
 

  

Abstract—This paper proposes a multi agent system (MAS) 

implementing an innovative monitoring and control technique 

for industrial wastewater. Nowadays Cyber-Physical System 

(Cps) and Internet of Things (IoT) are becoming ever more 

common in this field. This fact led to the implementation of 

systems composed of many computing units 

intercommunicating mutually and characterized by 

computational power being adequate to the task to be carried 

out. The proposed MAS uses a cooperative approach among 

the various agents to achieve the global goal. The system 

knowledge is shared among agents. After an initial learning 

stage, the agents can cooperate to hit the global objective and 

eventually to self-assess the failure of some components. The 

system has been designed by means of the bigraph theory 

approach. 

 
Index Terms— bigraph, Cyber-Physical Systems, Internet of 

Things, model checking, monitoring, multi-agent system 

 

I. INTRODUCTION 

YBER Physical Systems (CPS) are considered an 

enabling key technology of Industry 4.0 because they 

can improve the growing of the three main pillars for the 

digitalization of the manufacturing sector (smart products, 

smart manufacturing and business models). An interesting 

aspect of CPS is the concept of "digital twin" that associates 

each physical device to its representation into the virtual 

world. So, each physical device is integrated with other 

electronic devices having computing, storage and 

networking capacities. This is the link between CPS and 

other powerful technologies, such as Internet of Things 

(IoT) and Multi Agent Systems (MAS). 

IoT is a paradigm that allows for the interconnection and 

interoperability of everyday life objects, equipped with 

computing units, sensors, transceivers for digital 

communication and appropriate protocol stacks [1]. 

Nowadays, these digital communication systems can use 

many mature technologies such as Bluetooth, Near Field 

Communication (NFC), Radio Frequency Identification 

(RFID) for neighborhood devices and wireless network and 

4G-LTE for far devices. On the other hand, these systems 

can produce a big quantity of data to be handled. This 
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process is possible only with a digital infrastructure 

equipped by computational power not owned by the small 

processors used in these devices. Recently, a new computing 

paradigm has been emerging promising reliable services 

delivered through next generation data centers that are based 

on virtualized storage technologies: cloud computing [2]. 

This platform plays a key role in IoT approach because it 

can work: 

• as receiver of data from the distributed sensors;  

• as a computer to analyze and interpret the data; 

• as a web based virtual interface providing services to 

various users. 

Intelligent Agent technology is an important and a 

relatively new paradigm in software design. The term 

intelligent agent is now used as an umbrella term 

representing a wide range of software with different 

characteristics and abilities [3]. This fact led to many 

definitions of intelligent agent, but the authors agree with 

the definition proposed by Wooldridge and Jennings [4] 

stating that an intelligent agent is a problem-solving entity 

characterized by the following properties: autonomy, social 

ability, proactiveness and responsiveness. 

The natural evolution of the intelligent agent technology 

is the Multi Agent System (MAS) technology [5]. Systems 

of this kind are composed of a set of intelligent agents 

interacting and collaborating with each other to solve 

complex problems that are beyond the individual capability 

or knowledge of each agent. In a MAS, agents can interact 

among them implementing a cooperative [6]–[8] or a 

competitive strategy [9], [10].  

Using these technologies (IoT and/or MAS), it is possible 

to implement CPS working as autonomous networks of 

miniaturized intelligent sensors and actuators integrated into 

technical structures [11], [12]. Nevertheless, for practical 

and economic reasons, the hardware used into these 

applications is not too powerful (often small and relatively 

economic devices with low computational power, storage, 

power and network capabilities are used). This imposes 

strong constraints to the system designers because they must 

build ever more complex systems characterized by devices 

with poor resources with the target of intercommunicating 

so as to work as a unique and possibly autonomous system. 

The analysis and validation of these systems requires 

specific techniques just like  bigraph as proposed in [12]. 

In this paper, authors describe a MAS implementing a 

cooperative strategy to achieve a global objective: filling a 

reactor with a mixture of liquid according to given 

percentages of the various components in a wastewater 

treatment plant. The proposed MAS has specific features 

that are presented in [4] and in particular it has a proactive 

behavior changing its strategies to react at the different 

external conditions. This system has been designed and 

developed as part of an innovative monitoring technique for 
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the control of industrial wastewater (website: 

http://maui.aeflab.net). This technique has been developed 

in the MAUI project under the grant of Lombardy Region 

(Italy). Bigraph theory has been used to design, test and 

validate the proposed system. The paper is organized as 

follows: section II gives a brief overview of the related 

work, section III describes the problem under analysis and 

section IV presents the proposed approach starting from 

discussing bigraphs and bigraphic reactive systems, while 

section V shows the case study analyzed in this research 

then section VI describes the experiments carried out and 

the obtained results. In section VII the conclusions and a 

perspective on future work are discussed. 

 

II. RELATED WORKS 

In the last years the technological development has 

resulted in the spread of miniature devices able to sense, 

compute and communicate wirelessly. Using this device, it 

is possible to build CPS acting as autonomous problem-

solving systems. The concept of "digital twin" is the link 

between CPS and two powerful technologies: IoT and MAS. 

