

Abstract—This paper proposes a multi agent system (MAS)

implementing an innovative monitoring and control technique

for industrial wastewater. Nowadays Cyber-Physical System

(Cps) and Internet of Things (IoT) are becoming ever more

common in this field. This fact led to the implementation of

systems composed of many computing units

intercommunicating mutually and characterized by

computational power being adequate to the task to be carried

out. The proposed MAS uses a cooperative approach among

the various agents to achieve the global goal. The system

knowledge is shared among agents. After an initial learning

stage, the agents can cooperate to hit the global objective and

eventually to self-assess the failure of some components. The

system has been designed by means of the bigraph theory

approach.

Index Terms— bigraph, Cyber-Physical Systems, Internet of

Things, model checking, monitoring, multi-agent system

I. INTRODUCTION

YBER Physical Systems (CPS) are considered an

enabling key technology of Industry 4.0 because they

can improve the growing of the three main pillars for the

digitalization of the manufacturing sector (smart products,

smart manufacturing and business models). An interesting

aspect of CPS is the concept of "digital twin" that associates

each physical device to its representation into the virtual

world. So, each physical device is integrated with other

electronic devices having computing, storage and

networking capacities. This is the link between CPS and

other powerful technologies, such as Internet of Things

(IoT) and Multi Agent Systems (MAS).

IoT is a paradigm that allows for the interconnection and

interoperability of everyday life objects, equipped with

computing units, sensors, transceivers for digital

communication and appropriate protocol stacks [1].

Nowadays, these digital communication systems can use

many mature technologies such as Bluetooth, Near Field

Communication (NFC), Radio Frequency Identification

(RFID) for neighborhood devices and wireless network and

4G-LTE for far devices. On the other hand, these systems

can produce a big quantity of data to be handled. This

Manuscript received May 17, 2019; revised December 12, 2019.
V. Di Lecce is with DEI, Politecnico di Bari, Bari, 70126, Italy.

(corresponding author, phone: +39-3701325542; e-mail:

v.dilecce@aeflab.net).
A. Amato is with the DEI, Politecnico di Bari, Bari, 70126, Italy (e-

mail: a.amato@aeflab.net).

A. Quarto is with the myHermes Srl, Taranto, 74121, Italy (e-mail:
alessandro.quarto@myhermessrl.com).

M. Minoia is with DEI, Politecnico di Bari, Bari, 70126, Italy (e-mail:

m.minoia@aeflab.net).

process is possible only with a digital infrastructure

equipped by computational power not owned by the small

processors used in these devices. Recently, a new computing

paradigm has been emerging promising reliable services

delivered through next generation data centers that are based

on virtualized storage technologies: cloud computing [2].

This platform plays a key role in IoT approach because it

can work:

• as receiver of data from the distributed sensors;

• as a computer to analyze and interpret the data;

• as a web based virtual interface providing services to

various users.

Intelligent Agent technology is an important and a

relatively new paradigm in software design. The term

intelligent agent is now used as an umbrella term

representing a wide range of software with different

characteristics and abilities [3]. This fact led to many

definitions of intelligent agent, but the authors agree with

the definition proposed by Wooldridge and Jennings [4]

stating that an intelligent agent is a problem-solving entity

characterized by the following properties: autonomy, social

ability, proactiveness and responsiveness.

The natural evolution of the intelligent agent technology

is the Multi Agent System (MAS) technology [5]. Systems

of this kind are composed of a set of intelligent agents

interacting and collaborating with each other to solve

complex problems that are beyond the individual capability

or knowledge of each agent. In a MAS, agents can interact

among them implementing a cooperative [6]–[8] or a

competitive strategy [9], [10].

Using these technologies (IoT and/or MAS), it is possible

to implement CPS working as autonomous networks of

miniaturized intelligent sensors and actuators integrated into

technical structures [11], [12]. Nevertheless, for practical

and economic reasons, the hardware used into these

applications is not too powerful (often small and relatively

economic devices with low computational power, storage,

power and network capabilities are used). This imposes

strong constraints to the system designers because they must

build ever more complex systems characterized by devices

with poor resources with the target of intercommunicating

so as to work as a unique and possibly autonomous system.

The analysis and validation of these systems requires

specific techniques just like bigraph as proposed in [12].

In this paper, authors describe a MAS implementing a

cooperative strategy to achieve a global objective: filling a

reactor with a mixture of liquid according to given

percentages of the various components in a wastewater

treatment plant. The proposed MAS has specific features

that are presented in [4] and in particular it has a proactive

behavior changing its strategies to react at the different

external conditions. This system has been designed and

developed as part of an innovative monitoring technique for

Bigraph Theory for Distributed and

Autonomous Cyber-Physical System Design

Vincenzo Di Lecce, Alberto Amato, Alessandro Quarto Member IAENG, Marco Minoia

C

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

the control of industrial wastewater (website:

http://maui.aeflab.net). This technique has been developed

in the MAUI project under the grant of Lombardy Region

(Italy). Bigraph theory has been used to design, test and

validate the proposed system. The paper is organized as

follows: section II gives a brief overview of the related

work, section III describes the problem under analysis and

section IV presents the proposed approach starting from

discussing bigraphs and bigraphic reactive systems, while

section V shows the case study analyzed in this research

then section VI describes the experiments carried out and

the obtained results. In section VII the conclusions and a

perspective on future work are discussed.

II. RELATED WORKS

In the last years the technological development has

resulted in the spread of miniature devices able to sense,

compute and communicate wirelessly. Using this device, it

is possible to build CPS acting as autonomous problem-

solving systems. The concept of "digital twin" is the link

between CPS and two powerful technologies: IoT and MAS.

MAS has been used in various practical applications at

different levels. For example, MAS technology was used in

[13] to increase the reliability of a distributed sensor

network, in [9] this technology was used for databases

integration, in [6] as decision support system for an

intelligent transport system, in [8] a MAS that implements

mine detection, obstacle avoidance and route planning was

proposed.

