
A Bio-Inspired Algorithm for Maximum Matching
in Bipartite Graphs

Chunxia Qi∗ Member, IAENG, Jiandong Diao

Abstract—Recently, an ancient slime mold, Physarum poly-
cephalum, has been proved being capable of finding shortest
path in physical maze environment, which inspires researchers
to extract the core foraging mechanism – positive feedback – to
simulate or model such intelligent behavior. Among most well-
known mathematical models developed so far, physarum solver,
has been adopted and extended to solve a plethora of optimiza-
tion problems in different fields, including computer science,
operations research and transportation etc. In this paper, we
first adopt and apply a variant of modified physarum solver,
called iterative physarum model, to solve bipartite matching
problem. Specifically, the maximum bipartite matching problem
is first equivalently transformed to single-source single-sink
maximum flow problem. Then the iterative physarum model
is used to solve the maximum flow problem adaptively. As
iterative physarum solver does not involve solving the systems
of linear equations associated with global network flow balance
constraints, time complexity of updating node status for one
iteration can be reduced from O(n3) to O(m), where n and m
are numbers of nodes and edges in the graph, respectively.
Extensive numerical studies on both sparse and complete
bipartite graphs demonstrate the validity and efficiency of this
method

Index Terms—maximum matching, max flow problem, bio-
inspired algorithm, physarum solver, bipartite graph.

I. INTRODUCTION

SOME biological organisms often perform highly intel-
ligent behaviors, which have been inspiring humans to

find underlying core mechanism that can possibly explain
the intelligence. Recent biological experiments showed that
a billion years old slime-mold organism, called Physarum
polycephalum, exhibited a surprising ability to solve maze
and construct high-performance networks [1], [2], [3]. As an
aggregate of protoplasm with a network of tubular elements,
physarum transports signals and nutrients through its physical
body parts. Its tubes act as “legs”, helping it to explore
and navigate around the physical environment. Specifically, it
responses to external conditions, such as locations of nutrient
sources, terrain surface, and light brightness, where tubes can
disassemble and reassemble within a few hours to optimize
the shape of body network to improve the performance
of absorbing the available nutrients. For example, when
a starved physarum is distributed throughout a maze with
“food” only at the entry and exit of the maze, it can quickly
concentrate its body network at each food source and occupy
only the shortest path from maze entry to maze exit.

Manuscript received Jan. 24, 2019; revised April 10, 2019. The work is
partially supported by Shandong Vocational Education Reform Project (No.
2017121) and Project of Shandong Province Higher Educational Science
and Technology Program (No. J17RB149).

C. Qi is with Shandong Foreign Trade Vocational College, No. 201
Jufeng Road, Licang District, Qingdao, 266100, China e-mail: chunxi-
aqi2@163.com.

J. Diao is with Shandong Foreign Trade Vocational College, No. 201
Jufeng Road, Licang District, Qingdao, 266100, China.

Afterward, the inherent mechanisms of physarum were
mathematically modeled as continuous time dynamical sys-
tems and natural numerical representations of these dynamics
can work as algorithms to conquer several graph optimization
problems. Among these algorithms, a mathematical model,
called physarum solver [4], has attracted a lot of researchers
attention. It vividly captures the adaptive dynamics that
exhibits path-finding behavior in a maze. Specifically to say,
the flow through each tube is approximately described as
Poiseuille flow, which depends on parameters about tubes,
such as length, radius, endpoint pressures of an edge and the
viscosity coefficient of the flow. They also define a set of
variables called conductivity to control the flow quantity on
tubes. The conductivity variable acts as tube thickness indi-
cator. By using these variables, the dynamic system evolves
and converges to equilibrium state as some edges grow or
remain while others disappear. Eventually, the shortest path
wins when all flows converge to it. More detail about the
classical physarum solver can be found in Section II-B.