MAS has been used in various practical applications at 

different levels. For example, MAS technology was used in 

[13] to increase the reliability of a distributed sensor 

network, in [9] this technology was used for databases 

integration, in [6] as decision support system for an 

intelligent transport system, in [8] a MAS that implements 

mine detection, obstacle avoidance and route planning was 

proposed.  

Due to the development of this kind of systems, 

architectural design techniques and exploration of complex 

software systems on embedded processor platforms are 

becoming increasingly popular. They are typically based on 

the study of communication or high-level modelling.  This 

class of methods is based on models highlighting lack of 

flexibility at the system level both with pre-designed 

intellectual property cores and with most of the techniques 

for creating custom components.  Another element of 

complexity is the reduced performance of these embedded 

systems.  

Many of these architectural design tools are based on 

descriptive languages of the system's internal operations and 

exchanges. They involve multiple translation levels of the 

real problem into its representation that can be used to 

evaluate the achievable performance. Jansen and Bosch [14] 

proposed to see each software architecture as a set of 

explicit design decisions. In their idea (Archium), software 

architecture can be seen as a decision-making process and 

its design is about making the right decisions at the right 

time. 

Márquez and Astudillo proposed [15] a model called 

COMPACT for the selection of components using some 

architectural tactics. Starting from the non-functional 

requirements, the proposed model follows these tactics to 

search for and identify the components suitable for the 

design. This model was successfully tested. Their tests 

highlighted the need to build a bridge between software 

architecture and system requirements.  

Capilla et al. [5] proposed a web-based tool, which is 

capable of recording and managing architectural design 

decisions. Jansen et al. [16] developed a tool for making 

architectural decisions. This system supports architectural 

decisions semi-automatically and shares the results with all 

stakeholders. 

In general, these approaches focus on documenting and 

archiving architectural states using certain tools.  A similar 

situation is found in the design of IoT. Many authors use 

different kinds of software to represent architecture models 

based on various communication protocols, hardware 

components and central processing devices used in the 

system. The design compromise is between system 

performance and communication protocol performance (in 

terms of uniform and interoperable communication of the 

protocol itself).  

Yu at al. [17] proposed to use bigraph technique as a tool 

to test context-aware applications. They built a data model 

based on the bigraphical meta-model and proposed to use 

the bigraphical sorted BRS to model context-aware 

environments. They generated the test cases to verify the 

interactions between context-aware environments and 

middleware along with domain services by tracing the 

interactions between the BRS model and the middleware 

model. The application environment typically includes a 

variety of physical structures, moving entities, and wired or 

wireless sensors connected to backend systems. They show 

the advantages of the model proposed and supported by a 

simulator. Furthermore, they highlighted that most of the 

simulation tools are mainly used to model and simulate the 

behavior of systems (such as Simulink [18] and SPIN [19]) 

and not to model the environments of applications. 

 Recently, UML class diagrams have been employed to 

model the static structures of the embedded real-time system 

(RTES) and its environment, Object Constraint Language 

has been used to model and automatically generate test data 

for RTES testing, and a state machine to model the behavior 

of entities [20].  

Bigraphs and Bigraphical Reactive Systems (BRS) are 

graphical methods to describe the syntax and semantics of 

systems in terms of two orthogonal sets: connectivity and 

localization [21]–[23]. 

Some authors used bigraphs to control the models [10]. 

C. Tsigkanos and all. [24] proposed the use of these 

representations in the field of network access security 

(recognition of violations of the security requirements of a 

distributed access system). 

III. PROBLEM DESCRIPTION 

There are many methods about the treatment of the 

wastewater, including the physical method, chemical 

 
Fig. 1.  An example of generic Agent represented through bigraph. This first 
version presents KSA while in the implemented MAS KSA is taken out. 

  

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

 
______________________________________________________________________________________ 



 

method, and biological method. For instance, the adsorption 

method with activated carbon is one of the most important 

physical methods. The organic pollutants in the wastewater 

are absorbed by the activated carbon. However, the 

adsorption method has the problem of saturation and 

secondary pollution. Biological treatment method with 

microorganism is also used to dispose the organic 

wastewater, but the efficiency of the biological treatment 

method is too low to be used for the disposal of a large 

amount of wastewater. As to regard to the chemical method, 

the settings of the ratio in the chemical compositions are of 

difficult level, this fact could imply an impact on the 

treatment effect of the wastewater. The complexity of 

physical, chemical, and biological phenomena associated 

with treatment units means that the performance of the 

process depends heavily on environmental and operational 

conditions. Moreover, the reactors show common features of 

industrial systems, such as nonlinear dynamics and coupling 

effects among the variables. These features explain the 

obstacles of the control strategies in wastewater treatment 

process (WWTP) i.e.: 

▪ Dynamics [25]: Due to the inflow rate, water quality and 

contamination loads are undulated acutely; WWTP 

always runs in unsteady state. Moreover, these factors—

inflow rate, water quality, contamination loads, pH, 

temperature, etc.—are passively received.  

▪ Modeling Challenges [26]: The WWTP model consists of 

two main parts: the hydraulic model and the biochemical 

model. The hydraulic model represents reactor behavior, 

flow rates, and recirculation. The biochemical model is 

the second primary component of a WWTP model. 