Due to the development of this kind of systems,

architectural design techniques and exploration of complex

software systems on embedded processor platforms are

becoming increasingly popular. They are typically based on

the study of communication or high-level modelling. This

class of methods is based on models highlighting lack of

flexibility at the system level both with pre-designed

intellectual property cores and with most of the techniques

for creating custom components. Another element of

complexity is the reduced performance of these embedded

systems.

Many of these architectural design tools are based on

descriptive languages of the system's internal operations and

exchanges. They involve multiple translation levels of the

real problem into its representation that can be used to

evaluate the achievable performance. Jansen and Bosch [14]

proposed to see each software architecture as a set of

explicit design decisions. In their idea (Archium), software

architecture can be seen as a decision-making process and

its design is about making the right decisions at the right

time.

Márquez and Astudillo proposed [15] a model called

COMPACT for the selection of components using some

architectural tactics. Starting from the non-functional

requirements, the proposed model follows these tactics to

search for and identify the components suitable for the

design. This model was successfully tested. Their tests

highlighted the need to build a bridge between software

architecture and system requirements.

Capilla et al. [5] proposed a web-based tool, which is

capable of recording and managing architectural design

decisions. Jansen et al. [16] developed a tool for making

architectural decisions. This system supports architectural

decisions semi-automatically and shares the results with all

stakeholders.

In general, these approaches focus on documenting and

archiving architectural states using certain tools. A similar

situation is found in the design of IoT. Many authors use

different kinds of software to represent architecture models

based on various communication protocols, hardware

components and central processing devices used in the

system. The design compromise is between system

performance and communication protocol performance (in

terms of uniform and interoperable communication of the

protocol itself).

Yu at al. [17] proposed to use bigraph technique as a tool

to test context-aware applications. They built a data model

based on the bigraphical meta-model and proposed to use

the bigraphical sorted BRS to model context-aware

environments. They generated the test cases to verify the

interactions between context-aware environments and

middleware along with domain services by tracing the

interactions between the BRS model and the middleware

model. The application environment typically includes a

variety of physical structures, moving entities, and wired or

wireless sensors connected to backend systems. They show

the advantages of the model proposed and supported by a

simulator. Furthermore, they highlighted that most of the

simulation tools are mainly used to model and simulate the

behavior of systems (such as Simulink [18] and SPIN [19])

and not to model the environments of applications.

 Recently, UML class diagrams have been employed to

model the static structures of the embedded real-time system

(RTES) and its environment, Object Constraint Language

has been used to model and automatically generate test data

for RTES testing, and a state machine to model the behavior

of entities [20].

Bigraphs and Bigraphical Reactive Systems (BRS) are

graphical methods to describe the syntax and semantics of

systems in terms of two orthogonal sets: connectivity and

localization [21]–[23].

Some authors used bigraphs to control the models [10].

C. Tsigkanos and all. [24] proposed the use of these

representations in the field of network access security

(recognition of violations of the security requirements of a

distributed access system).

III. PROBLEM DESCRIPTION

There are many methods about the treatment of the

wastewater, including the physical method, chemical

Fig. 1. An example of generic Agent represented through bigraph. This first
version presents KSA while in the implemented MAS KSA is taken out.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

method, and biological method. For instance, the adsorption

method with activated carbon is one of the most important

physical methods. The organic pollutants in the wastewater

are absorbed by the activated carbon. However, the

adsorption method has the problem of saturation and

secondary pollution. Biological treatment method with

microorganism is also used to dispose the organic

wastewater, but the efficiency of the biological treatment

method is too low to be used for the disposal of a large

amount of wastewater. As to regard to the chemical method,

the settings of the ratio in the chemical compositions are of

difficult level, this fact could imply an impact on the

treatment effect of the wastewater. The complexity of

physical, chemical, and biological phenomena associated

with treatment units means that the performance of the

process depends heavily on environmental and operational

conditions. Moreover, the reactors show common features of

industrial systems, such as nonlinear dynamics and coupling

effects among the variables. These features explain the

obstacles of the control strategies in wastewater treatment

process (WWTP) i.e.:

▪ Dynamics [25]: Due to the inflow rate, water quality and

contamination loads are undulated acutely; WWTP

always runs in unsteady state. Moreover, these factors—

inflow rate, water quality, contamination loads, pH,

temperature, etc.—are passively received.

▪ Modeling Challenges [26]: The WWTP model consists of

two main parts: the hydraulic model and the biochemical

model. The hydraulic model represents reactor behavior,

flow rates, and recirculation. The biochemical model is

the second primary component of a WWTP model.

However, it is still an open problem to seek accurate

models to satisfy the complex characters of WWTP.

▪ Uncertainties [27]: Most bioreactors are equipped with

sensors for online measurement of pH, temperature and so

on. The appropriate strategy for achieving the control

objective depends on the availability of online

measurements such as biochemical oxygen demand

(BOD) and chemical oxygen demand (COD).

Unfortunately, most of the measurement techniques for

these variables are limited to offline analysis in a research

laboratory environment.

In this work, the authors propose a solution to handle the

hydraulic aspects of the reactor behavior. In particular, a

cooperative MAS has been designed to handle the process of

filling a reactor with a mixture of liquid according to given

percentages of the various components. This system has a

proactive behavior changing its strategies to react at the

different external conditions.

IV. FROM BIGRAPH AND BRS THEORY TO MAS MODELLING

Bigraphs and BRS can be used as a design tool for easy

representation of MAS modelled cyber physical system

(CPS) and interactions among agents and between agents

and other system entities.

In this study, the MAS is composed of cooperative agents

with local and global objectives that do not conflict with

each others, as described in [28]. The MAS makes use of a

private communication network able to guarantee to all

agents the visibility of the environmental data (quantities

read by all the sensors present, status of all the actuators

present) that characterize the Knowledge Sharing Area

(KSA).

