
Bag Context Shape Grammars
Blessing Ogbuokiri Member, IAENG, and Mpho Raborife

Abstract—Shape grammars have become established as a
method of generating designs (images), especially in architec-
ture, engineering and product design. Most shape grammar
systems generate images in a way that is not always regulated.
This is because they are context free. As such, the application of
their rules is not always controlled. In this paper, we introduce
Bag Context Shape Grammars (BCSGs), for the generation of
images in a regulated manner. The BCSGs are also context free,
but the application of a rule is controlled by a special vector
of integers called the bag, which changes during a derivation.
This paper goes on to prove that every puzzle grammar with
permitting features can be converted to a Bag Context Shape
Grammar (BCSG). Further, it demonstrates the conversion
process with examples. Additionally, this paper considers a set
of images and demonstrates that BCSGs can generate a set
of images with fewer variables and rules. These BCSGs could
offer a wide range of application areas such as the generation
of distractor (similar) images for visual password systems or
scheme.

Index Terms—Formal Language, Shape Grammar, Bag Con-
text Grammar, Image Generation.

I. INTRODUCTION

FORMAL grammars were first introduced by Post and
Mil and later improved by Thue and other researchers

[1]. However, full use of formal grammars and languages
did not begin until the mid–1950s [2]. The general system
for representing languages is based on the formal notions of
grammars. A grammar is a finite non-empty set of production
rules with nonterminal symbols, terminal symbols and the
start symbol [3]. Formal grammars can be classified as; unre-
stricted, context sensitive, context free and regular grammars
[4], [2], [5]. Image generating grammars are developed based
on these classes of formal grammars.

There are many image generating grammars that exist and
more are still being developed. Such grammars include but
are not limited to bag context picture grammars [6], random
context picture grammars [7], [8], tree based picture gram-
mars [9], [10], Iterated Function Systems [11], L-systems
[12], puzzle grammars [7], [13], array grammars [7], [14],
chain code picture grammars [15], [7], collage grammars [7],
[16], and shape grammars [17], etc. In this paper, we focus on
shape grammars. A shape grammar uses shapes and spatial
rules to generate images [17], [18].

Shape grammars belong to the context free class of formal
grammars, and were first introduced in 1971 by Stiny and
Gips [17]. They presented a formalism (prescribed logical
form) for the generation and arrangement of a class of
geometric paintings with shape grammars. These paintings
are the material representation of two dimensional shapes

Manuscript received December 6th, 2018; revised November 1st, 2019.
Blessing Ogbuokiri is a Ph.D. Candidate at the School of Computer

Science and Applied Mathematics, University of the Witwatersrand, Johan-
nesburg, South Africa. E-mail: ogbuokiriblessing@gmail.com.

Mpho Raborife is a Senior Lecturer at the Department of Applied
Information Systems, University of Johannesburg, South Africa. E-mail:
mraborife@uj.ac.za.

generated by shape grammars, having some algorithmic
specifications in terms of recursive schemata as the basic
formal component. Shapes are defined in the shape grammar
formalism as labelled shapes and parameterized labelled
shapes. Each such formalism defines the language of the
grammar [19].

According to [17], a shape grammar consists of set of
nonterminal shapes, set of terminal shapes, the starting shape
and the set of productions or rules. A rule consists of two
shapes one on the left and another on the right side of
the rule. During derivation, images are generated from the
shape grammar by beginning with the starting shape and
recursively applying the shape rules without restriction or
control. The shape grammar rules are applied by identifying
the part of the shape that is similar to the left side of the
rule in terms of both nonterminal and terminal shapes and
replace it. The output of this application is the given shape
with the right side of the rule substituted in the shape for
an occurrence of the left side of the rule. When a terminal
shape is added during the derivation it cannot be replaced,
thus, the generation process is terminated when no rule in
the grammar can be applied or when the shape is filled with
the terminals only.

Shape grammars have been applied mostly in architectural
building plans [20], decorative art [21], engineering [22],
[23] and product designs [24], [25]. The purpose of shape
grammars is to transform or to produce shapes (designs)
from the premise of an existing one [26]. Moreover, there
are three processes of transforming shape grammars [27].
They are; addition, subtraction, and substitution. Addition in
shape grammars is where rules are added to the grammars.
Subtraction is where a rule is deleted from the grammars,
while substitution involves changing of the constructive
mechanism of the grammar rule [28]. Different designs
can be defined in different styles by applying addition,
subtraction or substitution rules to the original rule [28], [29].

The use of shape grammars for image generation does
not always produce images in a regulated manner. Some
generate an infinite number of images without considering
their similarities. As a result, these grammars may generate
images that are entirely different from each other, or they
may generate images, that are too small in some parts, using
the same grammar. This is because they are context free
and as such, results in the application of a rule that is not
controlled. Furthermore, shape grammar rules are designed
with a specific shape in mind and it may not be possible to
use any other shape to implement images during rendering
and after derivation.

However, research has shown that control or regulation
can be added to the context free grammar rules and to the
derivation process using different techniques such as Bag
Context (BC) [30], as well as random context [31], etc. This
paper therefore focuses on bag context because it is said to be
a technique used to control when a context free grammar rule

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

can be applied during derivation. BC controls the application
of a rule by a special vector of integers called the bag. The
bag changes during the derivation of an image. A rule in the
grammar can only be applied if the bag at that point is within
the range defined by the lower and upper limits of the rule.
When a rule is applied, it causes the bag’s values to change
by adding the bag adjustment, which is part of the rule. This
type of technique, when added to shape grammar rules, can
also be used to generate an infinite number of images in a
regulated manner.

In this paper, we introduce a new shape grammar class,
called Bag Context Shape Grammar (BCSG) for the gener-
ation of images in a regulated manner. This idea was first
proposed by S. Ewert (Personal communication, University
of the Witwatersrand). BCSGs belong to the class of shape
grammars that use context to control the application of
context free rules.

The main contribution of this paper is to:
• formally define BCSGs and show that bag context can

be added to shape grammar rules to generate images in
a controlled manner.

• illustrate these grammars with some examples.
• compare BCSGs to a recent development in puzzle

grammars with permitting features.

The remaining part of this paper is organised as follows:
Section II presents the definition of bag context shape
grammars, and some examples to illustrate how bag context
shape grammars work. We compare BCSGs to the recent
development in puzzle grammars with permitting features in
Section III. Section IV presents the power of bag context
shape grammars. Finally, Section V is the conclusion.

Next is the definition of bag context shape grammars in
Section II.

II. BAG CONTEXT SHAPE GRAMMARS

In this section, we first define a new additive shape
grammar class that can allow the use of any shape to be used
to implement images during rendering and after a derivation.
By additive, we mean the application of a rule is done
by building upon the axiom during the generative process.
We give an example to demonstrate this notion. Then we
formally define the bag context shape grammars and give
some examples to illustrate the notion. Firstly, we present
some notation and terms used in this section.

A. Terms and Notation

The symbol N represents the set of natural numbers {0,
1, 2, . . .}. N+ represents the set {1, 2, . . .}. For k∈ N+, the
set {1, 2, . . . , k} is denoted by [k]. Z represents the set of
integers {. . . , -2, -1, 0, 1, 2, . . .}, then Z2 = {(x, y) | x, y ∈
Z}. Z∞ represents Z ∪ {-∞, ∞}. If I = [k], then elements
of ZI

∞ are written as k−tuples. If we have a vector of the
form (k, k, . . . , k), then we denote it by k. For example, the
vector (3, 3, . . . , 3) will be denoted by 3.