However, it is still an open problem to seek accurate 

models to satisfy the complex characters of WWTP.  

▪ Uncertainties [27]: Most bioreactors are equipped with 

sensors for online measurement of pH, temperature and so 

on. The appropriate strategy for achieving the control 

objective depends on the availability of online 

measurements such as biochemical oxygen demand 

(BOD) and chemical oxygen demand (COD). 

Unfortunately, most of the measurement techniques for 

these variables are limited to offline analysis in a research 

laboratory environment. 

In this work, the authors propose a solution to handle the 

hydraulic aspects of the reactor behavior. In particular, a 

cooperative MAS has been designed to handle the process of 

filling a reactor with a mixture of liquid according to given 

percentages of the various components. This system has a 

proactive behavior changing its strategies to react at the 

different external conditions. 

IV. FROM BIGRAPH AND BRS THEORY TO MAS MODELLING 

Bigraphs and BRS can be used as a design tool for easy 

representation of MAS modelled cyber physical system 

(CPS) and interactions among agents and between agents 

and other system entities. 

In this study, the MAS is composed of cooperative agents 

with local and global objectives that do not conflict with 

each others, as described in [28]. The MAS makes use of a 

private communication network able to guarantee to all 

agents the visibility of the environmental data (quantities 

read by all the sensors present, status of all the actuators 

present) that characterize the Knowledge Sharing Area 

(KSA). 

Sensors and actuators can be physical or virtual. If 

physical, they will have the connection with an agent that is 

able to read data from sensors and/or controlling actuators. 

If sensors and actuators are virtual, they correspond to a 

value transmitted/received by other agents. In the proposed 

case study, the data are arranged in a numerical matrix in 

which each row corresponds to an agent and each column 

contains data of homogeneous type (e.g. column 5 contains 

the ambient temperature). This representation is the result of 

a formal project phase conducted by Bigraph's theory and 

BRS, as shown in the following section.  

The first step in developing a MAS using BRS is to 

distinguish between subjects and objects in the domain 

model, i.e. which entities can perform actions, and which 

ones cannot [29]. This implies splitting controls into two 

sub-sets: controls for subjects and objects. As for the 

behavior of an agent and his internal status, the Belief-

Desires-Intensions (BDI) approach is proposed in [10], [30]. 

This approach can capture both static and dynamic aspects 

of an agent and MAS.  

The adoption of large graphical reactive systems for 

modelling the deployment architecture is described in [31]. 

This approach is suitable to meet various constraints of 

software components and target environments. The method 

uses a multi-scale modelling approach which provides for 

three sub-models: the execution environment, the software 

architecture and the integration model. The first two are 

bigraph and they are built by reaction rules. 

In this work, the BDI paradigm has been used to model a 

CPS based on MAS as a bigraph. Furthermore, a new multi-

scale approach is adopted instead of [31] to obtain the 

Bigraph that formally describes the system. This new 

method focuses on the construction phase of the bigraph on 

the agents and on CPS. BigMC tool has been used to 

support the bigraph building. This is an automatic testing 

tool for bigraphical reactive systems, used to build Bigraph 

and BRS and to verify the system properties [10]. 

A. The proposed approach 

In this section the proposed approach to design a 

distributed CPS based on cooperative MAS using Bigraph 

and BRS is presented. 

The common representation of MAS as BRS is not 

appropriate in the case of strong interaction between 

cybernetic space and physical space. To fill this gap, the 

state of each agent must be visible in real time to all other 

agents so that they have a total and unique knowledge of the 

environment. This representation is the base of the proposed 

KSA. BDI paradigm has been used to handle the knowledge 

sharing among agents. The state of each agent is constituted 

by beliefs and desires, which represent respectively what the 

agent knows about the environment and the desired state in 

which the agent or environment should evolve (also called 

goal or target [30]). The agent's status may also contain 

objectives to be achieved received from other agents. The 

agent who assigns a target to another agent must have the 

appropriate authorizations or must be hierarchically 

superior.  

Each agent projects its state into KSA by writing the row 

of his competence, at the same time it works using data 

represented in KSA. To obtain an agent model suitable for 
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the distribution of a CPS, the authors provide an example of 

an initial prototype (Figure 1). This figure shows the 

structure of the agent that is formed by: 

• CORE: this component manages the interaction between 

agent and environment/KSA. It receives stimuli from 

KSA and implements its intentions to produce decisions 

by performing actions to realize desires.  Inside CORE 

there are two nodes: 

o the INTENTIONS node (I) includes all the 

procedures allowing the agent to make decisions and 

execute them. These procedures can be static or 

obtained from a learning process that observes KSA 

belonging to other agents. This node uses a subset of 

KSA information and updates another subset of KSA 

information. 

o The IOProcessing node includes the nodes for the 

management of the I/O of sensors and actuators. 