Sensors and actuators can be physical or virtual. If

physical, they will have the connection with an agent that is

able to read data from sensors and/or controlling actuators.

If sensors and actuators are virtual, they correspond to a

value transmitted/received by other agents. In the proposed

case study, the data are arranged in a numerical matrix in

which each row corresponds to an agent and each column

contains data of homogeneous type (e.g. column 5 contains

the ambient temperature). This representation is the result of

a formal project phase conducted by Bigraph's theory and

BRS, as shown in the following section.

The first step in developing a MAS using BRS is to

distinguish between subjects and objects in the domain

model, i.e. which entities can perform actions, and which

ones cannot [29]. This implies splitting controls into two

sub-sets: controls for subjects and objects. As for the

behavior of an agent and his internal status, the Belief-

Desires-Intensions (BDI) approach is proposed in [10], [30].

This approach can capture both static and dynamic aspects

of an agent and MAS.

The adoption of large graphical reactive systems for

modelling the deployment architecture is described in [31].

This approach is suitable to meet various constraints of

software components and target environments. The method

uses a multi-scale modelling approach which provides for

three sub-models: the execution environment, the software

architecture and the integration model. The first two are

bigraph and they are built by reaction rules.

In this work, the BDI paradigm has been used to model a

CPS based on MAS as a bigraph. Furthermore, a new multi-

scale approach is adopted instead of [31] to obtain the

Bigraph that formally describes the system. This new

method focuses on the construction phase of the bigraph on

the agents and on CPS. BigMC tool has been used to

support the bigraph building. This is an automatic testing

tool for bigraphical reactive systems, used to build Bigraph

and BRS and to verify the system properties [10].

A. The proposed approach

In this section the proposed approach to design a

distributed CPS based on cooperative MAS using Bigraph

and BRS is presented.

The common representation of MAS as BRS is not

appropriate in the case of strong interaction between

cybernetic space and physical space. To fill this gap, the

state of each agent must be visible in real time to all other

agents so that they have a total and unique knowledge of the

environment. This representation is the base of the proposed

KSA. BDI paradigm has been used to handle the knowledge

sharing among agents. The state of each agent is constituted

by beliefs and desires, which represent respectively what the

agent knows about the environment and the desired state in

which the agent or environment should evolve (also called

goal or target [30]). The agent's status may also contain

objectives to be achieved received from other agents. The

agent who assigns a target to another agent must have the

appropriate authorizations or must be hierarchically

superior.

Each agent projects its state into KSA by writing the row

of his competence, at the same time it works using data

represented in KSA. To obtain an agent model suitable for

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

the distribution of a CPS, the authors provide an example of

an initial prototype (Figure 1). This figure shows the

structure of the agent that is formed by:

• CORE: this component manages the interaction between

agent and environment/KSA. It receives stimuli from

KSA and implements its intentions to produce decisions

by performing actions to realize desires. Inside CORE

there are two nodes:

o the INTENTIONS node (I) includes all the

procedures allowing the agent to make decisions and

execute them. These procedures can be static or

obtained from a learning process that observes KSA

belonging to other agents. This node uses a subset of

KSA information and updates another subset of KSA

information.

o The IOProcessing node includes the nodes for the

management of the I/O of sensors and actuators.

• KSA: This component handles virtual information shared

among agents. It includes agent status and manager for

KSA operations, because the last one requires permission

handling. Inside KSA there are two types of nodes:

o DataType[n] nodes representing the agents' current

status through information about their beliefs or

desires.

o The KSAMANAGER node specifies whether an

agent can update a state belonging to another agent

(e.g. to assign a desire) or not. It should be noted

that the information from a sensor is processed and

placed in the KSA by AGENT1 in the data class

called "DataType3", as shown in Figure1. FunA

Block can then read this value that is used to

produce the desire. FunB instead, produces a wish

for AGENT2, and through the KSAMANAGER can

write this information in the state AGENT2. Since

the state of a generic agent is visible and accessible

to all other agents, KSA has been brought out of the

agents. This allows for sharing also global objectives

among agents. For example, AGENT1 in Figure 1 is

part of a cooperative MAS composed of two agents

as shown in Figure 2. The application of the

representation by bigraph of the MAS allowed for

recognizing and extracting the KSA as a node that

contains the states of all agents.

With the following example it is possible to highlight the

operation of the aforedescribed components (CORE,

IOProcesing, INTENTIONS, KSAMANAGER, KSA,

DataType), and the interaction between the various

components of the proposed BDI model will be shown. As

an example:

• Beliefs --> Sensor reading

• Desires --> Desires about the targets for the AGENT2

actuator (one of these by the AGENT1, subject to

authorization thanks to the presence of the node in the

KSAMANAGER as shown in Figure 2)

• Intentions --> the fusion between FunA and FunB.

AGENT1 sees a sensor connected to it. The Reader

node in IOProcessing manipulates the read data (e.g.

voltage) in order to project it into the KSA (in the

DataType3 column, where AG1Reading indicates the

reading, for example 8-bit scaled, present in the

AGENT1 line, from which AG1 is placed before the

word reading).

Once this FunA (an “INTENTIONS”) takes in input this

reading (from KSA) and with its logic, produces a desire.

This desire belongs to the DataType2 Column and it is

contained in the row of the same agent, hence the name

AG1DesireOutFunA. Since it is a desire, it will be taken

into consideration by another agent (AGENT2). The other

intention FunB, has no input (for reasons of simplicity and

readability), therefore in some way, it deals with producing

a desire for the AGENT2. This desire is written in the

AGENT2 line in the DataType1 column (hence the edge

with the name WriteAGENT2DataType1). AGENT2

operates as an actuator using FunC in conjunction with the

assigned desire (the actuator operating mode, to operate in

energy saving or not) of AGENT1. FunC takes AGENT2's

wishes into account and calculates the setpoint to drive the

actuator. The input for the actuator is provided by the drive

node in the IOPprocessing. From what has been achieved

with the bigraph application and the specific proposed

application (CPS), the KSA can be implemented by a matrix

that contains columns with homogeneous data, and rows that

represent the data of each agent in the MAS.