Despite of physarum solver’s diverse applications on net-
work optimization, none has worked on solving maximum
matching problem by physarum solver [6], [7], [9] so far. A
matching in a graph G = (V,E,L) is to find a subset of
edges with the property that no two edges share a common
vertex. A graph is bipartite if vertices on graph G can be
divided by two disjoint vertex subsets A and B, and no
two vertices within the same sets are adjacent. In reality,
when modeling relations between two different classes of
objects, bipartite graphs arise naturally. For instance, a graph
of basketball players and clubs, with an edge between a
player and a club if the player has played for that club.
Such affiliation networks are very commonly used in social
network analysis. A basic version of bipartite matching is
as follows: A matching M = {mab|a ∈ A, b ∈ B} gives
an assignment of a person a ∈ A to a task b ∈ B, where
each person can only work on one task and each task
can be handled only by one person. The goal is to get as
many tasks done as possible. Mathematically, the objective
is to determine a maximum matching: one that contains as
many edges as possible in this bipartite graph. A maximum
matching is a matching M̄ such that |M̄ | is maximum. That
is, M̄ is maximum if there is no matching M ′ such that
|M ′| > |M̄ |.

In this paper, we are motivated to extend the classical
physarum solver to solve bipartite maximum matching prob-
lem via the following two procedures:

1) Equivalent problem transformation: we notice that
the original maximum matching problem can be con-
verted to single-source single-sink maximum flow
problem (MFP). We construct a new graph G′ by
adding one dummy source node s and one dummy
sink node t to a bipartite graph G. Source node s

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_07

Volume 47, Issue 1: March 2020

__

is connected with the first class of vertices. Sink t
is connected with the second class of vertices. Our
analysis implies finding the maximum matching in a
bipartite graph is equivalent to determining maximum
s-t flow in this new graph G′.

2) Solve MFP by iterative physarum model: create a
path from s to t in the graph G′ with “rich” flow
on it. We assign it with large enough length to make
sure the flow converges to the original graphs. When
convergence is reached, the maximum flow is found
for G′.

The rest of the paper is organized as follows: in Section
II, we briefly introduce the classical physarum solver and
its faster variant, called iterative physarum model, which is
proposed to accelerate convergence process. In Section III,
we elaborate above two equivalent transforming procedures.
Section IV includes extensive randomly generated graphs
to test the performance of the model; Finally, we draw
conclusions and implications for future research in Section
V.

II. PRELIMINARIES

In this section, we first briefly describe the classical
physarum solver [4] and its modified variant [8], [10]. A sim-
ple but fundamental comparison between these two models
will be analyzed from the perspectives of time complexity.
Later, we will also describe the basic definition of maximum
flow problem. Interested readers are referred to some well-
known the-state-of-art algorithms developed for MFP [10],
[11], [12], [13].

A. Classical Physarum Solver

Variable Qij is defined to denote the flux through tube
(or edge) Eij from node vi to node vj . The flow along the
tube is assumed approximately Poiseuille flow, which can be
expressed by the formula,

Qij = Dij ×
pi − pj
Lij

, (1)

where Dij is the conductivity of tube Eij and pi is the
pressure at node vi. The capacity at each node is assumed
zero. Therefore, the flow balance equation at each node
except source s and sink t is,∑

i

Qij = 0, (j 6= s, t), (2)

and two equations at s and t hold∑
i

Qsi = −1,
∑
i

Qit = 1, (3)

where one unit flux is injected to source s and leave from
sink t. Note that, instead of one unit flux, any amount of flux
is feasible in the model as long as it is constant from start
to finish.

As experimental observation shows that tubes with larger
fluxes are reinforced, while those with smaller fluxes disap-
pear the following equation is proposed for simulating such
positive feedback behavior,

d

dτ
Dij = |Qij | − rDij , (4)

where r is a decay rate of the tube. This equation implies
that conductivity tends to vanish if flux decreases to zero,
while it will be enhanced by large flux.

B. Iterative Physarum Model

In iterative physarum model [8], [10], the assumption
of no capacity at each node is relaxed; That is, each
node is capable of storing flux temporarily (no up limit
theoretically). The number of flux stored in a node indicates
the flow level of this node’s current state, denoted by Φ.
The flux tends to flow from nodes of high-level to ones of
low-level. To differ from the notations in the class physarum
solver, we denote Fij as the flow from node vi to node vj,
which is formulated as,

Fij = Dij ×
Φi − Φj
Lij

, (5)

As there is inflow importing to the node and outflow pouring
out simultaneously, the flow level at the node i is updated
as,

Φτ+δτi = Φτi +
∑
e∈Ei

F τe , (6)

where Ei is the set of edges adjacent to node i, the upper
index τ denotes a time step and δτ is time mesh size.