• KSA: This component handles virtual information shared 

among agents. It includes agent status and manager for 

KSA operations, because the last one requires permission 

handling. Inside KSA there are two types of nodes: 

o DataType[n] nodes representing the agents' current 

status through information about their beliefs or 

desires. 

o The KSAMANAGER node specifies whether an 

agent can update a state belonging to another agent 

(e.g. to assign a desire) or not. It should be noted 

that the information from a sensor is processed and 

placed in the KSA by AGENT1 in the data class 

called "DataType3", as shown in Figure1. FunA 

Block can then read this value that is used to 

produce the desire. FunB instead, produces a wish 

for AGENT2, and through the KSAMANAGER can 

write this information in the state AGENT2. Since 

the state of a generic agent is visible and accessible 

to all other agents, KSA has been brought out of the 

agents. This allows for sharing also global objectives 

among agents. For example, AGENT1 in Figure 1 is 

part of a cooperative MAS composed of two agents 

as shown in Figure 2. The application of the 

representation by bigraph of the MAS allowed for 

recognizing and extracting the KSA as a node that 

contains the states of all agents. 

With the following example it is possible to highlight the 

operation of the aforedescribed components (CORE, 

IOProcesing, INTENTIONS, KSAMANAGER, KSA, 

DataType), and the interaction between the various 

components of the proposed BDI model will be shown. As 

an example: 

• Beliefs --> Sensor reading 

• Desires --> Desires about the targets for the AGENT2 

actuator (one of these by the AGENT1, subject to 

authorization thanks to the presence of the node in the 

KSAMANAGER as shown in Figure 2) 

• Intentions --> the fusion between FunA and FunB. 

AGENT1 sees a sensor connected to it. The Reader 

node in IOProcessing manipulates the read data (e.g. 

voltage) in order to project it into the KSA (in the 

DataType3 column, where AG1Reading indicates the 

reading, for example 8-bit scaled, present in the 

AGENT1 line, from which AG1 is placed before the 

word reading). 

Once this FunA (an “INTENTIONS”) takes in input this 

reading (from KSA) and with its logic, produces a desire. 

This desire belongs to the DataType2 Column and it is 

contained in the row of the same agent, hence the name 

AG1DesireOutFunA. Since it is a desire, it will be taken 

into consideration by another agent (AGENT2). The other 

intention FunB, has no input (for reasons of simplicity and 

readability), therefore in some way, it deals with producing 

a desire for the AGENT2. This desire is written in the 

AGENT2 line in the DataType1 column (hence the edge 

with the name WriteAGENT2DataType1). AGENT2 

operates as an actuator using FunC in conjunction with the 

assigned desire (the actuator operating mode, to operate in 

energy saving or not) of AGENT1. FunC takes AGENT2's 

wishes into account and calculates the setpoint to drive the 

actuator. The input for the actuator is provided by the drive 

node in the IOPprocessing. From what has been achieved 

with the bigraph application and the specific proposed 

application (CPS), the KSA can be implemented by a matrix 

that contains columns with homogeneous data, and rows that 

represent the data of each agent in the MAS. 

Given the nature of this matrix, that represent the KSA, 

the system needs a protocol that allows for the exchange of 

data in (near) real time. 

 

V. CASE STUDY 

The proposed system has been designed to handle the 

hydraulic aspects of the reactor behavior operating in an 

industrial wastewater plant. In this system a reactor must be 

filled with some mixtures made up of various liquid 

components. Each mixture is composed of a given set of 

 
Fig. 2.  Example of cooperative MAS with two Agents and unique KSA in 

which all environment information is represented and shared in real time. 
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liquids in prefixed percentages. The evaluated system is 

based on 22 units/agents, but for the sake of the clarity and 

without reducing the generality of the method, a simplified 

version comprising 5 devices is described below. Three 

units are equipped with a commercial controller (based on 

Toshiba's TB6560) for managing stepper motors and 3 

peristaltic pumps.  The pumps (dosers, with the possibility 

of micro-step) load a reactor specially designed with the 

liquids contained in three dispensers (e.g. three chemical 

reagents to be combined for a specific reaction according to 

assigned percentages). 

A unit equipped with a PWM regulator controls a 

centrifugal pump used to empty the rector. A further unit 

reads the data from an ON/OFF level sensor. 

These five units are part of a more complex system, 

developed thanks to the MAUI project. 

Two goals have been defined in the system under 

evaluation: 

• Local: for units with peristaltic pump: contributing to the 

mixture according to a known percentage; for units with 

centrifugal pump: empty the reactor; for units with level 

indicator: signal the achievement of the level. 

• Global: filling the reactor up to the level of the sensor by 

mixing the three components according to assigned 

percentages. 

A testbed based on ATmega328p processors board has 

been realized to evaluate the performance of the proposed 

approach in designing of a MAS. The system is configured 

as an intelligent cooperative MAS communicating through 

the I2C bus, native protocol for this class of processors. The 

system consists of 6 identical units. Each unit contains the 

processor, an I2C for bus extension (P82B715 Texas 

instrument) and various power circuits. They are equipped 

with 8 digital I/O ports and 4 ports with A/D converter. 

