9710e−32 1.0596e−08 6.2310e−21 0.00e+00 

Best 3.9105e−02 3.3203e−16 4.6456e−16 1.0520e−04 2.9690e−11 1.3498e−32 

Worst 5.9913e−02 9.8661e−16 7.4637e−16 2.5077e−04 1.4132e−10 1.3498e−32 

10F  

Mean 1.0519e+01 2.8704e−01 1.6406e−02 1.8132e+01 5.9557e+00 1.1022e−04 

Std. 1.4137e+02 2.4548e−04 5.9295e−05 3.8090e−04 1.9930e+00 0.00e+00 

Best 2.0582e+00 1.7600e−02 1.0912e−02 1.8118e+01 4.9575e+00 8.7697e−05 

Worst 1.8980e+01 3.9808e−02 2.1800e−02 1.8146e+01 6.9540e+00 1.1882e−04 

11F  

Mean 1.1163e+04 1.1104e+04 1.4670e+04 1.0931e+04 1.3368e+04 1.0817e+04 

Std. 3.3990e−03 3.1287e+03 9.2995e−08 2.9361e+04 7.6070e−17 2.2485e−05 

Best 1.1122e+04 1.1065e+04 1.0660e+04 1.0810e+04 1.0863e+04 1.0817e+04 

Worst 1.1204e+04 1.1144e+04 1.6589e+04 1.1053e+04 1.3810e+04 1.0817e+04 

12F  

Mean 3.0936e+02 1.1591e+02 8.5185e+00 5.9705e+01 3.9576e+02 2.2732e+00 

Std. 3.2355e+03 2.1837e+02 8.0597e−04 9.7216e+01 8.6037e+01 5.5690e−05 

Best 2.6914e+02 1.0546e+02 8.4984e+00 5.2733e+01 3.8920e+02 2.2679e+00 

Worst 3.4958e+02 1.2636e+02 8.5385e+00 6.6677e+01 4.0231e+02 2.2785e+00 

13F  

Mean 3.4340e−01 1.6314e−14 6.7799e−16 2.9348e−04 8.4320e−10 0.00e+00 

Std. 2.4570e−04 2.7432e−29 1.2467e−31 1.2784e−09 3.4319e−20 0.00e+00 

Best 3.3231e−01 1.2611e−14 4.2832e−16 2.6820e−04 7.1220e−10 0.00e+00 

Worst 3.5448e−01 2.0018e−14 9.2766e−16 3.1877e−04 9.7420e−10 0.00e+00 

14F  Mean 2.4026e+03 4.0421e+02 3.9105e+02 4.0554e+02 4.0575e+02 3.9092e+02 
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Std. 1.4482e+06 2.3812e+04 4.6065e−04 3.0138e+01 2.6868e+00 4.0919e−08 

Best 1.5517e+03 4.0312e+02 3.9104e+02 4.0165e+02 4.0459e+02 3.9002e+02 

Worst 3.2536e+03 4.0530e+02 3.9107e+02 4.0942e+02 4.0690e+02 3.9183e+02 

15F  

Mean 1.8047e+02 1.4955e+02 2.3839e+01 3.7156e+01 1.2200e+02 2.1303e+01 

Std. 1.7226e+03 4.4879e+02 2.2183e−01 4.5767e+00 1.1734e+03 1.5314e−01 

Best 1.5112e+02 1.3457e+02 2.3506e+01 3.5643e+01 9.7781e+01 2.1026e+01 

Worst 2.0982e+02 1.6453e+02 2.4172e+01 3.8669e+01 1.4622e+02 2.1580e+01 

 

TABLE VI  

RANKING OF ALGORITHMIC PERFORMANCE 

Fun QPSO MOQPSO LQPSO E-QPSO CQPSO DJ-QPSO 

1F  6 2 3 5 4 1 

2F  6 3 2 5 4 1 

3F  6 2 3 5 4 1 

4F  6 3 2 4 5 1 

5F  4 3 5 2 6 1 

6F  3 4 1 5 6 2 

7F  6 3 2 5 4 1 

8F  6 4 2 3 5 1 

9F  6 3 2 5 4 1 

10F  4 3 2 5 6 1 

11F  4 3 6 1 5 2 

12F  5 4 2 3 6 1 

13F  6 3 2 5 4 1 

14F  6 3 2 4 5 1 

15F  6 4 2 3 5 1 

Total rank 80 47 38 60 73 17 

Final rank 6 3 2 4 5 1 

 