A point, (x, y) in Z2 is a position determined by a pair
(x, y), where x, y ∈ Z. We denote a point by p. A line,
l, is the shortest distance between two points [32]. When
we draw lines in geometry, we use an arrow at each end to
show that it extends infinitely. In this part, a line segment, l̄,

is determined by any pair of two distinct points (p1, p2) on
a line together with all the points of the line between p1 and
p2, where p1 and p2 are called the endpoints. A shape, σ, is
defined by the area enclosed by a finite set of line segments.
A label can be denoted by any of the lowercase or uppercase
letters, a–z and A–Z, respectively.

A labelled shape is a pair (A, σ), where A is the label
of the shape taken from the uppercase or lowercase letters
and the symbol σ is as defined above. A grid is a coordinate
plane consisting of a space of small squares, with horizontal
(x) axis and vertical (y) axis, see Fig. 1. Every labelled shape
is presented in a unit square on the grid. The initial shape
is usually labelled S. The labelled shape (A, σ), is denoted
by (A, (x, y)) in the rest of this paper. Where (x, y) ∈ Z2

denotes the lower left hand corner of the unit square the
shape, σ, will be drawn.

An additive shape grammar rule is commonly expressed
in the form in Rule 1,

(A, (x, y)) −→ {(A1, (x1, y1)), (A2, (x2, y2)), . . . , (Ai, (xi, yi))}
(Rule 1)

where A is a variable (uppercase label) and (x, y) ∈ Z2 is as
defined above. The arrow “−→” is interpreted as “transformed
to”, A1, A2 . . . Ai represent variable(s) and terminal(s) (lowercase
labels), for i ∈ N+ and (x1, y2), (x1, y2), . . . , (xi, yi) ∈ Z2.

The interpretation is as follows: a rule as in Rule 1 can be applied
to a developing image if the developing image contains the variable
A. Then, we take the set difference of the developing image and
the variable A and take the set union of the developing image and
{(A1, (x1, y1)), (A2, (x2, y2)), . . . , (Ai, (xi, yi))}.

The number (n) of times a rule (r) is applied during the
generative process is denoted by r(n). For instance, 2(5) means
that rule 2 is applied five times. The operations of shape union and
difference treat shapes in the same basic way as the set theoretic
operations of union and difference treat sets.

Next, we demonstrate how an additive shape grammar rule is
rendered graphically. Let

(S, (x, y)) −→ {(d, (x, y)), (A, (x+1, y)), (B, (x, y−1))}
be a rule, that is also the same as

(S, (0, 0)) −→{(d, (0, 0)), (A, (1, 0)), (B, (0, −1))},

when x, y = 0. The rule above will produce Fig. 1 when rendered
using square shapes.

(a)

−→

(b)

Fig. 1: A simple shape grammar rule on the grid.

For visualisation purposes, every terminal is associated with a
shape and the shape is filled with a chosen colour. The image is
rendered to any size according to what is needed.

B. Formal Definition of Additive Shape Grammars
The definition of additive shape grammars is motivated by

definition of shape grammars in [19], and has been modified where
appropriate.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

Definition 1 An Additive Shape Grammar (ASG), G = (VM, VT, R,
(S, (x, y))), has a finite alphabet V of labels, consisting of disjoint
subsets VM of variables and VT of terminals. R is the set of rules
of the form (A, (x, y)) −→ {(A1, (x1, y1)), (A2, (x2, y2)), . . . ,
(Ai, (xi, yi))} where A ∈ VM, {A1, A2, . . . , Ai} ⊆ V and (x,
y), (x1, y1), . . . , (xi, yi) ∈ Z2 ∀ i ∈ N+, (S, (x, y)) is the initial
labelled shape, with S ∈ VM.

Definition 2 A pictorial form or evolving image is any set (com-
position) of labelled shapes in the plane denoted by Π . If Π is a
pictorial form, we denote by l(Π) the set of labels used in Π .

Definition 3 For an ASG G and pictorial forms Π and Γ , there
is a derivation step from Π to Γ , if there is a rule (s, (x, y)) −→
{(s1, (x1, y1)), (s2, (x2, y2)), . . . , (si, (xi, yi))} in R, where
Π contains a labelled shape (s, (x, y)): s ∈ VM and Γ is (Π \
{(s, (x, y))}) ∪ {(s1, (x1, y1)), (s2, (x2, y2)), . . . , (si, (xi, yi))}:
{s1, s2, . . . , si} ⊆ V for i ∈ N+ as usual.

We denote the derivation step by Π =⇒ Γ . This simply means
that Γ is directly derived from Π . If there is a sequence of zero
or more derivation steps from Π to Γ , then we denote that by Π
=⇒∗Γ . We now say that Γ is derived from Π .

Definition 4 An image is a pictorial form Π with l(Π) ⊆ VT.

Definition 5 The gallery G(G) generated by an additive shape
grammar G is the set of images, Π , derivable from the initial shape
(S, (x, y)), represented as: G(G) = {Π : (S, (x, y)) =⇒∗ Π}.

Next, we demonstrate how additive shape grammars work in
Example II.1.

Example II.1 We want to generate the gallery of images
that consist of the letter E (see Fig. 2). Let GE =
(VM , VT , R, (S, (x, y))), where VM = {S, A, B, C, D,
E}, VT = { d }, (S, (x, y)) = (S, (0, 0)), and R is shown in
Fig. 3.

Some of the images in G(GE) when rendered using square shapes
with the label d associated with dark colour are shown in Fig. 2.
The images were scaled to the same size for presentation purposes
as in Fig. 2. The illustration of a derivation of GE is given in
Fig. 4, having the lower lefthand corner of the initial shape S start
at x, y = 0.

(a) (b)

(c) (d)

Fig. 2: Some images in G(GE).

The main purpose of our type of additive shape grammars is to
allow any shape to be used during image rendering after derivation.
The gallery in Fig. 5 shows that different shapes can be used to
implement image rendering when the derivation is complete. Some
images obtained when the derivation in Fig. 4 is rendered with
different shapes are shown in Fig. 5.

(a) (b)

(c) (d)

Fig. 5: Image rendering of the derivation in Fig. 4 with
different shapes.

Observe that after Rule 2, any of the Rules 3–6 in Fig. 3 are
applicable and can be applied at any time. The same goes for
Rules 7–10 after Rule 6, and Rules 11 and 12 after Rule 8. This
can be seen as a weakness, as the images in the gallery may not
only contain the letter E (see Figs. 2(b) and (c)). This means that
the additive shape grammars, in as much as they can allow for any
shape to be used to render images after derivation (see Fig. 5), may
not always generate images in a regulated manner using the same
grammar. This simply means that additive shape grammars alone
may not be able to generate images in a regulated manner at all
times, thus, the need for the concept of bag context to be added
to the additive shape grammar rules to generate similar images of
choice in a controlled manner. This control to the additive shape
grammar rules and to the derivation process with the help of bag
context will enable us to generate a gallery of images that will
contain only images of E′s whose legs are an equal length with
the upper and lower spines the same length also. This approach is
what we called BCSGs in this paper.

Informally, a bag context shape grammar may be defined as a
shape grammar G in which the application of a rule is regulated
by a special vector of integers called the bag β. For a rule r to be
applied by G at a particular point in a derivation, the bag β must
be within the range, determined by the lower limit and upper limit
Lb and Ub ∈ ZI∞, which are defined in r. The bag adjustment δ
is made together with the application of the rule, that is, δ is also
defined in r. Next, we present the formal definition of BCSGs in
Section II-C.

C. Formal Definition of Bag Context Shape Grammars
This section is motivated by the definition of bag context tree

grammars in [30], [6] and the definition of additive shape grammars
in Section II-B of this paper.