Each unit hosts an intelligent AGENT (Figure 3). The 

bridge is also made with a device that is identical to the 

others but with a USB port. The latter device is used to 

connect the I2C system bus with the external world 

represented by a PC equipped with MATLAB and behaves 

similarly with  the LEADER described in [7]. These devices 

are used in many applications and they are very suitable for 

implementing CPS. The definition of the KSA requires 

attention because it manages the information shared among 

agents. It includes both the status of each agent and the 

management of the whole system priority policies (i.e. can 

an agent modify the goal of another agent?). A critical 

parameter to be considered in the design stage is the 

dimension of the KSA. Indeed, the greater is its size the 

greater will be the transmission time to share it among 

agents, but the greater will be also the awareness of each 

agent about the environment. Making each agent aware of 

its surrounding environment and defining some inference 

rules give to the MAS the ability to self-assess its possibility 

to meet global goals and identify the responsible of an 

eventual failure. Indeed, each agent implements a deductive 

process using some inference rules to analyze the 

compatibility between its local goal and the information into 

KSA. The agent that is not able to meet its local goal is the 

one handling the failure (probably a hardware failure). At 

this stage the malfunction can be treated according to 

appropriate procedures. Bigraphs have been used both to 

size the KSA and to define the reaction rules that allow to 

build the formal representation (i.e. the bigraph) of the entire 

system.  

A MAS presents many challenges in terms of intelligent 

decision algorithms support. A distributed algorithm is often 

more practical and robust than a centralized algorithm. 

Agents are in general characterized by strong autonomy. 

This means that an agent operates without the direct 

intervention of some other entities and has control over their 

actions.  

Assigning the goals to an agent means that actions on 

environment should be done to achieve some specified 

desires and that the agents show a sort of rational behavior 

in the environment. The term “behavior” usually refers to 

the action that is performed after receiving a set of inputs 

from sensors. Agents in a distributed decision-making 

architecture are often self-interested, i.e. they optimize 

decisions according to local conditions, with limited 

consideration of overall performance and constraints. Often 

agents operate in competitive structures, but structures with 

cooperating agents are currently gaining interest [6]. These 

structures are characterized by multiple objectives and the 

possibility of achieving even part of the objectives assigned 

to the individual agent.  

The need to manipulate heterogeneous data or data 

characterized by different ontologies should be considered 

 
Fig. 3.  Scheme of the architecture being tested. The system consists of 6 

identical units. Each unit is connected through its I/O lines to specific 
devices dedicated to the interface with the real world 
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Fig. 4.  Internal architecture of the agent modelled as BDI. The agent is 

connected to the external environment through sensors and actuators.  
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while designing a cooperating MAS. In the proposed 

system, agents, operating in a reactive MAS, must follow 

specific policies at local level respecting the limits imposed 

at global level. Communication among agents is therefore 

relevant for the implementation of these policies and relative 

algorithms. Moreover, global and local policies must have 

the same limits, so that the set, related to the latter, is 

incorporated in the set related to the former. 

From an architectural point of view, an agent operating in 

a MAS needs to expand its knowledge of the domain in 

which the system operates. The visibility must be such as to 

allow the agent to see all the variables related to both local 

and global and/or shared objectives. As explained above, 

using also bigraphs in designing stage of the MAS allowed 

for isolating an entity identified as KSA matrix. This entity 

is responsible for sharing all the knowledge that 

characterizes the MAS. In KSA matrix each row holds 

information about the state of each agent (both sensors and 

actuators), along with their local actions, while each column 

represents a specific data parameter (e.g., the temperature 

for each room). In Figure 4 an example of KSA matrix 

containing the data for a single agent is presented. In this 

study a simple communication protocol, based on the I2C 

serial bus, has been developed to assess the efficiency of the 

proposed approach. 

It is of fundamental importance that the global status of 

the system is shared by all the units to pursue common 

objectives. For the prototyping phase it was decided to use 

the TWI (two wire interface) processor port (the well-known 

I2C port of the Arduino board). 

The master-slave communication model has been 

adopted. The master, identified by a simple token model 

among the units involved in the MAS, has the task of 

transmitting the KSA matrix without generating overwriting 

with data loss. In a very simplified way, if N is the total 

number of units connected to the bus; the token is assigned 

to the m-th unit that acts as a master. The master asks the i-

th slave (i=0, ..., N) m≠ i, for its status vector and then 

transmits it to the other N-1 slaves in a sequential way. This 

update strategy allows for avoiding the expired data in the 

matrix. Indeed, the i-th slave is the only unit that can modify 

its state vector. If the matrix were instead completely 

updated for each cycle, the i-th slave would also see its state 

overwritten with the possibility of deleting more recent data. 

Tests have been carried out both with a physical master and 

with a dynamic master managed by a special token. The 

communication   protocol   was   tested   at   a   clock 

frequency (f) of 400 KHz [9].  Each message exchanged by 

means of the protocol requires few clock cycles to compute.  

In the proposed system (composed by N units each one with 

M local data), the protocol requires a time estimated by: 

                  T=(N2*(11+M*9)+N*34)/f                   (1) 

VI. EXPERIMENTS AND RESULTS 

In this section, two aspects of the proposed system have 

been evaluated and reported: the construction of the bigraph 

for the proposed MAS with the BigMC tool and the results 

obtained using this system in various real cases.  