Although Eq. (5) looks similar to Eq. (1), the flow process
performs in a totally different manner. In classical physarum
solver, the pressure maintained at each node must keep the
conversation law of flow satisfied globally, which requires
solving the system of linear equations for pressure variables
p. Meanwhile, the time complexity of solving the system of
linear equations by standard elimination method is close to
O(n3). However, the iterative physarum model has the flow
levels for all nodes updated locally according to their inflow
and outflow. Simply speaking, the process will start from the
source s by injecting flow, update flow level for neighbors
“iteratively” layers by layers, and end at sink t, which can be
run obviously in O(m) time. Note that, due to non-negativity
of both Lij and Dij , the flow direction along edge Eij is
known from the sign of flow level difference straightforward,
that is, if Φi ≥ Φj , the energy flows from node i to node j;
Otherwise it takes the opposite direction.

Assume flow enters the source node s in a constantly fixed
rate (usually one unit per time step) and exits from sink node
in same rate, thereby we can envision that flow injected to
network will become stable as long as the network is s-t
path-connected (you can compare it with pipe network in
real world). The following evolution equation is similarly
provided to capture the positive feedback behavior,

d

dt
Dij = f(Eij)−Dij . (7)

For the sake of numerical computing, the iterative physarum
model adopts the semi-implicit scheme of evolution equation
as follows

Φτ+δτi − Φτj
δτ

= Eτij −Dτ+δτ
ij . (8)

The iterative physarum model was first proposed to solve
shortest path problem [8]. The primary benefit it brings is to
accelerate the convergence process as the classical physarum
solver have need of solving high complexity linear equations
system [10].

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_07

Volume 47, Issue 1: March 2020

__

C. Maximum Flow Problem

The maximum flow problem is defined on a capacitated di-
rected network G = (V,E,L,C), where C = {Ce | e ∈ E}
denotes the nonnegative capacity of edge Eij . The objective
is to send flow as much as possible from source s to sink
t. Let f represent the amount of flow in the network. Then,
the maximum flow problem can be formulated as,

max f (9a)

s. t.
n∑
j=1

xij = f, i = s, (9b)

n∑
j=1

xij −
n∑
j=1

xji = 0, i 6= s, i 6= t, (9c)

n∑
j=1

xji = f, i = t, (9d)

0 ≤ xij ≤ Cij , i, j = 1, 2, ..., n, (9e)

where the sums and inequalities are taken over all edges
in the network. All feasible flows must satisfy the above
capacity constraint and flow conservation constraint.

Here we provide some classical algorithms proposed for
MFP. First, Ford-Fulkerson algorithm [11] keeps finding aug-
menting path until termination, which can be implemented
in O(mmax(|f |)). Dinic’s algorithm [12] utilizes a dynamic
trees data structure to speed up the maximum flow compu-
tation in the layered graph to O(nm log(n)). Push-relabel
algorithm [13] always selects the most recently active vertex,
and performs push operations until the excess is positive or
there are admissible residual edges from this vertex, which
is run in O(n3). As mentioned in [10], the main difference
between iterative physarum model and these typical MFP
algorithms is that the flow plays a quite intelligent role; That
is, it can be adaptively pushed back to the original network
until the maximum flow is reached and no more flow can
enter. Such every unit of flow that contributes to the max
flow can be “monitored” during this pushing-back process.

III. METHODOLOGY

In this section, we will first transform matching problem
in bipartite graphs into max flow problem. Then, the iterative
physarum model will be modified and extended to solve
MFP. Such modification to iterative physarum solver will
significantly improve the efficiency of solving max flow
problem comparing with classical physarum solver, which
will be demonstrated by extensive numerical studies in
Section IV.

A. Equivalent Problem Transformation

By letting the capacity of each edge from a ∈ A and b ∈ B
be 1, we claim that solving the maximum flow problem with
multiple sources A and multiple sinks B is equivalent to
finding the maximum matching problem with corresponding
bipartite nodes sets A and B. The inherent logic is trivial:
if the maximum flow from A to B is larger than the current
feasible matching, we can find a better match according to
the maximum flow since every unit of flow from A and B
can be numerically regarded as matching from A to B. If

4	

6	

5	

1	

2	

3	

Fig. 1: A simple bipartite graph G with two separate sets of
nodes A = {1, 2, 3} and B = {4, 5, 6}. Each edge Eab, a ∈
A, b ∈ B, has length Lab = 1 and flow capacity Cab = 1.