Definition 6 A BCSG is a grammar with the form G = (VM,
VT, R, (S, (x, y)), I , β0), where VM, VT, and (S, (x, y))
are as in Definition 1, R is the set of shape grammar rules,
where every rule is of the form (A, (x, y)) −→ {(A1, (x1, y1)),
(A2, (x2, y2)), . . . , (Ai, (xi, yi))} (Lb, Ub ; δ), where (A, (x, y))
−→ {(A1, (x1, y1)), (A2, (x2, y2)), . . . , (Ai, (xi, yi))} is as in
Definition 1, Lb, Ub ∈ ZI∞, and δ is the bag adjustment, δ ∈ ZI .
I is the finite bag index set of the form [k] and β0 is the initial
bag, β0 ∈ ZI .

Definition 7 Let a configuration be a pair (Π,β) where
Π is pictorial form and β is the bag. For a BCSG G and
configurations (Π,β) and (Γ, β′), there is a derivation step
from (Π,β) to (Γ, β′), if there is a rule (s, (x, y)) −→
{(s1, (x1, y1)), (s2, (x2, y2)), . . . , (si, (xi, yi))} (Lb, Ub

; δ) in R, where Π contains a labelled shape (s, (x, y)):
s ∈ VM with Lb ≤ β ≤ Ub. Γ = (Π \ {(s, (x, y))}) ∪
{(s1, (x1, y1)), (s2, (x2, y2)), . . . , (si, (xi, yi))} and β′ = β+δ.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y)), (B, (x, y − 1))} (Rule 2)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))} | (Rule 3)

{(d, (x, y))} (Rule 4)
(B, (x, y)) −→ {(d, (x, y)), (B, (x, y − 1))} | (Rule 5)

{(d, (x, y)), (C, (x+ 1, y)), (D, (x, y − 1))} (Rule 6)
(D, (x, y)) −→ {(d, (x, y)), (D, (x, y − 1))} | (Rule 7)

{(d, (x, y)), (E, (x+ 1, y))} (Rule 8)
(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))} | (Rule 9)

{(d, (x, y))} (Rule 10)
(E, (x, y)) −→ {(d, (x, y)), (E, (x+ 1, y))} | (Rule 11)

{(d, (x, y))} (Rule 12)}
Fig. 3: The set of rules for GE in Example II.1.

{(S, (0, 0))} 2
=⇒ {(d, (0, 0)), (A, (1, 0)), (B, (0,−1))}

3(2),4
===⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (B, (0,−1))}
5(2),6
===⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (C, (1,−3)), (D, (0,−4))}
9,10
==⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (D, (0,−4))}
7,8
=⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (0,−4)), (d, (0,−5)),

(E, (1,−5))}
11(3),12
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (0,−4)), (d, (0,−5)),

(d, (1,−5)), (d, (2,−5)), (d, (3,−5)), (d, (4,−5))}

Fig. 4: A derivation of the picture in Fig. 2(a) for GE in Example II.1.

We denote the derivation step by (Π , β) =⇒ (Γ , β′). This
simply means that (Γ , β′) is directly derived from (Π , β). If there
is a sequence of zero or more derivation steps from (Π , β) to (Γ ,
β′), then we denote that by (Π , β) =⇒∗ (Γ , β′). We now say
that (Γ , β′) is derived from (Π , β).

Definition 8 An image is a pictorial form Π with l(Π) ⊆ VT and
the bag, β.

Definition 9 The gallery G(G) generated by a BCSG G is
the set of images, Π , derivable from the initial labelled
shape (S, (x, y)) and the initial bag β0, represented as:
G(G) = {Π : ((S, (x, y)), β0) =⇒∗ (Π,β), for some β ∈
ZI∞ and l(Π) ⊆ VT }. The class of all galleries generated by
BCSGs is denoted by BCSGG.

Next, we demonstrate BCSGs in Example II.2. In Example II.2,
we generate images with the following: three legs of equal length
and a spine. The second leg of the letter E to be generated divides
the spine into an upper and a lower half which are the same length.

Example II.2 We extend Example II.1 by adding bag
context to generate the images in Fig. 6. Let GE−bag =
(VM , VT , R, (S, (x, y)), {1, 2, 3, 4}, 0), where VM = {S, A, B,
C, D, E }, VT = { d }, (S, (x, y)) = (S, (0, 0)), and R is shown
in Fig. 7.

Some of the images in the gallery produced by GE−bag when
rendered using square shapes with the label d associated with dark
colour are shown in Fig. 6. The images were scaled to the size as
in Fig. 6 for presentation purposes.

The strategy here is that the first, third, and fourth bag positions
are used to control how the first, second and third legs grow. The
second bag position is used to control the upper and lower spines
of the letter E. The first (top) leg of the letter E is formed before
any other part. The reason for this is that the number of times the
rule that generates the top leg is applied is used to control the other
legs. The upper spine is formed immediately after the top leg. The
second leg is formed after the upper spine. Then the lower spine is
formed followed by the third leg formation. The second leg must be
exactly at half the spine which makes the upper and lower spines
to be the same length. The three legs must also be the same length.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y)), (B, (x, y − 1))}(0, 0; (1, 1, 0, 0)) (Rule 13)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}((1, 1, 0, 0),∞; (1, 0, 0, 0)) | (Rule 14)

{(d, (x, y))}((2, 1, 0, 0), (∞,∞,∞, 1); (−1,−1, 0, 1)) (Rule 15)
(B, (x, y)) −→ {(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 1), (∞,∞,∞, 1); (0, 1, 0, 0)) | (Rule 16)

{(d, (x, y)), (C, (x+ 1, y)), (D, (x, y − 1))}
((1, 2, 0, 1), (∞,∞, 0, 1); (0, 0, 0, 1)) (Rule 17)

(D, (x, y)) −→ {(d, (x, y)), (D, (x, y − 1))}((0, 1, 1, 3), (0,∞,∞, 3); (0,−1, 0, 0)) | (Rule 18)
{(d, (x, y)), (E, (x+ 1, y))}((0, 0, 1, 3), (∞, 0,∞, 3); (0, 0, 0, 1)) (Rule 19)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}((1, 1, 0, 2), (∞,∞,∞, 2); (−1, 0, 1, 0)) | (Rule 20)
{(d, (x, y))}((0, 1, 2, 2), (0,∞,∞, 2); (0, 0, 0, 1)) (Rule 21)

(E, (x, y)) −→ {(d, (x, y)), (E, (x+ 1, y))}((0, 0, 1, 4), (∞,∞,∞, 4); (1, 0,−1, 0)) | (Rule 22)
{(d, (x, y))}((1, 0, 0, 4), (∞,∞, 0, 4); 0) (Rule 23)}

Fig. 7: The set of rules for GE−bag in Example II.2.

(a) (b)

(c) (d)

Fig. 6: Some images in G(GE−bag)

Next, we explain how the rules in Fig. 7 are applied to form the
image in Fig. 6(a).

To achieve the strategy, the derivation starts with the initial
labelled shape in the pictorial form, Π = {(S, (x, y))}. The
application of Rule 13 of Fig. 7 replaces the initial labelled shape
(S, (x, y)) with the shapes labelled (d, (x, y)), (A, (x+1, y)) and
(B, (x, y− 1)) in the set. The bag adjustment, (1, 1, 0, 0) is added
to the bag, (0, 0, 0, 0) which is (0 + 1, 0 + 1, 0 + 0, 0 + 0) then
the bag becomes (1, 1, 0, 0).