 

A. Methodological results 

The CPS with MAS architecture described in the previous 

section has been successfully designed using the bigraph 

approach.  

To construct the bigraph model according to the structure 

described above, a multiscale approach is adopted as shown 

in [31]. 

The scale options of our approach are sorted as follows:  

• Scale "Environment", which represents the topological 

entities of environments such as a room or container; 

• Scale "Objects", which represents all passive entities, 

which are unable to perform any action without 

interaction/possession of agents, such as sensors, 

actuators, transmission media, computers or humans; 

• Scale “Subjects”, which represents the structure of an 

agent, as shown above; 

• Scale "KSA", which represents the nodes of beliefs and 

desires of the agents; 

• Scale "Software Components", which are the software 

components in the structure of each agent, e.g. FunA, 

FunB, Reader and AuthAGENT2DataType1 in Figure 1, 

with the interconnection between the components of the 

Agent software and the objects present in the environment, 

and also with interconnection between the components of 

the agent software and the node in KSA; the construction 

of the bigraph is done with the BigMC tool, and the code 

in the case study shows how the multi-scale approach is 

adopted. 

Thereafter, the relevant BigMC code of the proposed 

multi-scale approach, that is adopted to obtain the formal 

description of the system through a bigraph is reported. The 

BigMC terms language and the structure of a file declaring a 

bigraph can be seen in [10] while next some statements of 

the BigMC file describing the proposed MAS are shown to 

explain how the multi-scale approach works.  

The nodes and links declarations are omitted since 

deductible from reported code, but also because they are not 

relevant to explain the multi-scale approach. As said above, 

the proposed multi-scale approach is composed of 5 scales 

and the declaration code of each one is presented below: 

• the Scale Environment is declared through a bigraph 

composed of one node called Room, which represents 

the room where our devices are placed; 

• The passive entities belonging to Scale Objects, which are 

unable to perform any actions without 

interaction/possession of agents, are nested in the Scale 

Environment by the following statement: 

 

Room -> 

Room.(Reactor.SensorLevel[OUTSensorLevel] | 

         ComputerAG1 | ComputerAG2 | ComputerAG3 | 

ComputerAG4 |     

         ComputerAG5 | 

          Human | 

          PumpInj1[INNActuating1,OUTsteps1] |      

          PumpInj2[INNActuating2,OUTsteps2] |  

          PumpInj3[INNActuating3,OUTsteps3] | 

          PumpDrain[INNActuating4,OUTsteps4] |  

          ComChannel 

          ); 
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In the square brackets there are the inner/outer links of 

these entities, denoted by INN/OUT prefix. 

• The active entities belonging to Scale Subjects, which 

represent the structure of an agent, are nested in the 

Scale Environment by the following statement: 

 

Human ->  

Human.AgentHuman[OUTSetAG1mixtureRatio, 

OUTSetAG2mixtureRatio,   

                            OUTSetAG3mixtureRatio]; 

ComputerAG1 -> ComputerAG1.Agent; 

ComputerAG2 -> ComputerAG2.Agent; 

ComputerAG3 -> ComputerAG3.Agent; 

ComputerAG4 -> ComputerAG4.Agent; 

ComputerAG5 -> ComputerAG5.Agent; 

 

Agent ->  

Agent.(CORE.(Intentions | IOmanager)  

                        | KSA Manager 

           ) ; 

 

• The Scale KSA, which represents the nodes of beliefs and 

desires in KSA, i.e. the matrix elements, is nested in the 

communication channel as follows: 

 

ComChannel -> ComChannel. KSA. 

(MixtureRatio1.(AG1mixtureRatio[INNAG1mixtureRat

io, 

                              OUTAG1mixtureRatio]                        

       |AG2mixtureRatio[INNAG2mixtureRatio,   

                                              OUTAG2mixtureRatio]                         

        |AG3mixtureRatio[INNAG3mixtureRatio,   

                                OUTAG3mixtureRatio])            

              |nStepFill2.(AG1NstepsFill[INNAG1NstepsFill, 

                                                 OUTAG1NstepsFill] 

                |AG2NstepsFill[INNAG2NstepsFill, 

                                                   OUTAG2NstepsFill]  

                              |AG3NstepsFill[INNAG3NstepsFill, 

                                                  OUTAG3NstepsFill]) 

   |OnOffSensLev3.(AG5statusSensor[ 

                                                      INNAG5statusSensor, 

                                                     OUTAG5statusSensor])  

 |nStepDone4.(AG1StepsDone[INNAG1StepsDone,                                               

                                         OUTAG1StepsDone] 

                   |AG2StepsDone[INNAG2StepsDone, 

                                                       OUTAG2StepsDone]  

                                 |AG3StepsDone[INNAG3StepsDone, 

                                                       OUTAG3StepsDone]  

                                 |AG4StepsDone[INNAG4StepsDone, 

                                                      OUTAG4StepsDone])   

 |OnOffActuatingPump5.( 

                   AG1ActuatingPump[INNAG1ActuatingPump, 

                                              OUTAG1ActuatingPump]          

     |AG2ActuatingPump[INNAG2ActuatingPump, 

                                              OUTAG2ActuatingPump]  

            |AG3ActuatingPump[INNAG3ActuatingPump, 

                                               OUTAG3ActuatingPump]  

             |AG4ActuatingPump[INNAG4ActuatingPump, 

                                               OUTAG4ActuatingPump]) 

   ); 

 

This statement represents the KSA matrix of the CPS. In 

this matrix, MixtureRatio1 is the first column, 

AG1mixtureRatio is the element in the first column-first 

row, AG2mixtureRatio is the element in the first column-

second row, and so on. 