Given the nature of this matrix, that represent the KSA,

the system needs a protocol that allows for the exchange of

data in (near) real time.

V. CASE STUDY

The proposed system has been designed to handle the

hydraulic aspects of the reactor behavior operating in an

industrial wastewater plant. In this system a reactor must be

filled with some mixtures made up of various liquid

components. Each mixture is composed of a given set of

Fig. 2. Example of cooperative MAS with two Agents and unique KSA in

which all environment information is represented and shared in real time.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

liquids in prefixed percentages. The evaluated system is

based on 22 units/agents, but for the sake of the clarity and

without reducing the generality of the method, a simplified

version comprising 5 devices is described below. Three

units are equipped with a commercial controller (based on

Toshiba's TB6560) for managing stepper motors and 3

peristaltic pumps. The pumps (dosers, with the possibility

of micro-step) load a reactor specially designed with the

liquids contained in three dispensers (e.g. three chemical

reagents to be combined for a specific reaction according to

assigned percentages).

A unit equipped with a PWM regulator controls a

centrifugal pump used to empty the rector. A further unit

reads the data from an ON/OFF level sensor.

These five units are part of a more complex system,

developed thanks to the MAUI project.

Two goals have been defined in the system under

evaluation:

• Local: for units with peristaltic pump: contributing to the

mixture according to a known percentage; for units with

centrifugal pump: empty the reactor; for units with level

indicator: signal the achievement of the level.

• Global: filling the reactor up to the level of the sensor by

mixing the three components according to assigned

percentages.

A testbed based on ATmega328p processors board has

been realized to evaluate the performance of the proposed

approach in designing of a MAS. The system is configured

as an intelligent cooperative MAS communicating through

the I2C bus, native protocol for this class of processors. The

system consists of 6 identical units. Each unit contains the

processor, an I2C for bus extension (P82B715 Texas

instrument) and various power circuits. They are equipped

with 8 digital I/O ports and 4 ports with A/D converter.

Each unit hosts an intelligent AGENT (Figure 3). The

bridge is also made with a device that is identical to the

others but with a USB port. The latter device is used to

connect the I2C system bus with the external world

represented by a PC equipped with MATLAB and behaves

similarly with the LEADER described in [7]. These devices

are used in many applications and they are very suitable for

implementing CPS. The definition of the KSA requires

attention because it manages the information shared among

agents. It includes both the status of each agent and the

management of the whole system priority policies (i.e. can

an agent modify the goal of another agent?). A critical

parameter to be considered in the design stage is the

dimension of the KSA. Indeed, the greater is its size the

greater will be the transmission time to share it among

agents, but the greater will be also the awareness of each

agent about the environment. Making each agent aware of

its surrounding environment and defining some inference

rules give to the MAS the ability to self-assess its possibility

to meet global goals and identify the responsible of an

eventual failure. Indeed, each agent implements a deductive

process using some inference rules to analyze the

compatibility between its local goal and the information into

KSA. The agent that is not able to meet its local goal is the

one handling the failure (probably a hardware failure). At

this stage the malfunction can be treated according to

appropriate procedures. Bigraphs have been used both to

size the KSA and to define the reaction rules that allow to

build the formal representation (i.e. the bigraph) of the entire

system.

A MAS presents many challenges in terms of intelligent

decision algorithms support. A distributed algorithm is often

more practical and robust than a centralized algorithm.

Agents are in general characterized by strong autonomy.

This means that an agent operates without the direct

intervention of some other entities and has control over their

actions.

Assigning the goals to an agent means that actions on

environment should be done to achieve some specified

desires and that the agents show a sort of rational behavior

in the environment. The term “behavior” usually refers to

the action that is performed after receiving a set of inputs

from sensors. Agents in a distributed decision-making

architecture are often self-interested, i.e. they optimize

decisions according to local conditions, with limited

consideration of overall performance and constraints. Often

agents operate in competitive structures, but structures with

cooperating agents are currently gaining interest [6]. These

structures are characterized by multiple objectives and the

possibility of achieving even part of the objectives assigned

to the individual agent.

The need to manipulate heterogeneous data or data

characterized by different ontologies should be considered

Fig. 3. Scheme of the architecture being tested. The system consists of 6

identical units. Each unit is connected through its I/O lines to specific
devices dedicated to the interface with the real world

Belief  Knowledge

Option
generator Desire  Goal

Optimizer Intention  Action plan

user 1

user 2

user 3

actuator

en
vi

ro
n

m
en

ta
l

KSA

Fig. 4. Internal architecture of the agent modelled as BDI. The agent is

connected to the external environment through sensors and actuators.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

while designing a cooperating MAS. In the proposed

system, agents, operating in a reactive MAS, must follow

specific policies at local level respecting the limits imposed

at global level. Communication among agents is therefore

relevant for the implementation of these policies and relative

algorithms. Moreover, global and local policies must have

the same limits, so that the set, related to the latter, is

incorporated in the set related to the former.

From an architectural point of view, an agent operating in

a MAS needs to expand its knowledge of the domain in

which the system operates. The visibility must be such as to

allow the agent to see all the variables related to both local

and global and/or shared objectives. As explained above,

using also bigraphs in designing stage of the MAS allowed

for isolating an entity identified as KSA matrix. This entity

is responsible for sharing all the knowledge that

characterizes the MAS. In KSA matrix each row holds

information about the state of each agent (both sensors and

actuators), along with their local actions, while each column

represents a specific data parameter (e.g., the temperature

for each room). In Figure 4 an example of KSA matrix

containing the data for a single agent is presented. In this

study a simple communication protocol, based on the I2C

serial bus, has been developed to assess the efficiency of the

proposed approach.

It is of fundamental importance that the global status of

the system is shared by all the units to pursue common

objectives. For the prototyping phase it was decided to use

the TWI (two wire interface) processor port (the well-known

I2C port of the Arduino board).