We can apply Rule 14 twice because the bag at each application
is within the defined range. That is the bag is greater than or equal
to the lower limit, (1, 1, 0, 0) and less than or equal to the upper
limit, ∞. The bag adjustment, (1, 0, 0, 0) is added to the bag at
each application of Rule 14. This is followed by the application of
Rule 15 because it is also within the defined range.

At this point, the bag is (2, 0, 0, 1). We apply Rule 16 twice to
form the upper spine; the bag is (2, 2, 0, 1). Rule 17 is then applied
to begin the formation of the second leg and the lower spine; the
bag adjustment, (0, 0, 0, 1) is added to the bag, (2, 2, 0, 1) then
the bag becomes (2, 2, 0, 2).

We further apply Rule 20 twice and Rule 21 once to form the
second leg. At this point, the bag adjustment, (0, 0, 0, 1) is added to
the bag, (0, 2, 2, 2) the bag becomes (0, 2, 2, 3). We apply Rule 18
twice followed by Rule 19 because the bag at each application is
within the defined range. At this point, the bag adjustment, (0, 0,
0, 1), is added to the bag, (0, 0, 2, 3) then the bag becomes (0, 0,
2, 4) and the lower spine is formed.

Finally, we apply Rule 22 twice and Rule 23 once to form the
third leg. The bag adjustment, (0, 0, 0, 0) is added to the bag, (2, 0,

0, 4) the bag becomes (2, 0, 0, 4). At this point the picture formation
is completed and the letter E is generated (see Fig. 6(a)).

We can also generate more images by repeating the process and
applying Rules 14 and 16 as long as they are within the defined
range at each application. This is because the number of times
Rule 14 is applied determines the number of times Rules 20 and
22 will be applied and the number of times Rule 16 is applied
determines the number of times Rule 18 will be applied with the
help of the bag. Then, the process can be terminated with Rules 15,
21 and 23 respectively in order to form a complete picture (see
Figs. 6(b)–(d)).

An illustration of one of the derivations of GE−bag using the
picture in Fig. 6(a) is given in Fig. 8. The derivation has the lower
lefthand corner of the initial shape S start at x, y = 0. The derivation
is summarised in Table I showing the operations in the bag when
an adjustment is made.

Some images obtained when the derivation in Fig. 8 is rendered
with different shapes are shown in Fig. 9.

(a) (b)

(c) (d)

Fig. 9: Image rendering of the derivation in Fig. 8 with
different shapes.

In Example II.3 we consider a gallery of images that consists
of carpets where each colour fills or dominates an entire row, see
Fig. 10.

Example II.3 Let GCarpet−A = (VM , VT , R, S, {1, 2, 3}, 0),
where VM = {S, A, B, C}, VT = {d, w}, (S, (x, y)) = (S, (0, 0)),
and R is the set in Fig. 11.

The first and second bag positions are used to control the
variables A−C, as such, they ensure a colour dominates a row at

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

{(S, (0, 0))} 13
=⇒ {(d, (0, 0)), (A, (1, 0)), (B, (0,−1))}

14(2),15
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (B, (0,−1))}
16(2),17
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (C, (1,−3)), (D, (0,−4))}
20(2),21
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (3,−3)), (D, (0,−4))}
18(2),19
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (3,−3)), (d, (0,−4)),

(d, (0,−5)), (d, (0,−6)), (E, (1,−6))}
22(2),23
====⇒ {(d, (0, 0)), (d, (1, 0)), (d, (2, 0)), (d, (3, 0)), (d, (0,−1)), (d, (0,−2)),

(d, (0,−3)), (d, (1,−3)), (d, (2,−3)), (d, (3,−3)), (d, (0,−4)),

(d, (0,−5)), (d, (0,−6)), (d, (1,−6)), (d, (2,−6)),

(d, (3,−6))}

Fig. 8: A derivation of the picture in Fig. 6(a) for GE−bag.

TABLE I: The bag during the derivation in Fig. 8.

Rules β δ
13 0 (1, 1, 0, 0)

14(2) (1, 1, 0, 0) (1, 0, 0, 0)
15 (3, 1, 0, 0) (-1, -1, 0, 1)

16(2) (2, 0, 0, 1) (0, 1, 0, 0)
17 (2, 2, 0, 1) (0, 0, 0, 1)

20(2) (2, 2, 0, 2) (-1, 0, 1, 0)
21 (0, 2, 2, 2) (0, 0, 0, 1)

18(2) (0, 2, 2, 3) (0, -1, 0, 0)
19 (0, 0, 2, 3) (0, 0, 0, 1)

22(2) (0, 0, 2, 4) (1, 0, -1, 0)
23 (2, 0, 0, 4) 0

a time. The third bag position is used to ensure the number of rows
are exactly the same as the number of columns.

Some images in G produced by GCarpet−A are shown in Fig. 10.

(a) (b)

(c) (d)

Fig. 10: Some of the images in G of GCarpet−A.

The strategy is that the number of times Rule 25 of Fig. 11 is
applied determines the size of the image. Then only one colour is
allowed to dominate a row at a time.

To achieve the strategy, the application of Rule 24 of Fig. 11
starts the derivation. Then Rule 25 is applicable as long as the bag
at each application is within the defined range. That is the bag is
greater than or equal to the lower limit, (1, 0, 1) and less than or

equal to the upper limit, (∞, 0, ∞). The bag adjustment, (1, 0, 1)
is added to the bag which automatically increments the first and
third bag positions by 1 at each application. This is to control the
variables, while the number of rows and columns are kept in check.

The application of Rule 26 adds the bag adjustment, (0, 0, -1) to
the bag which automatically decrements the third bag position by
1. This also begins the formation of a new row. Then Rules 27 and
28 followed by Rules 30 and 31 are applicable as long as the bag
at each application is within the range. This process continues until
the third bag position is 0 then, any of Rule 29 or 32 of Fig. 11 is
applicable to complete the formation of the image. This strategy is
sufficient to generate the images in Fig. 10.

Next, we extend Example II.3 to generate a gallery of images
that consists of a light colour on the upper right corner of the first
dark row. See Example II.4. The number of the light colour on the
lower left corner of the last dark row is twice the number of the
light colour on the upper right corner of the first dark row. See
Fig. 12.

Example II.4 Let GCarpet−B = (VM , VT , R, S,
{1, 2, 3, 4, 5}, 0), where VM = {S, A, B, C}, VT = {d,
w}, (S, (x, y)) = (S, (0, 0)), and R is the set in Fig. 13.

The strategy is that the first and second bag positions are used
to control the variables A–C which help to keep colour on a row.
The third bag position is used to ensure the number of rows is the
same as the number of columns. The fourth and fifth bag positions
are used to ensure the number of the light colour on the lower left
corner of the last dark row of the image is twice the number of the
light colour on the upper right corner of the first dark row of the
image.

Some images in G produced by GCarpet−B are shown in Fig. 12.
To achieve the strategy, the application of Rule 33 of Fig. 13

starts the derivation. Then Rule 25 is applicable as long as the bag
at each application is within the defined range, this automatically
adds the bag adjustment (1, 0, 1, 0, 0) to the bag at each application.
Hence the application of Rule 35 of Fig. 13 enables Rules 36 and
38 to be applicable. This is to ensure that a light colour appears at
the upper right corner of the first dark row.

Next, we extend Example II.4 to demonstrate how BCSGs can
generate images with sub-images in Example II.5.