• The entities belonging to Scale Software Components, are 

nested in the Agent by the following statement: 

 

ComputerAG1.Agent.(CORE.(Intentions | IOmanager) | 

$1)-> 

ComputerAG1.Agent.(CORE.( 

   Intentions.(   

                  SetNstepsFill[OUTAG5statusSensor, 

                                               OUTAG1StepsDone, 

                                               INNAG1NstepsFill] 

                |SetResetStepsDone[OUTAG1ActuatingPump, 

                                              INNAG1StepsDone] 

                |SetActuatingPump[ OUTmAG1StepsDone, 

                                          INNAG1ActuatingPump] 

       ) 

       |IOmanager.( 

          SetMixtureRatio[                                                       

                                  OUTSetAG1mixtureRatio, 

                                 OUTAG5statusSensor, 

                                 OUTAG1NstepsFill, 

                                 OUTAG1StepsDone, 

                                 OUTAG1mixtureRatio, 

                                 INNAG1mixtureRatio]                                          

             |ReaderStepsDone[ OUTsteps1, 

                                         INNAG1StepsDone]  

             |ActuatingPump[INNActuating1, 

                                         OUTAG1mixtureRatio] 

          ) 

          ) 

              |$1); 

 

Where the wildcard $1 means “all nodes and links placed 

in Agent node except CORE node and its contents” (e.g. the 

remaining KSAMANAGER node). The remaining agents’ 

declarations follow the same structure. The BigMC file ends 

with %check, that provides, in the last state generated in 

output, the complex bigraph representative of our system 

scenario. 

The bigraph obtained by means of application of reaction 

rules is presented hereinafter. The full output is too large to 

be integrated in the paper, so a simplified view is shown. 

 

Welcome to BigMC! 

> /usr/local/bigmc/bin/bigmc -m 10000 -r 50 -p 

/tmp/bigmc_model7918810766099976581.bgm 

1:Room.nil 

2:Room.(Reactor.SensorLevel[OUTSensorLevel].nil  

| ComputerAG1.nil  

| ComputerAG2.nil 

| ComputerAG3.nil  

| ComputerAG4.nil  

| ComputerAG5.nil  

| Human.nil  

| PumpInj1[INNActuating1,OUTsteps1].nil  

| PumpInj2[INNActuating2,OUTsteps2].nil  
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| PumpInj3[INNActuating3,OUTsteps3].nil  

| PumpDrain[INNActuating4,OUTsteps4].nil  

| ComChannel.nil) 

. 

. 

. 

4097: Room.(ComputerAG4.Agent.(KSA Manager.nil   

                | CORE.(IOmanager.( 

                                            

ActuatingPump[OUTSensorLevel,                                

INNActuating4].nil  

                             | ReaderStepsDone[OUTsteps4, 

                                                                   

INNAG4StepsDone].nil 

                  )  

    | 

Intentions.(SetActuatingPump[OUTAG5statusSensor, 

                                                

INNAG4ActuatingPump].nil  

                     | 

SetResetStepsDone[OUTAG4ActuatingPump, 

                                                 INNAG4StepsDone].nil 

      ) 

   ) 

) | ComputerAG1.Agent.(... 

[mc::step] Complete!   

[mc::report] [q: 0 / g: 4097] @ 4098 

 

B. Real case experiments 

According to the previous sections and as a result of the 

study of the system with the bigraphs, the matrix 

representing the KSA was designed. This data structure is 

shared among all the units that can "see" the environment in 

which they operate. Table I reports the KSA for the part of 

interest of the presented test.  

A testbed has been realized according to Figure 5. The 

software is characterized by multiple procedures executed in 

a loop section, and specifically: a manager of the KSA 

synchronization and propagation (Table I), a set of local 

reactive systems able to interact with external/internal 

conditions to each user agent [24], [32]. Several experiments 

were conducted to evaluate the MAS performance and its 

capability to react to different scenarios. The system has 

been tested using more than ten different mixtures 

simulating various negative operative conditions (such as 

fault of one or more pumps, one or more exhaust 

components, the presence of foam in the reactor (in this case 

the sensor level gives wrong mixture levels, etc.). In each 

experiment the system behavior has been studied analyzing 

the three systems’ working phases: learning phase, operative 

phase without error and operative phase with exception 

revealed. 

Figure 6 shows an example of such evaluations with a 

graphical view of the three scenarios analyzed during one of 

the tests.  

• Scenario 1: Learning phase – The first part of each 

experiment is based on a learning phase where each agent 

operates in order to learn how to work in cooperation for 

the global goal achievement.  Starting from the 

consideration that any stepper pump has a constant flow, 

in this phase each user agent related to a Stepper Injection 

Pump learns how many steps are necessary to fill 

completely the reactor so as to contribute with its specific 

ratio. After any filling the Pump Drain operates to empty 

the reactor. 