The master-slave communication model has been

adopted. The master, identified by a simple token model

among the units involved in the MAS, has the task of

transmitting the KSA matrix without generating overwriting

with data loss. In a very simplified way, if N is the total

number of units connected to the bus; the token is assigned

to the m-th unit that acts as a master. The master asks the i-

th slave (i=0, ..., N) m≠ i, for its status vector and then

transmits it to the other N-1 slaves in a sequential way. This

update strategy allows for avoiding the expired data in the

matrix. Indeed, the i-th slave is the only unit that can modify

its state vector. If the matrix were instead completely

updated for each cycle, the i-th slave would also see its state

overwritten with the possibility of deleting more recent data.

Tests have been carried out both with a physical master and

with a dynamic master managed by a special token. The

communication protocol was tested at a clock

frequency (f) of 400 KHz [9]. Each message exchanged by

means of the protocol requires few clock cycles to compute.

In the proposed system (composed by N units each one with

M local data), the protocol requires a time estimated by:

 T=(N2*(11+M*9)+N*34)/f (1)

VI. EXPERIMENTS AND RESULTS

In this section, two aspects of the proposed system have

been evaluated and reported: the construction of the bigraph

for the proposed MAS with the BigMC tool and the results

obtained using this system in various real cases.

A. Methodological results

The CPS with MAS architecture described in the previous

section has been successfully designed using the bigraph

approach.

To construct the bigraph model according to the structure

described above, a multiscale approach is adopted as shown

in [31].

The scale options of our approach are sorted as follows:

• Scale "Environment", which represents the topological

entities of environments such as a room or container;

• Scale "Objects", which represents all passive entities,

which are unable to perform any action without

interaction/possession of agents, such as sensors,

actuators, transmission media, computers or humans;

• Scale “Subjects”, which represents the structure of an

agent, as shown above;

• Scale "KSA", which represents the nodes of beliefs and

desires of the agents;

• Scale "Software Components", which are the software

components in the structure of each agent, e.g. FunA,

FunB, Reader and AuthAGENT2DataType1 in Figure 1,

with the interconnection between the components of the

Agent software and the objects present in the environment,

and also with interconnection between the components of

the agent software and the node in KSA; the construction

of the bigraph is done with the BigMC tool, and the code

in the case study shows how the multi-scale approach is

adopted.

Thereafter, the relevant BigMC code of the proposed

multi-scale approach, that is adopted to obtain the formal

description of the system through a bigraph is reported. The

BigMC terms language and the structure of a file declaring a

bigraph can be seen in [10] while next some statements of

the BigMC file describing the proposed MAS are shown to

explain how the multi-scale approach works.

The nodes and links declarations are omitted since

deductible from reported code, but also because they are not

relevant to explain the multi-scale approach. As said above,

the proposed multi-scale approach is composed of 5 scales

and the declaration code of each one is presented below:

• the Scale Environment is declared through a bigraph

composed of one node called Room, which represents

the room where our devices are placed;

• The passive entities belonging to Scale Objects, which are

unable to perform any actions without

interaction/possession of agents, are nested in the Scale

Environment by the following statement:

Room ->

Room.(Reactor.SensorLevel[OUTSensorLevel] |

 ComputerAG1 | ComputerAG2 | ComputerAG3 |

ComputerAG4 |

 ComputerAG5 |

 Human |

 PumpInj1[INNActuating1,OUTsteps1] |

 PumpInj2[INNActuating2,OUTsteps2] |

 PumpInj3[INNActuating3,OUTsteps3] |

 PumpDrain[INNActuating4,OUTsteps4] |

 ComChannel

);

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

In the square brackets there are the inner/outer links of

these entities, denoted by INN/OUT prefix.

• The active entities belonging to Scale Subjects, which

represent the structure of an agent, are nested in the

Scale Environment by the following statement:

Human ->

Human.AgentHuman[OUTSetAG1mixtureRatio,

OUTSetAG2mixtureRatio,

 OUTSetAG3mixtureRatio];

ComputerAG1 -> ComputerAG1.Agent;

ComputerAG2 -> ComputerAG2.Agent;

ComputerAG3 -> ComputerAG3.Agent;

ComputerAG4 -> ComputerAG4.Agent;

ComputerAG5 -> ComputerAG5.Agent;

Agent ->

Agent.(CORE.(Intentions | IOmanager)

 | KSA Manager

) ;

• The Scale KSA, which represents the nodes of beliefs and

desires in KSA, i.e. the matrix elements, is nested in the

communication channel as follows:

ComChannel -> ComChannel. KSA.

(MixtureRatio1.(AG1mixtureRatio[INNAG1mixtureRat

io,

 OUTAG1mixtureRatio]

 |AG2mixtureRatio[INNAG2mixtureRatio,

 OUTAG2mixtureRatio]

 |AG3mixtureRatio[INNAG3mixtureRatio,

 OUTAG3mixtureRatio])

 |nStepFill2.(AG1NstepsFill[INNAG1NstepsFill,

 OUTAG1NstepsFill]

 |AG2NstepsFill[INNAG2NstepsFill,

 OUTAG2NstepsFill]

 |AG3NstepsFill[INNAG3NstepsFill,

 OUTAG3NstepsFill])

 |OnOffSensLev3.(AG5statusSensor[

 INNAG5statusSensor,

 OUTAG5statusSensor])

 |nStepDone4.(AG1StepsDone[INNAG1StepsDone,

 OUTAG1StepsDone]

 |AG2StepsDone[INNAG2StepsDone,

 OUTAG2StepsDone]

 |AG3StepsDone[INNAG3StepsDone,

 OUTAG3StepsDone]

 |AG4StepsDone[INNAG4StepsDone,

 OUTAG4StepsDone])

 |OnOffActuatingPump5.(

 AG1ActuatingPump[INNAG1ActuatingPump,

 OUTAG1ActuatingPump]

 |AG2ActuatingPump[INNAG2ActuatingPump,

 OUTAG2ActuatingPump]

 |AG3ActuatingPump[INNAG3ActuatingPump,

 OUTAG3ActuatingPump]

 |AG4ActuatingPump[INNAG4ActuatingPump,

 OUTAG4ActuatingPump])

);

This statement represents the KSA matrix of the CPS. In

this matrix, MixtureRatio1 is the first column,

AG1mixtureRatio is the element in the first column-first

row, AG2mixtureRatio is the element in the first column-

second row, and so on.