Example II.5 We generate a gallery of images that consists of light
or dark colour on the upper right and lower left corners. The top
left corner of each image in the gallery consists of dark and light

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1)) (Rule 24)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}((1, 0, 1), (∞, 0,∞); (1, 0, 1)) | (Rule 25)

{(d, (x, y)), (B, (x, y − 1))}((2, 0, 2), (∞, 0,∞); (0, 0,−1)) (Rule 26)
(B, (x, y)) −→ {(B, (x− 1, y)), (w, (x, y))}((1, 0, 0), (∞,∞,∞); (−1, 1, 0)) | (Rule 27)

{(w, (x, y)), (C, (x, y − 1))}((0, 1, 1), (0,∞,∞); (0, 0,−1)) | (Rule 28)
{(w, (x, y))}((0, (0,∞, 0); 0) (Rule 29)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}((0, 1, 1), (∞,∞,∞); (1,−1, 0)) | (Rule 30)
{(d, (x, y)), (B, (x, y − 1))}((1, 0, 1), (∞,∞,∞); (0, 0,−1)) | (Rule 31)
{(d, (x, y))}((0, 0, 0), (∞, 0, 0); 0) (Rule 32)}

Fig. 11: The set of rules for GCarpet−A.

R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1, 0, 0)) (Rule 33)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))} (Rule 34)

((1, 0, 1, 0, 0), (∞, 0,∞, 0, 0); (1, 0, 1, 0, 0)) | (Rule 35)
{(w, (x, y)), (B, (x, y − 1))}

((2, 0, 2, 0, 0), (∞, 0,∞,∞,∞); (0, 0,−1, 1, 0)) | (Rule 36)
{(w, (x, y)), (A, (x+ 1, y))} (Rule 37)

((2, 0, 2, 0, 0), (∞, 0,∞,∞,∞); (1, 0, 1, 1, 0)) (Rule 38)
(B, (x, y)) −→ {(B, (x− 1, y)), (w, (x, y))} (Rule 39)

((1, 0, 0, 0, 0), (∞,∞,∞,∞, 0); (−1, 1, 0, 0, 0)) | (Rule 40)
{(w, (x, y)), (C, (x, y − 1))} (Rule 41)

((0, 1, 1, 1, 0), (0,∞,∞,∞, 0); (0, 0,−1, 0, 0)) (Rule 42)
(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))} (Rule 43)

((0, 1, 1, 1, 0), ((∞,∞,∞,∞, 0)); (1,−1, 0, 0, 0)) | (Rule 44)
{(d, (x, y)), (B, (x, y − 1))} (Rule 45)

((1, 0, 1, 1, 0), ((∞, 0,∞,∞, 0)); (0, 0,−1, 0, 0)) | (Rule 46)
{(w, (x, y)), (C, (x+ 1, y))} (Rule 47)

((0, 1, 0, 1, 0), (∞,∞, 0,∞,∞); (0,−1, 0,−1, 1)) | (Rule 48)
{(w, (x, y)), (C, (x+ 1, y))} (Rule 49)

((0, 1, 0, 0, 1), (∞,∞, 0, 0,∞); (0,−1, 0, 0,−1)) | (Rule 50)
{(d, (x, y)), (C, (x+ 1, y))} (Rule 51)

((0, 1, 0, 0, 0), (∞,∞, 0, 0, 0); (0,−1, 0, 0, 0)) | (Rule 52)
{(d, (x, y))}(0, 0; 0) (Rule 53)}

Fig. 13: The set of rules for GCarpet−B.

colours, such that each colour dominates a row. This feature is
replicated on the lower right corner of the image. See Fig. 14.

Let GCarpet−C = (VM , VT , R, S, {1, 2, 3, 4, 5}, 0), where VM
= {S, A, B, C, A′, A′′}, VT = {d, w}, (S, (x, y)) = (S, (0, 0)),
and R is the set in Fig. 15.

Some pictures in G produced by GCarpet−C are shown in Fig. 14.
The strategy here is that the variables A, A′, and A′′ in

Example II.5 are used for the upper left corner of the image. The
variables B and C can be interchangeably used for the lower left
and upper right corners respectively or the upper right corner can
also be mirrored on the lower left corner depending on which rule
is applied during derivation. Meanwhile, the lower right corner of

the image is a reflection of the upper left corner. The derivation
starts from the upper left corner to the lower left corner then to the
upper right and lower right corners of the image respectively. The
size of the upper left corner of the image determines the size of the
other three corners (parts) of the image. See Fig. 14.

To achieve this strategy, the first and second bag positions are
used to control the light and dark colours respectively. The third
bag position is used to ensure the number of rows is equal to the
number of columns. The fourth and fifth bag positions are used
to control the lower left, upper right and lower right corners of
the image respectively. The lower right corner mimics the upper
left corner of the image. Such that the number of light and dark
colours in the upper left corner is exactly the same as the lower

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

R =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}(0, 0; (1, 0, 1, 0, 0)) (Rule 54)
(A, (x, y)) −→ {(d, (x, y)), (A, (x+ 1, y))}((1, 0, 1, 0, 0), (∞, 0,∞, 0, 0); (1, 0, 1, 0, 0)) | (Rule 55)

{(b, (x, y)), (B, (x+ 1, y), (A′, (x− 1, y))}
((1, 0, 1, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 0)) (Rule 56)

{(b, (x, y)), (C, (x+ 1, y), (A′, (x− 1, y))}
((1, 0, 1, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 0)) (Rule 57)

(A′, (x, y)) −→ {(A′, (x− 1, y)), (w, (x, y))}
((1, 0, 0, 0, 0), (∞,∞,∞,∞, 0); (−1, 1, 0, 0, 0)) | (Rule 58)

{(w, (x, y)), (A′′, (x, y − 1))}
((0, 1, 1, 0, 0), (0,∞,∞,∞, 0); (0, 0,−1, 1, 0)) | (Rule 59)

{(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) | (Rule 60)
{(w, (x, y)), (C, (x, y − 1))}((0, 1, 0, 0, 0), (0,∞, 0,∞, 0); 0) | (Rule 61)
{(d, (x, y))}(0, (0,∞, 0,∞,∞); 0) (Rule 62)

(A′′, (x, y)) −→ {(d, (x, y)), (A′′, (x+ 1, y))}((0, 1, 0, 0, 0),∞; (1,−1, 0, 0, 0)) | (Rule 63)
{(d, (x, y)), (A′, (x, y − 1))}((1, 0, 1, 0, 0),∞; (0, 0,−1, 1, 0)) | (Rule 64)
{(d, (x, y)), (C, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) | (Rule 65)
{(d, (x, y)), (B, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); 0) | (Rule 66)
{(d, (x, y))}(0, (∞, 0, 0,∞,∞); 0) (Rule 67)

(C, (x, y)) −→ {(d, (x, y)), (C, (x+ 1, y))}
((0, 1, 0, 0, 0), (∞,∞,∞,∞, 0); (1,−1, 0, 0, 0)) | (Rule 68)

{(C, (x− 1, y)), (d, (x, y))}
((1, 0, 1, 0, 1), (∞,∞,∞,∞, 1); (−1, 1, 0, 0, 0)) | (Rule 69)

{(d, (x, y)), (C, (x, y − 1))}
((0, 1, 0, 1, 1), (0,∞,∞,∞, 1); (0, 0, 1,−1,−1)) | (Rule 70)

{(d, (x, y)), (C, (x, y − 1))}
((1, 0, 0, 1, 0), (∞, 0,∞,∞, 0); (0, 0, 1,−1, 1)) | (Rule 71)

{(w, (x, y)), (A′′, (x, y − 1))}
((0, 1, 0, 0, 1), (0,∞, 0,∞, 1); (0, 0, 0, 0,−1)) (Rule 72)

{(w, (x, y)), (A′, (x, y − 1))}
((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); (0, 0, 0, 0, 0)) (Rule 73)