4	

6	

t	s	 5	

1	

2	

3	

Fig. 2: Transform maximum matching problem to maximum
flow problem: add two dummy nodes s and t and connect A
and B respectively. This new graph G′ has Le = 1, Ce = 1,
for every edge e ∈ E. A feasible flow is assigned to two
paths of solid lines while dash lines indicate zero flow. The
corresponding matches for this feasible flow is m25 and m34.

current matching value is larger than the maximum flow,
current feasible flow is not optimal since the matching will
provide a better feasible flow. Therefore, solving MFP equals
to solving maximum matching problem on the same instance.

In order to apply the iterative physarum model to solve
MFP such that maximum matching problem can be con-
quered equivalently, we implement the following equivalent
transformation: Given a bipartite graph (see Fig. 1), two
dummy vertices s and t are added to the network, respec-
tively. Connect s with all vertices in the first set A and con-
nect t with all vertices of the second set B (see Fig. 2). Image
two units of flows, F = {s→ 3→ 4→ t, s→ 2→ 5→ t},
are pushed from s to t. Apparently, it is not the maximum
flow (3 units), thereby current matching M = {m34,m25}
is suboptimal.

B. Solving Maximum Flow Problem

In this section, we apply the iterative physarum model to
solve maximum flow problem according to the recipe [10].
First, a new network G∗ is constructed by adding a dummy
node d to connect the source s and sink t via two virtual edge
Esd and Edt on G′. By setting Lsv = Lvt = nlm/2, where
lm is the length of the longest edge among M , the additional
path s → v → t must be longer than any other simple path
(connected and acyclic) from s to t. The capacities of edges
Esd and Edt are Csv = Cvt = min(

∑
e∈Es

Ce,
∑
e∈Et

Ce).
The total inflow, denoted by I0, is equal to Csv . By running

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_07

Volume 47, Issue 1: March 2020

__

the iterative physarum model on G∗, the flow will converge
to the edges in G′ as much as possible by complying with
some certain constraint conditions below. For an unsaturated
edge, the flow should follow Eq. (5). The maximum flow of
a saturated edge should be lower than Cij . Hence, the flow
equation (5) can be rewritten as

Fij =

{
Dij

Lij
(Φi − Φj) if Fij < Cij

Cij if Fij = Cij
(10)

Consequently, the conductivity of edge Eij evolves ac-
cording to the equation as

d

dτ
Dij =

{
Fij −Dij if 0 ≤ Fij ≤ Cij
Cij −Dij if Cij < Fij

(11)

To ensure most flow is tracing the virtual edges mostly in
the first iteration, the conductivity Dij(τ = 0) of each edge
in G′ initialize as

Dτ=0
ij =

{
C∞sv if i = v and j = v

1 otherwise
(12)

where C∞sv is sufficiently large number.

4	

6	

t	5	

1	

2	

3	

d	

s	

Fig. 3: solve maximum flow problem by iterative physarum
model on a new graph G∗ – add another dummy node d and
connect it with s and t. The length and capacity for two new
edges Esd and Edt are specified in Section III-B.

As shown in Fig. 3, we add one dummy vertex d to connect
source s and sink t. Initially, all the flows are assigned on
this additional path. As the process continues, more flux will
flow back to the original graph until reaching no more flow
can be pushed back to G′.

IV. SIMULATION EXPERIMENT

In this section, we examine the efficiency of the proposed
model on different sizes of instances. We adopt two types
of instances: one is “sparse graph” case and the other is
“complete graph” case. The sparse graphs are generated by
the following setting: a node a ∈ A connects to a node b ∈ B
with a certain probability pr. For complete bipartite graphs,
every node a ∈ A must be connected with every node b ∈ B.
The computational experiments are performed on a PC with
Intel Core I7-8850HQ 6 Core Processor with vProtm and
16 GB of memory, running Windows 10. All algorithms

adopted for performance comparison are implemented in
Matlab programming language of version 2017a.

In Section IV-A, we will first compare our proposed
iterative physarum solver (IPM) with linear programming
model (LP), called simplex method, and Ford-Fulkerson (FF)
algorithm. Section IV-B will further examine the effective-
ness between iterative physarum model and the classical
physarum solver from the perspectives of the number of
iterations and computation time.