• The entities belonging to Scale Software Components, are

nested in the Agent by the following statement:

ComputerAG1.Agent.(CORE.(Intentions | IOmanager) |

$1)->

ComputerAG1.Agent.(CORE.(

 Intentions.(

 SetNstepsFill[OUTAG5statusSensor,

 OUTAG1StepsDone,

 INNAG1NstepsFill]

 |SetResetStepsDone[OUTAG1ActuatingPump,

 INNAG1StepsDone]

 |SetActuatingPump[OUTmAG1StepsDone,

 INNAG1ActuatingPump]

)

 |IOmanager.(

 SetMixtureRatio[

 OUTSetAG1mixtureRatio,

 OUTAG5statusSensor,

 OUTAG1NstepsFill,

 OUTAG1StepsDone,

 OUTAG1mixtureRatio,

 INNAG1mixtureRatio]

 |ReaderStepsDone[OUTsteps1,

 INNAG1StepsDone]

 |ActuatingPump[INNActuating1,

 OUTAG1mixtureRatio]

)

)

 |$1);

Where the wildcard $1 means “all nodes and links placed

in Agent node except CORE node and its contents” (e.g. the

remaining KSAMANAGER node). The remaining agents’

declarations follow the same structure. The BigMC file ends

with %check, that provides, in the last state generated in

output, the complex bigraph representative of our system

scenario.

The bigraph obtained by means of application of reaction

rules is presented hereinafter. The full output is too large to

be integrated in the paper, so a simplified view is shown.

Welcome to BigMC!

> /usr/local/bigmc/bin/bigmc -m 10000 -r 50 -p

/tmp/bigmc_model7918810766099976581.bgm

1:Room.nil

2:Room.(Reactor.SensorLevel[OUTSensorLevel].nil

| ComputerAG1.nil

| ComputerAG2.nil

| ComputerAG3.nil

| ComputerAG4.nil

| ComputerAG5.nil

| Human.nil

| PumpInj1[INNActuating1,OUTsteps1].nil

| PumpInj2[INNActuating2,OUTsteps2].nil

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

| PumpInj3[INNActuating3,OUTsteps3].nil

| PumpDrain[INNActuating4,OUTsteps4].nil

| ComChannel.nil)

.

.

.

4097: Room.(ComputerAG4.Agent.(KSA Manager.nil

 | CORE.(IOmanager.(

ActuatingPump[OUTSensorLevel,

INNActuating4].nil

 | ReaderStepsDone[OUTsteps4,

INNAG4StepsDone].nil

)

 |

Intentions.(SetActuatingPump[OUTAG5statusSensor,

INNAG4ActuatingPump].nil

 |

SetResetStepsDone[OUTAG4ActuatingPump,

 INNAG4StepsDone].nil

)

)

) | ComputerAG1.Agent.(...

[mc::step] Complete!

[mc::report] [q: 0 / g: 4097] @ 4098

B. Real case experiments

According to the previous sections and as a result of the

study of the system with the bigraphs, the matrix

representing the KSA was designed. This data structure is

shared among all the units that can "see" the environment in

which they operate. Table I reports the KSA for the part of

interest of the presented test.

A testbed has been realized according to Figure 5. The

software is characterized by multiple procedures executed in

a loop section, and specifically: a manager of the KSA

synchronization and propagation (Table I), a set of local

reactive systems able to interact with external/internal

conditions to each user agent [24], [32]. Several experiments

were conducted to evaluate the MAS performance and its

capability to react to different scenarios. The system has

been tested using more than ten different mixtures

simulating various negative operative conditions (such as

fault of one or more pumps, one or more exhaust

components, the presence of foam in the reactor (in this case

the sensor level gives wrong mixture levels, etc.). In each

experiment the system behavior has been studied analyzing

the three systems’ working phases: learning phase, operative

phase without error and operative phase with exception

revealed.

Figure 6 shows an example of such evaluations with a

graphical view of the three scenarios analyzed during one of

the tests.

• Scenario 1: Learning phase – The first part of each

experiment is based on a learning phase where each agent

operates in order to learn how to work in cooperation for

the global goal achievement. Starting from the

consideration that any stepper pump has a constant flow,

in this phase each user agent related to a Stepper Injection

Pump learns how many steps are necessary to fill

completely the reactor so as to contribute with its specific

ratio. After any filling the Pump Drain operates to empty

the reactor.

• Scenario 2: Operating phase with no error – In this phase

the whole set of agents starts to cooperate in order to

achieve the global goal. In this scenario the whole system

works perfectly, and each user agent does not observe any

errors. In fact, three perfect cycles of filling and emptying

are realized (Figure 6).

• Scenario 3: Operating phase with exception revealed.

During the last cycle reported in Figure 6 (see

enlargement), the liquid 2 tank becomes empty. This

means that the user agent related to PumpInj2 cannot

cooperate to reach global goals. Each agent can observe

that an anomaly occurs (for instance the user agent related

to Pumpinj1 will observe that a bigger number of steps is

required to fill the reactor) and the whole system reacts by

defining an alert condition related to the defined global

goals. In this experiment the reactive system acquires

knowledge about the fact that the global goal is impossible

to be achieved with the tank 2 in empty condition.