{(d, (x, y))}(0, (0,∞,∞, 0,∞); (0, 0, 0, 0,−1)) (Rule 74)
(B, (x, y)) −→ {(w, (x, y)), (B, (x+ 1, y))}

((0, 1, 0, 0, 0), (∞,∞,∞,∞, 0); (1,−1, 0, 0, 0)) | (Rule 75)
{(B, (x+ 1, y), (w, (x, y)))}

((1, 0, 1, 0, 1), (∞,∞,∞,∞, 1); (−1, 1, 0, 0, 0)) | (Rule 76)
{(w, (x, y)), (B, (x, y − 1))}

((1, 0, 0, 0, 0), (∞, 0,∞,∞, 0); (0, 0,−1, 1, 1)) | (Rule 77)
{(w, (x, y)), (B, (x, y − 1))}

((0, 1, 1, 0, 1), (0,∞,∞,∞, 1); (0, 0,−1, 1,−1)) | (Rule 78)
{(d, (x, y))}(0, (0,∞,∞, 0,∞); (0, 0, 0, 0,−1)) (Rule 79)
{(w, (x, y)), (A′′, (x, y − 1))}((0, 1, 0, 0, 1), (0,∞, 0,∞, 1); (0, 0, 0, 0,−1)) (Rule 80)
{(w, (x, y)), (A′, (x, y − 1))}((1, 0, 0, 0, 0), (∞, 0, 0,∞, 0); (0, 0, 0, 0, 0)) (Rule 81)}

Fig. 15: The set of rules for GCarpet−C.

right corner. The size of the upper left corner is duplicated on the
lower left corner with a dark or light colour. Then the lower left
corner of the image is mirrored on the upper right corner of the
image with the same or an opposite colour depending on which
rule is applied.

The application of Rule 55 of Fig. 15 after Rule 54 starts the
formation of the upper left corner of the image. The bag adjustment,
(1, 0, 1, 0, 0) is added to the bag as long as the bag at each
application is within the range, this continues until Rule 56 or 57

is applied. The application of Rule 56 or 57 begins the formation
of a new row and creates room for the formation of the upper right
corner. Any of Rules 58–67 is applicable as long as the bag at each
application is within the range. This process will form the upper
left corner of the image, then begins the formation of the lower
left corner with the application of Rule 65 or 66. If Rule 65 is
applied then Rules 68–74 are applicable when the bag is within the
range at each application. On the other hand, If Rule 66 is applied
then Rules 75–81 are applicable. The lower left corner formation

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

(a) (b)

(c) (d)

Fig. 12: Some of the images in G of GCarpet−B.

(a) (b)

(c) (d)

Fig. 14: Some of the pictures in G of GCarpet−C.

is completed by the application of Rule 74 or 79.
The formation of the upper right corner begins with the appli-

cation of Rule 68 or 75 of Fig. 15. The bag adjustment, (1, -1, 0,
0, 0) is added to the bag until the second bag position is 0. Then
any of Rules 69–71 or 76–78 is applicable so long as the bag at
each application is within the range. This process continues until
the third bag position is 0 then the upper right corner is complete.
The formation of the lower right corner begins with the application
of any of Rule 72, 74, 80 or 81, as long as the bag is within the
range. At this point, any of Rules 58–67 is now applicable as long
as the bag at each application is within the range as usual. This
process continues until the lower right corner formation is complete.
Then the entire picture formation is now complete. This strategy is
sufficient to generate the images in Fig. 14.

Next, we compare the bag context shape grammars and basic
puzzle grammars with permitting features in Section III.

III. COMPARISON OF BCSGS AND BASIC PUZZLE
GRAMMARS WITH PERMITTING FEATURES

In this section, we compare BCSGs to their basic puzzle with
permitting features (also called permitting basic puzzle grammar)
counterparts. The choice of permitting basic puzzle grammar is that
the model is one of the recent developments in puzzle grammar
systems to the best of our knowledge. By permitting feature we
mean that the grammars can control when a rule should be applied
during derivation.

A. Permitting Basic Puzzle Grammars
We begin by understanding permitting basic puzzle grammar.

Definition 10 A permitting basic puzzle grammar (PBPzG) G =
(VM , VT , R, S) has disjoint, nonempty, finite sets VM and VT of

variables and terminals, respectively, a finite set of rules R, and a
start symbol S ∈ VM .

A rule is of the form (A→ α, per), where A→ α is the basic
puzzle grammar rule as in [33], [34], A ∈ VM , α ⊆ (VM ∪ VT)
and per ⊆ VM [35]. If per = ∅, then it is not mentioned in the
rule. A derivation starts with S written in a unit cell in the two-
dimensional plane, with all other cells containing the blank symbol
/∈ VM ∪ VT .

For a PBPzG G and a pictorial form Π , a rule, A→ α, per
in R can be applied if A ∈ VM and per ⊆ l(Π) \ {A}. Then, in
a derivation step, denoted by =⇒∗Π , a nonterminal A in a cell is
replaced by the right hand side of a rule with the left hand side
A. In this replacement, the circled symbol of the right hand side
of the rule used occupies the cell of the replaced symbol A and
the non-circled symbol of the right hand side occupies the cell to
the right or left or above or below the cell of the replaced symbol,
depending on the type of rule used. The replacement is possible
only if the cell to be filled in by the non-circled symbol contains a
#.

A picture generated by G is a connected, finite array of elements
of VT derived in one or more steps from the start symbol; the set
of such pictures, the gallery, is denoted by G(G).

Example III.1 Consider a PBPzG of the structure G = (VM , VT ,
R, S) where VM = {S, A, B, A′, B′, C, D}, VT = {d}, R is the

set of rules in Fig. 16 and S is an array of the form A
d B .

R =
{

S −→ A
d B (Rule 82)

A −→ A′

d , {B} (Rule 83)

B −→ d B′, {A′} (Rule 84)
A′ −→ A, {B′} (Rule 85)
B′ −→ B, {A} (Rule 86)
A −→ C, {B} (Rule 87)
B −→ D, {C} (Rule 88)
C −→ d (Rule 89)
D −→ d (Rule 90)}

Fig. 16: The set of PBPzG rules in Example III.1.

The derivation starts with S then Rule 83 is applicable because
the permitting symbol B is present in the array. This grows the
vertical arm by one square. At this point, Rule 84 can be applied
because the permitting symbol, A′ is present, hence this grows the
horizontal arm by one square. Rule 85 can now be applied because
the permitting symbol, B′ is present followed by Rule 86 whose
permitting symbol, A is present. The process can be repeated to
grow both arms equal in length until Rules 87 and 88 are applied
to change the symbol A to C and B to D. Then the process can be
terminated by the application of Rules 89 and 90. This derivation
generates a gallery in the shape of an L with base and height equal
in length. The gallery generated by the grammar is presented in
Fig. 17. Next, we compare BCSGs and PBPzG.

B. Comparison of BCSGs and PBPzG
We consider a permitting basic puzzle grammar, PBPzG, G =

(VM , VT , R, S). Suppose VM = {A1, A2, . . . , Am}, and the order
of the elements in VM is arbitrary but fixed. For rule A→ α, per,

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

d
d
d
d
d
d d d d d d

(a)

d
d
d d d

(b)

d
d
d
d
d d d d d

(c)

d
d
d
d d d d

(d)

Fig. 17: Some images in G(G).

we denote by cnt, the occurrences of the variable of VM in the left
hand and right hand sides of the rule. In particular,
• cnt(A) denotes the m–tuple in which the component corre-

sponding to A is set to 1, whereas all other components are
set to 0,

• cnt(α) denotes the m–tuple (n1, n2, . . . , nm) such that ni
is equal to the number of occurrences of Ai in [x1, . . . , xm],
and

• cnt(per), denotes the
∑
A∈per cnt(A).