According to the experimental data in Table V, when the 

unimodal function F1–F4 is optimized, the optimization 

results of various improved QPSOs are excellent, among 

which the DJ-QPSO algorithm has the highest precision and 

the optimized results are obviously better than other 

algorithms. When the algorithm optimizes function 

F1:sphere, the optimal result reaches the ideal global optimal 

value, and the DJ-QPSO shows higher optimization precision 

and better algorithm execution ability. According to the 

optimization result of ill-conditioned function F4, the 

optimization result of the improved algorithm DJ-QPSO is 

not ideal. At the same time, we can see that other improved 

algorithms cannot effectively optimize this complex 

unimodal function, but the accuracy of the DJ-QPSO 

algorithm is still more accurate in many comparative 

optimization algorithms and has relatively better 

performance. The results show that the DJ-QPSO algorithm 

has room for improvement in optimizing this type of 

functions. For the multimodal function F5, four optimization 

algorithms exist, and the optimization effect is not ideal. The 

DJ-QPSO algorithm can optimize this function with many 

local minimum values, indicating that the algorithm has good 

global search performance. For multimodal function F6, the 

DJ-QPSO algorithm does not show the advantages of the 

improved algorithm and is inferior to LQPSO in search 

accuracy. For multimodal function F7, the improved 

algorithm DJ-QPSO still shows good optimization ability. 

For multimodal functions F8 and F9, the optimization  

precision of the DJ-QPSO algorithm is higher than that of 

other algorithms, and the mean and standard deviation errors 

of the algorithm are the smallest. The optimization 

performance of the DJ-QPSO algorithm is the best among 

these functions. When the rotation function F10 of the 

unimodal function F7 is optimized, the performance of 

several improved algorithms decreases due to the increased 

complexity of the function, but the optimization ability of the 
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DJ-QPSO algorithm is still the best. The rotation function 

F12 compares with the function F5, which also indicates that 

the search precision of the improved algorithm decreases, but 

the DJ-QPSO search results are still the best. The 

performance of the DJ-QPSO algorithm in the offset function 

is still excellent although the search accuracy has decreased. 

Combined with the optimization results of the DJ-QPSO 

algorithm in 15 benchmark functions, the performance of the 

DJ-QPSO algorithm in unimodal function is outstanding. 

Although the performance of some complex multimodal 

functions is slightly inadequate, the average optimization 

performance is still better than that of several other improved 

algorithms, and the optimization effect is better. These results 

prove that the improvement strategy of the DJ-QPSO 

algorithm has an obvious effect. 

Table VI  shows the performance of the ranking algorithm 

and provides an overall comparison among all the 

algorithms. It can be observed that DJ-QPSO has the best 

total rank, which means it has the best overall performance of 

all test functions. we can obtain the order: DJ-QPSO, LQPSO, 

MOQPSO, E-QPSO, CQPSO, QPSO. 

Fig. 2 shows the convergence curves of six improved 

algorithms, which can indicate the convergence effect of the 

algorithm intuitively and further verify the experimental 

results. 
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Fig. 2  Contrastive function convergence curve 

 

 

Fig. 2 shows the convergence curves obtained using the 

various QPSOs for 15 benchmarks, which clearly exhibit the 

optimization of the algorithm. First, for function F1, several 

improved algorithms optimize the QPSO to a certain extent. 

However, the DJ-QPSO algorithm converges fastest, and the 

global optimal value is found when the number of iterations 

is approximately 100. The algorithm has advantages in 

convergence speed and precision. For unimodal functions F2 

and F3, the convergence curves of DJ-QPSO are fast in the 

early stage and slow in the later stage of the algorithm, 

because in the early stage, the two subgroups quickly search 

and locate the optimal solution region in the global scope, 

and the algorithm finely searches around the optimal solution 

in the later stage. Thus, the algorithm curve presents the 

convergence trend in Fig. 2 (b)–(c). According to the 

optimization curve of unimodal function F4, the convergence 

of the DJ-QPSO algorithm is extremely slow when the 

number of iterations is approximately 50, and it is likely to 

fall into the local optimal value, leading to the convergence 

failure of the algorithm. When the multimodal function F5 is 

optimized, the convergence curve has an obvious turning 

point, which indicates that the DJ-QPSO algorithm particles 

jump out of the local optimal value and find an improved 

value. When the multimodal function F6 is optimized, the 

DJ-QPSO algorithm does not show good optimization 

performance, while the LQPSO algorithm exhibits a better 

optimization effect and higher accuracy. The convergence 

curves of the multimodal functions F7 have the same trend as 

those of unimodal functions F2 and F3. When the multimodal 

function F8 is optimized, the convergence curve shows that 

the algorithm can help the particles to jump out of the local 

optimal value. When the improved algorithm DJ-QPSO 

optimizes rotation functions F10, F11, and F12, the 

optimization accuracy of the algorithm decreases 

significantly. When the algorithm optimizes function F11, 

DJ-QPSO converges faster at the early stage of optimization 

and slowly at the later stage of optimization, which fails to 

achieve the desired optimization effect. It shows that the 

optimization ability of the algorithm needs to be improved. 

When the rotation function F12 is optimized, the other five 

comparison algorithms converge faster than DJ-QPSO in the 

early stage of optimization, but after 550 generations, 

DJ-QPSO converges faster than other comparison 

algorithms, after 900 generations, DJ-QPSO converges faster 

than all comparison algorithms. Observing the convergence 

curve of migration functions F14 and F15, we can find that 

with the increase of the complexity of the function, the 

algorithm is more likely to fall into local optimum, which 

affects the performance of the algorithm [24]. 