A. Linear Programming and Ford-Fulkerson Algorithm

The statistical information of instances is reported Table
I. The first column reports instance name. For example,
instance “S-01” represents the first sparse graph we generate.
The cardinalities of A and B are reported in second column
and third column, respectively. The forth column reports the
number of edges m in the corresponding sample according to
the connection probability pr in the fifth column. Addition-
ally, complete graphs are also provided, which are reported
in last three columns.

TABLE I: The basic topological features of two sets of
graphs – 10 sparse graphs and 10 complete graphs. m is
number of edges between node set A and node set B and
pr is the probability that a node a ∈ A is connected with
b ∈ B.

Sparse graphs Complete graphs

Instance |A| |B| m pr Instance |A| |B|

S-01 10 20 70 0.2 C-01 10 20
S-02 50 60 798 0.05 C-02 50 60
S-03 100 140 3423 0.01 C-03 100 140
S-04 200 250 3345 0.01 C-04 200 250
S-05 400 500 8631 0.01 C-05 400 500
S-06 500 650 43923 0.01 C-06 500 650
S-07 800 880 45623 0.01 C-07 800 880
S-08 1000 1160 69893 0.01 C-08 1000 1160
S-09 1500 1560 173345 0.01 C-09 1500 1560
S-10 2000 2000 578321 0.01 C-10 2000 2000

The computational results for IMP, LP and FF are reported
in Table II. Our method outperforms the simplex method for
most sparse and complete instances, especially on graphs S-
07 and S-08. Note that, the simplex method usually requires
extra time for building the model, i.e., preprocess some
redundant constraints or variables for acceleration. Hence,
for larger graphs, simplex method could do better since
the “pure” time (total CPU time minus preprocessing time)
is actually smaller than what we expect. Additionally, the
traditional Ford-Fulkerson algorithm outperforms the IMP
and LP on all sparse and complete graphs.

B. Iterative Physarum model vs. Physarum Solver

In this section, we generate five sets of complete graphs,
where in each graph |A| and |B| are equal. The sizes
of each graph can be found from the graph names (first
column of Table III). For example, graph C-250-01 means
the first (-01) graph of complete graph (C) with 500 nodes
(|A| = |B| = 250). Columns 2 and 4 report the total number
of iterations for either solving the linear equations system

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_07

Volume 47, Issue 1: March 2020

__

TABLE II: The CPU time(second) of iterative physarum
model (IPM), linear program (LP) and Ford-Fulkerson (FF)
methods on both sparse and complete graphs

Sparse graphs Complete graphs

Instance IPM LP FF Instance IPM LP FF

S-01 0.01 0.02 0.01 C-01 0.01 0.02 0.01
S-02 0.31 0.22 0.01 C-02 0.52 0.32 0.77
S-03 0.42 0.87 0.33 C-03 0.34 0.56 0.99
S-04 1.13 2.21 1.32 C-04 1.91 2.02 1.71
S-05 1.32 3.32 1.71 C-05 2.35 2.24 1.91
S-06 1.57 4.22 2.11 C-06 2.54 10.19 3.31
S-07 2.32 10.14 2.34 C-07 3.53 15.31 3.32
S-08 7.46 14.52 4.11 C-08 9.32 18.72 6.43
S-09 16.72 15.33 5.23 C-09 18.43 16.02 6.47
S-10 20.17 19.32 5.32 C-10 21.54 20.02 8.84

(in PS) or update the flow level for all nodes (in IPM) for
convergence. As we can see, no matter what the graph size is,
the number of iterations in PS varies insignificantly. For IPM,
the number of iterations increases with the graph closely.
However, the IPM outperforms PS significantly with respect
to computation time on all graphs. This is because larger size
of graphs implies solving large-size linear equations system,
even though total iterations are less than IPM’s.

TABLE III: The comparison between iterative physarum
model (IPM) and classical physarum solver (PS)

Instance
IPM PS

Iterations Times(s) Iterations Times(s)

C-50-01 127 1.13 242 2.31
C-50-02 142 1.28 322 4.18
C-50-03 85 0.78 187 1.97
C-50-04 101 1.03 410 3.99
C-50-05 123 1.12 331 3.73

C-250-01 157 1.45 241 5.42
C-250-02 167 2.56 302 6.12
C-250-03 151 3.01 287 5.89
C-250-04 182 2.69 295 5.42
C-250-05 153 1.74 303 6.01