The following Lemma is adapted from [6]. We show that bag
context shape grammar is strictly more powerful than permitting
puzzle grammar.

Lemma III.1 For every basic permitting puzzle grammar, G =
(VM , VT , R, S) there is an equivalent BCSG G′ = (VM, VT, R′,
(S, (x, y)), I , β0). That is, G(G) ⊆ G(G′).

Proof: Without loss of generality, assume that VM = {A1, A2,
. . . , Am}, ∀ m ∈ N+. The bag index set I = [m] records, at all
times during a derivation, the number of occurrences of Ai in the
ith position of the bag. Let the initial bag, β0 = cnt(S). For every
permitting puzzle grammar rule, A→ α, per in R, we write it to
the equivalent bag context shape grammar rule (A, (x, y)) −→
{(A1, (x1, y1)), (A2, (x2, y2)), . . . , (Ai, (xi, yi))} (Lb, Ub ; δ)
in R′, where
• Lb = cnt(A) + cnt(per),
• Ub = cnt(A) + ∞.cnt(VM) = cnt(A) + ∞.cnt(VM) =
cnt(A) +∞ = ∞, and

• δ = cnt(α) - cnt(A).
Then, G(G) ⊆ G(G′).
Next, we use Lemma III.1 to illustrate that the rules of Exam-

ple III.1 of PBPzG can be converted to BCSG rules. We derive
the values of the lower limit, Lb, the upper limit, Ub, and the bag
adjustment, δ for each rule in Fig. 16, see Table II. Then, the values
obtained in Table II are used to rewrite each rule in Fig. 16 to a
BCSG rule, see Fig. 18 of Example III.2.

Example III.2 We want to rewrite the rules of Example III.1
to BCSG rules using the values of Lb, Ub, and δ in Table II
for each rule. Let a BCSG Gbag = (VM, VT, R′, (S, (x, y)),
{1, 2, . . . , 7}, {1, 0, 0, 0, 0, 0, 0}), where VM = {S, A, B, A′, B′,
C, D}, VT = {d}, R′ is as shown in Fig. 18, and (S, (x, y)) =
((d, (0, 0)), (A, (0, 1)), (B, (1, 0))).

The derivation starts with S, then Rule 92 is applicable because
the bag is within the defined range. That is the bag, (0, 1, 1, 0, 0,
0, 0) is greater than or equal to the lower limit, (0, 1, 1, 0, 0, 0,
0) and the bag is at the same time less than or equal to the upper
limit, ∞, then the bag adjustment, (0, -1, 0, 1, 0, 0, 0) is added

TABLE II: The conversion of the PBPzG rules in Fig. 16 to
bag context.

Rules Lb Ub δ
82 (1, 0, 0, 0, 0, 0, 0) ∞ (-1, 1, 1, 0, 0, 0, 0)
83 (0, 1, 1, 0, 0, 0, 0) ∞ (0, -1, 0, 1, 0, 0, 0)
84 (0, 0, 1, 1, 0, 0, 0) ∞ (0, 0, -1, 0, 1, 0, 0)
85 (0, 0, 0, 1, 1, 0, 0) ∞ (0, 1, 0, -1, 0, 0, 0)
86 (0, 1, 0, 0, 1, 0, 0) ∞ (0, 0, 1, 0, -1, 0, 0)
87 (0, 1, 1, 0, 0, 0, 0) ∞ (0, -1, 0, 0, 0, 1, 0)
88 (0, 0, 1, 0, 0, 1, 0) ∞ (0, 0, -1, 0, 0, 0, 1)
89 (0, 0, 0, 0, 0, 1, 0) ∞ (0, 0, 0, 0, 0, -1, 0)
90 (0, 0, 0, 0, 0, 0, 1) ∞ (0, 0, 0, 0, 0, 0, -1)

to the bag. Rule 93 is applicable followed by Rules 94 and 95
because they are within the range at each application. This process
can be repeated to grow both arms equal in length until Rule 96 is
applied followed by Rule 97. Then the process can be terminated
by applying Rules 98 and 99 because they are within the defined
range.

This derivation generates images in the shape of an L with base
and height equal in length. The images are presented in Fig. 19
when the terminal d is replaced with a square shape which is filled
with a dark colour. The images are also scaled to the same size for
presentation purposes.

(a) (b)

(c) (d)

Fig. 19: Some images in G(Gbag).

Clearly the gallery G(G) ⊆ G(Gbag), see Figs. 17 and 19. Next
we show that BCSGs can generate the same gallery with fewer rules
and variables.

IV. THE STRENGTH OF BCSGS

Here we demonstrate the strength of BCSGs in terms of their
ability to produce the same gallery in the shape of an L with base
and height equal in length that permitting puzzle grammars produce
(see Figure 17). At this time, we show how we can produce the same
gallery using BCSGs with fewer variables and rules. We illustrate
this notion in Example IV.1.

Example IV.1 Consider the gallery of an L shape whose base
and height are equal in length. Let BCSG G′′bag = (VM, VT, R′′′,
(S, (x, y)), {1, 2, 3}, 0), where VM = {S, A, B}, VT = {d}, R′′′
is as shown in Fig. 20, and (S, (x, y)) = (S, (0, 0)).

The strategy is that the first and the second bag positions are
used to control how the base and the height of the L shape grow.
The third bag position ensures that the base and height of the L
are the same lengths.

To achieve the strategy, Rule 101 can be applied immediately
after Rule 100, then the bag adjustment, (0, 0, 1) is added to the
bag. Rule 101 is no longer applicable because the third bag position
is now 1 until Rule 103 is applied, which automatically adds the bag
adjustment (0, 0, -1) to the bag. The third bag position is 0 making
Rule 103 inapplicable. This process can continue while the base

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

R′ =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x, y + 1)), (B, (x+ 1, y))}
((1, 0, 0, 0, 0, 0, 0),∞; (−1, 1, 1, 0, 0, 0, 0)) (Rule 91)

(A, (x, y)) −→ {(d, (x, y)), (A′, (x, y + 1))}
((0, 1, 1, 0, 0, 0, 0),∞; (0,−1, 0, 1, 0, 0, 0)) (Rule 92)

(B, (x, y)) −→ {(d, (x, y)), (B′, (x+ 1, y))}
((0, 0, 1, 1, 0, 0, 0),∞; (0, 0,−1, 0, 1, 0, 0)) (Rule 93)

(A′, (x, y)) −→ {(A, (x, y))}((0, 0, 0, 1, 1, 0, 0),∞; (0, 1, 0,−1, 0, 0, 0)) (Rule 94)
(B′, (x, y)) −→ {(B, (x, y))}((0, 1, 0, 0, 1, 0, 0),∞; (0, 0, 1, 0,−1, 0, 0)) (Rule 95)
(A, (x, y)) −→ {(C, (x, y))}((0, 1, 1, 0, 0, 0, 0),∞; (0,−1, 0, 0, 0, 1, 0)) (Rule 96)
(B, (x, y)) −→ {(D, (x, y))}((0, 0, 1, 0, 0, 1, 0),∞; (0, 0,−1, 0, 0, 0, 1)) (Rule 97)
(C, (x, y)) −→ {(d, (x, y))}((0, 0, 0, 0, 0, 1, 0),∞; (0, 0, 0, 0, 0,−1, 0)) (Rule 98)
(D, (x, y)) −→ {(d, (x, y))}((0, 0, 0, 0, 0, 0, 1),∞; (0, 0, 0, 0, 0, 0,−1)) (Rule 99)}

Fig. 18: The set of rules for Gbag in Example III.2.