Based on the preceding analysis, although the improved 

DJ-QPSO algorithm performs slightly worse in the 

optimization of individual multimodal functions, the 

comprehensive performance is better than that of other 

comparative algorithms. 

 

To further analyze the optimization performance of the 

DJ-QPSO algorithm, we use the improved algorithm to 

optimize unimodal functions F1 and F4, multimodal 

functions F5 and F6 of benchmark functions with dimensions 

of 10, 30, 50, and 100. The number of iterations is 1,000. The 

average results of 25 independent optimizations are counted 

and analyzed by boxplot method. 

A boxplot is a statistical chart used to display a set of data 

scattering. This method can show the maximum, minimum, 

median, upper and lower quartiles, and outliers of a set of 

data. In the figure, half of the data are distributed inside and 

outside the box, the median corresponding to the horizontal 

line in the box, and half are distributed up and down. The top 

side of the box represents the upper four scores, and the upper 

quarter of the data is distributed; the lower side of the box 

represents the lower four scores, and the lower quarter of the 

data is distributed under it. The line connecting the top and 

bottom of the box is called the tentacle line. The small 

horizontal line connecting the upper tentacle line represents 

the maximum value of the statistical data, and the small 

horizontal line connecting the lower tentacle line represents 

the minimum value of the statistical data. The “+” in the 

figure represents singularity and is an outlier in the statistical 

data. Therefore, the shorter the box, the shorter the tentacles 

and the fewer singularities, the more centralized the statistical 

data; on the contrary, the more scattered the statistical data 

[25]. 

Fig. 3 shows the statistical result of the DJ-QPSO 

algorithm to optimize the benchmark function in different 

dimensions. The abscissa in the boxplot represents the 

dimension, and the four columns correspond to the 

optimization results of 10, 30, 50, and 100 dimensions.  Fig. 3 

(a)  is a unimodal function F1. In the optimization results in 

10-dimensional space, the boxplot shrinks to a horizontal line 

and its fitness value is 0. This result shows that in 

10-dimensional space, the results obtained by the DJ-QPSO 

algorithm optimizing sphere function 25 times independently 

converge to the optimal value, which shows that the 

algorithm has excellent convergence. In the 30-dimensional 

space, the upper and middle edges of the boxplot coincide 

basically, which shows that at least half of the optimization 

results converge to the optimal value in 25 independent 

operations. The other half of the optimization results 

converge to the optimal value, and the accuracy of the 

singularities is also extremely high. In the 50-dimensional 

space, the height of the box increases slightly, and 

singularities exist. However, few deviations occur in the 

statistical data, and the optimization results are slightly poor.  
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Fig. 3  Statistical boxplot of optimized result 

 

 

In the 100-dimensional space, the height of the box 

increases significantly, and small horizontal lines are found 

at the bottom of the box to indicate the minimum value. 

Singularities with large differences appear, and the 

optimization accuracy is low. Fig. 3 (b) shows a unimodal 

function F4. The results of F4 with the same unimodal 

function F1 are almost the same. In the limited iteration time, 

the optimization accuracy of DJ-QPSO decreases with the 

increase of dimension. 

Fig. 3 (c)–(d) shows the statistical results of optimizing 

multimodal functions F5 and F6. The boxplot increases with 

the increase of dimension space, which shows that the 

statistical data are increasingly scattered, indicating that the 

optimization accuracy of the algorithm decreases with the 

increase of dimension. Fig. 3 (e)–(f) shows the optimization 

result of multimodal functions F5 and F6 when the number of 

iterations is 2000. We can see intuitively that the number of 

iterations increases and the statistical data are concentrated. 

This condition shows that the optimization accuracy of the  

statistical results in high-dimensional space can be improved 

by increasing the optimization time of the algorithm. 

The dual-population search strategy improves the 

precision of the algorithm but also requires increased 

optimization time. How to obtain higher search precision at a 

lower time cost will be determined based on the key points to 

be studied later[26]–[28]. 

V. CONCLUSION 

In  the DJ-QPSO algorithm, the optimization performance 

is improved by setting two attraction points and two 

subgroups. The increase in population diversity adjusts the 

exploration and exploitation abilities of the algorithm to help 

the particles escape from the local optimal value. Periodic 

dynamic-sharing strategy can improve the convergence 

ability of the population. The global convergence formula is 

introduced to improve the search precision. The simulation 

results of benchmark functions indicate that the DJ-QPSO 

algorithm is able to enhance diversity and optimize the global 

situation. Further, statistical analysis of experimental results 

shows that DJ-QPSO algorithm has better comprehensive 

performance than other related algorithms in solving 

complex function optimization problems. It is necessary to 

solve optimization problems in industrial, social, economic, 

management and other fields. QPSO algorithm is a general 

optimization algorithm, DJ-QPSO has better optimization 

performance. It has good application prospects and can be 

effectively applied in scientific research and engineering 

fields. 
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