• Scenario 2: Operating phase with no error – In this phase 

the whole set of agents starts to cooperate in order to 

achieve the global goal. In this scenario the whole system 

works perfectly, and each user agent does not observe any 

errors. In fact, three perfect cycles of filling and emptying 

are realized (Figure 6). 

• Scenario 3: Operating phase with exception revealed. 

During the last cycle reported in Figure 6 (see 

enlargement), the liquid 2 tank becomes empty. This 

means that the user agent related to PumpInj2 cannot 

cooperate to reach global goals. Each agent can observe 

that an anomaly occurs (for instance the user agent related 

to Pumpinj1 will observe that a bigger number of steps is 

required to fill the reactor) and the whole system reacts by 

defining an alert condition related to the defined global 

goals. In this experiment the reactive system acquires 

knowledge about the fact that the global goal is impossible 

to be achieved with the tank 2 in empty condition.  

 

TABLE I 
KSA FOR THE MAS MODELLED 

 Mixture 

ratio 

nStep 

Fill 

On/Off 

SensLev 

nStep 

Done 

On/Off 

Actuation 
Pump 

AG1 

(Pumpinj1) 

value value  value value 

AG2 

(Pumpinj2) 

value value  value value 

AG3 

(Pumpinj3) 

value value  value value 

AG4 

(Pumpdrain) 

    value 

AG5 

(SensorLevel) 

  value   

In each row the data relate to each agent. The bridge can write the values that 

represent the goals in the lines of the other agents. nSpepDone = incremental 
pheristaltic pump turn counter; OnOffActuatingPump = pump status 0 → off, 

1→ on; MixtureRatio = mixture percentage for the single reagent; 

OnOffSensLev = level sensor status 0→ off, 1→ on (reactor empty); nStepFill 
= turns of the peristaltic pump to fill the reactor. 

 

 

 
Fig. 5.  Test-bed setup related to experiments conducted on the MAS. The 

figure is like Figure 3, but in this case it highlights the physical components. 
The testbed is based on a reactor where a liquid mixture must be realized 
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VII. CONCLUSIONS 

This paper proposes a model for designing and 

implementing a CPS based on cooperative MAS paradigm. 

The identification of this model requires the use of design 

tools and a system architecture that are able to represent and 

manage the characteristic aspects of the system under 

analysis such as: topology, communication, the objectives of 

the entities present in the system (local goals for each agent) 

and cooperation to meet objectives of global interest (global 

goals of the MAS).  

The proposed approach sees a CPS as a multi-scale 

problem resolvable using a cooperative MAS. The work has 

been characterized by two parallel flows. The first one, 

starting from the analysis of the state of the art of the 

techniques used in designing this class of system, has led to 

the identification of Bigraph and BRS as tools capable of 

fully representing the concepts of location, connectivity and 

agent. The second workflow, starting from the analysis of 

the state of the art of the paradigms used to model and 

implement the various entities in the layer in close contact 

with the physical process of the CPS, has led to the 

introduction of a specific entity (KSA) representing the 

environment in which all the cooperative agents operate. 

This entity has been implemented using the characteristic 

loop of the used hardware development environment 

(ATMega 328p processor or Arduino type boards). The loop 

first provides the procedures for replication of KSA (virtual) 

in all agents (physical) and then the computational 

procedures related to each individual agent. The MAS and 

its KSA has been defined through the Belief-Desires-

Intentions (BDI) model. The proposed system has been used 

in an application case of the MAUI project that is a project 

funded by the Lombardy Region (Italy) and aimed to 

identify innovative monitoring techniques for the control of 

industrial wastewater. In all the experiments the system has 

shown an intelligent and proactive behavior changing its 

goals to handle the different external conditions in which it 

operates.  

This work shows that using the proposed multi-scale 

model, a cooperative MAS and the notion of KSA, it is 

possible to proceed to the formal design of a CPS with 

interesting features such as the ability to meet global goals 

and self-diagnostic of failures.  

These results have also been confirmed by the BigMC 

tool, which produces the formal model of the system as 

output. For what concerns the implementation phase, a 

protocol capable of representing and manipulating KSA has 

been used. Through this KSA each agent in the MAS has 

fully visibility of the environment in which it operates. This 

 

 
 
Fig. 6.  Experimental results related to tests conducted. The experimental setup was based on 3 stepper motor pumps for liquid injection in a common reactor 

and 1 on/off pump for actuating the reactor emptying. 
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allows each agent to cooperate in order to achieve global 

objectives starting from its individual local objectives. 

Future works will focus on the adoption of the bigraph 

during the run-time execution of the system. The goal is to 

develop a decision support system (DSS). Using a Java 

LibBig library, it is possible to use its model checker for a 

reachability analysis. By observing the flow of the KSA 

matrix, the application can update the bigraph (for reaction 

rules) and, by formalizing the situation of interest in terms 

of applicability of reaction rules, the checker can detect 

when this will be done, and then the system will take 

appropriate measures to address it. 
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