TABLE I
KSA FOR THE MAS MODELLED

 Mixture

ratio

nStep

Fill

On/Off

SensLev

nStep

Done

On/Off

Actuation
Pump

AG1

(Pumpinj1)

value value value value

AG2

(Pumpinj2)

value value value value

AG3

(Pumpinj3)

value value value value

AG4

(Pumpdrain)

 value

AG5

(SensorLevel)

 value

In each row the data relate to each agent. The bridge can write the values that

represent the goals in the lines of the other agents. nSpepDone = incremental
pheristaltic pump turn counter; OnOffActuatingPump = pump status 0 → off,

1→ on; MixtureRatio = mixture percentage for the single reagent;

OnOffSensLev = level sensor status 0→ off, 1→ on (reactor empty); nStepFill
= turns of the peristaltic pump to fill the reactor.

Fig. 5. Test-bed setup related to experiments conducted on the MAS. The

figure is like Figure 3, but in this case it highlights the physical components.
The testbed is based on a reactor where a liquid mixture must be realized

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

VII. CONCLUSIONS

This paper proposes a model for designing and

implementing a CPS based on cooperative MAS paradigm.

The identification of this model requires the use of design

tools and a system architecture that are able to represent and

manage the characteristic aspects of the system under

analysis such as: topology, communication, the objectives of

the entities present in the system (local goals for each agent)

and cooperation to meet objectives of global interest (global

goals of the MAS).

The proposed approach sees a CPS as a multi-scale

problem resolvable using a cooperative MAS. The work has

been characterized by two parallel flows. The first one,

starting from the analysis of the state of the art of the

techniques used in designing this class of system, has led to

the identification of Bigraph and BRS as tools capable of

fully representing the concepts of location, connectivity and

agent. The second workflow, starting from the analysis of

the state of the art of the paradigms used to model and

implement the various entities in the layer in close contact

with the physical process of the CPS, has led to the

introduction of a specific entity (KSA) representing the

environment in which all the cooperative agents operate.

This entity has been implemented using the characteristic

loop of the used hardware development environment

(ATMega 328p processor or Arduino type boards). The loop

first provides the procedures for replication of KSA (virtual)

in all agents (physical) and then the computational

procedures related to each individual agent. The MAS and

its KSA has been defined through the Belief-Desires-

Intentions (BDI) model. The proposed system has been used

in an application case of the MAUI project that is a project

funded by the Lombardy Region (Italy) and aimed to

identify innovative monitoring techniques for the control of

industrial wastewater. In all the experiments the system has

shown an intelligent and proactive behavior changing its

goals to handle the different external conditions in which it

operates.

This work shows that using the proposed multi-scale

model, a cooperative MAS and the notion of KSA, it is

possible to proceed to the formal design of a CPS with

interesting features such as the ability to meet global goals

and self-diagnostic of failures.

These results have also been confirmed by the BigMC

tool, which produces the formal model of the system as

output. For what concerns the implementation phase, a

protocol capable of representing and manipulating KSA has

been used. Through this KSA each agent in the MAS has

fully visibility of the environment in which it operates. This

Fig. 6. Experimental results related to tests conducted. The experimental setup was based on 3 stepper motor pumps for liquid injection in a common reactor

and 1 on/off pump for actuating the reactor emptying.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

allows each agent to cooperate in order to achieve global

objectives starting from its individual local objectives.

Future works will focus on the adoption of the bigraph

during the run-time execution of the system. The goal is to

develop a decision support system (DSS). Using a Java

LibBig library, it is possible to use its model checker for a

reachability analysis. By observing the flow of the KSA

matrix, the application can update the bigraph (for reaction

rules) and, by formalizing the situation of interest in terms

of applicability of reaction rules, the checker can detect

when this will be done, and then the system will take

appropriate measures to address it.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A

survey,” Comput. Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for

Delivering Computing as the 5th Utility,” Futur. Gener. Comput. Syst.,

vol. 25, pp. 599–616, 2009.
[3] H. S. Nwana, “Software agents: an overview,” Knowl. Eng. Rev., vol.

11, no. 03, p. 205, Sep. 1996.
[4] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and

practice,” Knowl. Eng. Rev., vol. 10, no. 02, p. 115, Jun. 1995.

[5] R. Capilla, F. Nava, S. Pérez, and J. Dueñas, “A web-based tool for
managing architectural design decisions,” ACM SIGSOFT Softw. Eng.

Notes, vol. 31, 2006.

[6] Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for
leader-following control of multi-agent networks,” Automatica, vol.

44, no. 3, pp. 846–850, Mar. 2008.

[7] Q. Shen, B. Jiang, P. Shi, and J. Zhao, “Cooperative Adaptive Fuzzy
Tracking Control for Networked Unknown Nonlinear Multiagent

Systems With Time-Varying Actuator Faults,” IEEE Trans. Fuzzy

Syst., vol. 22, no. 3, pp. 494–504, Jun. 2014.
[8] K. Zafar, S. Qazi, and A. Baig, “Mine Detection and Route Planning in

Military Warfare using Multi Agent System,” in 30th Annual

International Computer Software and Applications Conference
(COMPSAC’06), 2006, pp. 327–332.

[9] V. Di Lecce, A. Amato, and M. Calabrese, “Data integration in

distributed medical information systems,” in 2008 Canadian
Conference on Electrical and Computer Engineering, 2008, pp.

001497–001502.

[10] A. T. E. Dib and Z. Sahnoun, “Model Checking of Multi Agent System
Architectures Using BigMC,” 2015, pp. 1717–1722.

[11] J. C. F. Li, M. Lei, and F. Gao, “Device-to-device (D2D)

communication in MU-MIMO cellular networks,” in 2012 IEEE
Global Communications Conference (GLOBECOM), 2012, pp. 3583–

3587.

[12] B. Manoj, R. Rao, and M. Zorzi, “CogNet: a cognitive complete
knowledge network system,” IEEE Wirel. Commun., vol. 15, no. 6, pp.

81–88, Dec. 2008.