C-450-01 220 3.76 321 10.21
C-450-02 215 4.01 283 12.12
C-450-03 334 5.92 304 11.21
C-450-04 267 2.34 321 10.53
C-450-05 214 3.62 286 7.33

C-650-01 350 7.09 289 14.21
C-650-02 358 8.62 334 15.46
C-650-03 335 6.12 201 14.83
C-650-04 389 7.52 402 16.26
C-650-05 310 7.32 334 17.15

V. CONCLUSIONS

In this paper, we apply an novel bio-inspired physarum
model, to solve maximum matching problem on bipartite
graphs. First, we transform the maximum matching problem
into maximum flow problem by adding a dummy node to the
original bipartite graph. Second, the maximum flow problem
on the new graph can be solved by using the iterative

physarum model. Numerical experiments demonstrate that
iterative physarum model can solve the problem precisely
and reach the optimality definitely.

Meanwhile, we also notice that solving the maximum
matching problem in “general” graphs is not easy. Current
physarum models are still not capable of solving it. In
the near future, more works should be focused on how to
generalize the model and apply to solve a broad range of
general matching problems. Moreover, there is still room for
improving the computational efficiency of iterative physarum
model. For example, we can do parallel computation when
updating the flow level at each node, which will significantly
reduce the computation time.

ACKNOWLEDGMENT

C. Qi wrote the manuscript. Both C. Qi and J. Diao carried
out the experiment. The work is partially supported by Shan-
dong Vocational Education Reform Project (No. 2017121)
and a Project of Shandong Province Higher Educational
Science and Technology Program (No. J17RB149).

REFERENCES

[1] T. Nakagaki, H. Yamada, and A. Tóth, “Intelligence: Maze-Solving by
an Amoeboid Organism,” Nature, vol. 407, no. 6803, 2000.

[2] A. Tero, S. Takagi, T. Saigusa, K. Ito, D.P. Bebber, M.D. Fricker, K.
Yumiki, R. Kobayashi and T. Nakagaki, “Rules for Biologically Inspired
Adaptive Network Design,” Science, vol. 327, no. 5964, pp. 439–442,
2010.

[3] A. Tero, R. Kobayashi and T. Nakagaki, “Physarum solver: A Biolog-
ically Inspired Method of Road-network Navigation,” Physica A, vol.
363, pp. 115–119, 2006.

[4] A. Tero, R. Kobayashi and T. Nakagaki, “A Mathematical Model for
Adaptive Transport Network in Path Finding by True Slime Mould,”
Journal of Theoretical Biology, vol. 244, pp. 553–564, 2007.

[5] C. Gao, C. Yan, A. Adamatzky and Y. Deng, “A Bio-inspired Algorithm
for Route Selection in Wireless Sensor Networks,” IEEE Communica-
tions Letters, vol. 18, no. 11, pp. 2019-2022, 2014.

[6] Q. Liu, “On Maximal Incidence Energy of Graphs with Given Connec-
tivity,” IAENG International Journal of Applied Mathematics, vol. 48,
no.4, pp. 429–433, 2018.

[7] X. Chen and S. Liu, “Adjacent Vertex Distinguishing Proper Edge
Colorings of Bicyclic Graphs,” IAENG International Journal of Applied
Mathematics, vol. 48, no.4, pp. 401–411, 2018.

[8] X. Zhang, C. Gao, Y. Deng and Z. Zhang, “Slime Mould Inspired
Applications on Graph-optimization Problems,” Advances in Physarum
Machines, Springer, Cham, 2016, pp. 519–562.

[9] T. Huang, L. Zuo, and C. Shang, “The Linear k-Arboricity of Cartesian
Product of Multipartite Balanced Complete Graphs,” IAENG Interna-
tional Journal of Applied Mathematics, vol. 48, no.3, pp. 362-367, 2018.

[10] Z. Wang and D. Wei, “Solving the Maximum Flow Problem by a
Modified Adaptive Amoeba Algorithm,” IAENG International Journal
of Computer Science, vol. 45, no.1, pp. 130–134, 2018.

[11] L. R. Ford Jr and D. R. Fulkerson, “Flows in Networks,” Princeton
university press, 2015.

[12] E. A. Dinic, “Algorithm for Solution of a Problem of Maximum Flow
in Networks with Power Estimation,” Soviet Math Doklady, vol. 11,
1970.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction
to Algorithms,” MIT Press, 2009

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_07

Volume 47, Issue 1: March 2020

__