[13] A. Amato, V. Di Lecce, C. Pasquale, and V. Piuri, “‘Web agents’ in an
environmental monitoring system,” in CIMSA. 2005 IEEE

International Conference on Computational Intelligence for

Measurement Systems and Applications, 2005., pp. 262–265.
[14] A. Jansen and J. Bosch, “Software Architecture as a Set of

Architectural Design Decisions,” in 5th Working IEEE/IFIP

Conference on Software Architecture (WICSA’05), pp. 109–120.
[15] G. Marquez and H. Astudillo, “Selecting components assemblies from

non-functional requirements through tactics and scenarios,” in 2016

35th International Conference of the Chilean Computer Science
Society (SCCC), 2016, pp. 1–11.

[16] A. Jansen, J. Der Ven, P. Avgeriou, and D. Hammer, “Tool Support for

Architectural Decisions,” in 2007 Working IEEE/IFIP Conference on
Software Architecture (WICSA’07), 2007, pp. 4–4.

[17] L. Yu, W. T. Tsai, Y. Jiang, and J. Gao, “Generating Test Cases for

Context-Aware Applications Using Bigraphs,” in 2014 Eighth
International Conference on Software Security and Reliability, 2014,

pp. 137–146.

[18] MathWorks, “Simulink.” [Online]. Available:
http://www.mathworks.com/products/simulink/index.html.

[19] G. Holzmann, Spin Model Checker, the: Primer and Reference

Manual, First. Addison-Wesley Professional, 2003.
[20] A. Louati, K. Barkaoui, and C. Jerad, “Temporal Properties

Verification of Real-Time Systems Using UML/MARTE/OCL-RT,”

2015, pp. 133–147.
[21] G. Cattani, J. J. Leifer, and R. Milner, “Contexts and embeddings for a

class of action graphs,” 2000.

[22] T. J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry, “A

formal approach to reactive system design: unmanned aerial vehicle

flight management system design example,” in Proceedings of the

1999 IEEE International Symposium on Computer Aided Control
System Design (Cat. No.99TH8404), pp. 522–527.

[23] P. Sewell, “From rewrite rules to bisimulation congruences,” Theor.

Comput. Sci., vol. 274, no. 1–2, pp. 183–230, Mar. 2002.
[24] C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh, “On the

Interplay Between Cyber and Physical Spaces for Adaptive Security,”

IEEE Trans. Dependable Secur. Comput., vol. 15, no. 3, pp. 466–480,
May 2018.

[25] P. Melidis, E. Vaiopoulou, and A. Aivasidis, “Development and

implementation of microbial sensors for efficient process control in
wastewater treatment plants,” Bioprocess Biosyst. Eng., vol. 31, no. 3,

pp. 277–282, Apr. 2008.

[26] G. Mannina, G. Freni, G. Viviani, S. Sægrov, and L. S. Hafskjold,
“Integrated urban water modelling with uncertainty analysis,” Water

Sci. Technol., vol. 54, no. 6–7, pp. 379–386, Sep. 2006.

[27] G. Freni, G. Mannina, and G. Viviani, “Uncertainty in urban
stormwater quality modelling: The influence of likelihood measure

formulation in the GLUE methodology,” Sci. Total Environ., vol. 408,

no. 1, pp. 138–145, Dec. 2009.
[28] H. Ceballos and R. Brena, “Finding Compromises Between Local and

Global Ontology Querying in Multiagent Systems,” 2004, pp. 999–
1011.

[29] A. Mansutti, M. Miculan, and M. Peressotti, “Multi-agent Systems

Design and Prototyping with Bigraphical Reactive Systems,” 2014, pp.
201–208.

[30] A. T. E. Dib and Z. Sahnoun, “Formal Specification of Multi-Agent

System Architecture,” CEUR Workshop Proceedings, vol. 1294. 2014.
[31] A. Gassara, I. B. Rodriguez, M. Jmaiel, and K. Drira, “A formal

method for modeling deployment architectures based on bigraphs,”

ACM SIGAPP Appl. Comput. Rev., vol. 15, no. 2, pp. 8–16, Aug. 2015.
[32] H. Zhang, F. L. Lewis, and Z. Qu, “Lyapunov, Adaptive, and Optimal

Design Techniques for Cooperative Systems on Directed

Communication Graphs,” IEEE Trans. Ind. Electron., vol. 59, no. 7,
pp. 3026–3041, Jul. 2012.

Vincenzo Di Lecce received the doctoral degree in electric engineering,
cun laude with honors, from the University of Bari in 1980. After 2 years in

industry, he won a Selenia Spazio Italiana fellowship for research on radar

signal elaboration. In 1986 he became technical chief of the electronic
calculator laboratories at the Engineering Faculty of the Politecnico of Bari

and at present, he is professor of computer science there. His research

activities include Artificial Intelligence and data analysis, environmental
application of AI and intelligent sensor. He has published about 200 science

papers in these fields.

Alberto Amato was born in Taranto, Italy, in 1976. He received the B.Sc.
degree in environmental engineering from the Politecnico di Bari, Bari,

Italy, in 2003 and he obtained the Ph.D. in Information Technology from

Università degli Studi di Milano, Milan, Italy in 2010. He is the author or
coauthor of about 50 papers. His current research interests include

clustering algorithms, image retrieval, video analisys, sensor network and

knowledge-based systems.
Alessandro Quarto (M’19) was born in Taranto, Italy in 1981.He received

the master’s degree in Information Engineering from the Polytechnic of

Bari, Italy in 2007. Currently is CEO of an innovative SME. His main
research interests are on Artificial Intelligence, Multi Agents Systems and

IoT.

Marco Minoia was born in Gioia del Colle, Bari, Italy, in 1993. He
received the bachelor’s degree in information and automation engineering

from Polythecnic of Bari, Italy, in 20016. He is currently pursuing the

master’s degree in computer engineering at Polythecnic of Bari, Italy. In
2018, he starts a research activity with AeFLab at Polythecnic of Bari. His

research interest includes Multi-Agent Systems and Cyber-Physical

Systems.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