R′′ =
{

(S, (x, y)) −→ {(d, (x, y)), (A, (x, y + 1)), (B, (x+ 1, y))}(0, 0; (1, 1, 0)) (Rule 100)
(A, (x, y)) −→ {(d, (x, y)), (A, (x, y + 1))}((1, 1, 0), (1, 1, 0); (0, 0, 1)) | (Rule 101)

{(d, (x, y))}((1, 1, 0), (1, 1, 0); (−1, 0, 1)) (Rule 102)
(B, (x, y)) −→ {(d, (x, y)), (B, (x+ 1, y))}(1, 1; (0, 0,−1)) | (Rule 103)

{(d, (x, y))}((0, 1, 1), (0, 1, 1); (0,−1,−1)) (Rule 104)}
Fig. 20: The set of rules for G′′bag in Example IV.1.

and height grow at equal length until Rule 102 is applied followed
by Rule 104.

The set of rules in Fig. 20 can generate the same gallery
generated by permitting basic puzzle grammar rules of Exam-
ples III.1 with fewer variables and rules. Observe that there are
seven variables in Examples III.1 while Example IV.1 has only
three variables. Also, the set in Fig. 16 of Examples III.1 has eight
number of rules while the number of rules in Fig. 20 is only five
rules.

These can be regarded as strength of BCSGs because they
can produce the same type of gallery as permitting basic puzzle
grammars with fewer rules and variables, even with fewer bag
positions. Next, we conclude this work in Section V.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced bag context shape grammars (BC-
SGs). They are context free grammars, but the application of a rule
is controlled by a special vector of integers, called the bag, which
changes during a derivation. We demonstrated that these grammars
can be used to generate images in a regulated manner. We compared
BCSGs and permitting basic puzzle grammars (PBPzGs), a recent
development in the basic puzzle grammar system that regulates the
application of a rule during derivation.

We stated a Lemma that shows how any PBPzG can be converted
to a BCSG and demonstrated this notion with an example. We then
considered one set of images and showed that BCSGs can generate
the same gallery with fewer variables, rules, and even fewer bag
positions. These BCSGs can offer a wide range of application areas
such as the generation of distractor (similar) images for visual
password systems or scheme.

In the future, we will compare BCSGs and other recent devel-
opments in array grammars with permitting features. Also, when

a PBPzG is converted to a BCSG using the above Lemma III.1,
the resultant BCSG has a bag position for each variable of the
PBPzG. By inspecting the BCSG, one can often reduce the number
of bag positions. The question is whether there exist general rules
for reducing bag positions.

ACKNOWLEDGEMENTS

The authors would like to thank the Department of Science and
Technology (DST) and the Council for Scientific and Industrial
Research (CSIR), Inter-bursary support programme, South Africa,
for funding this research.

REFERENCES

[1] E. L. Post, “Formal reductions of the general combinatorial decision
problem,” American Journal of Mathematics, vol. 65, no. 2, pp. 197–
215, 1943.

[2] N. Chomsky, “Three models for the description of language,” IRE
Transactions on Information Theory, vol. 2, no. 3, pp. 113–124, 1956.

[3] T. Jiang, M. Li, B. Ravikumar, and K. W. Regan, “Formal grammars
and languages,” in Algorithms and Theory of Computation Handbook.
Chapman & Hall/CRC, 2010, pp. 20–26.

[4] N. Chomsky, “Formal properties of grammars, Handbook of Mathe-
matical Pychology,” Wiley & Sons, New York, vol. 2, pp. 232–418,
1963.

[5] ——, “Constraints on rules of grammars,” Linguistic Analysis, vol. 2,
pp. 303–351, 1976.

[6] S. Ewert, N. Jingili, L. Mpota, and I. Sanders, “Bag context
picture grammars,” Journal of Computer Languages, 2019, doi:
https://doi.org/10.1016/j.cola.2019.04.001.

[7] S. Ewert, “Random context picture grammars,” Ph.D. dissertation,
Stellenbosch University, Stellenbosch, 1999.

[8] H. Kruger and S. Ewert, “Translating mutually recursive function
systems into generalized random context picture grammars: reviewed
article,” South African Computer Journal, no. 36, pp. 99–109, 2006.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

[9] F. Drewes, “Tree-based picture generation,” Theoretical Computer
Science, vol. 246, no. 1, pp. 1–51, 2000.

[10] B. Okundaye, “A Tree Grammar-Based Visual Password Scheme,”
Ph.D. dissertation, School of Computer Science and Applied Math-
ematics, University of the Witwatersrand, Johannesburg, 2015.

[11] S. Ewert and A. van der Walt, “Shrink indecomposable fractals,”
Journal of Universal Computer Science, vol. 5, no. 9, pp. 521–531,
1999.

[12] A. Lindenmayer, “Mathematical models for cellular interactions in
development I. filaments with one-sided inputs,” Journal of Theoretical
Biology, vol. 18, no. 3, pp. 280–299, 1968.

[13] S. Rani, H. Abdul, M. Chandrasekaran, and K. G. Subramanian,
“Stochastic puzzle grammars,” International Journal of Pattern Recog-
nition and Artificial Intelligence, vol. 6, pp. 257–272, 1992.

[14] Y. Yasunori, M. Kenichi, and S. Kazuhiro, “Context sensitivity of two-
dimensional regular array grammars,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 3, no. 3 & 4, pp. 295–319,
1989.

[15] G. Roger, “A transformation system for generating description lan-
guages of chain code pictures,” Theoretical Computer Science, vol. 68,
pp. 239–252, 1989.

[16] F. Drewes, “Language theoretic and algorithmic properties of d-
dimensional collages and patterns in a grid,” Journal of Computer
and System Sciences, vol. 53, pp. 33–60, 1996.

[17] G. Stiny and J. Gips, “Shape grammars and the generative specification
of painting and sculpture.” in IFIP Congress (2), vol. 2, no. 3, 1971,
pp. 125–135.

[18] T. Trescak, M. Esteva, and I. Rodriguez, “A shape grammar interpreter
for rectilinear forms,” Computer-Aided Design, vol. 44, no. 7, pp. 657–
670, 2012.

[19] G. Stiny, “Introduction to shape and shape grammars,” Environment
and Planning B, vol. 7, no. 3, pp. 343–351, 1980.

[20] R. Stouffs, “Description grammars : A general notation,” Environment
and Planning B: Urban Analytics and City, vol. 45, no. 1, pp. 106–
123, 2016.

[21] T. W. Knight, “Shape grammar and color grammar in design,” Envi-
ronment and Planning B: Urban Analytics and City Science, vol. 21,
no. 6, pp. 705–735, 1994.

[22] G. Stiny and W. J. Mitchell, “The Palladian grammar,” Environment
and Planning B: Planning and Design, vol. 5, no. 1, pp. 5–18, 1978.

[23] D. A. Al-Kazzaz and A. H. Bridges, “A framework for adaptation in
shape grammars,” Design Studies, vol. 33, no. 4, pp. 342–356, 2012.

[24] K. Shea and J. Cagan, “The design of novel roof Trusses with
shape annealing: Assessing the ability of a computational method in
aiding structural designers with varying design intent,” Design Studies,
vol. 20, no. 1, pp. 3–23, 1999.

[25] T. H. Speller, D. Whitney, and E. Crawley, “Using shape grammar to
derive cellular automata rule patterns,” Complex Systems-Champaign,
vol. 17, no. 1/2, p. 79, 2007.

[26] L. March and G. Stiny, “Spatial systems in architecture and design:
Some history and logic,” Environment and Planning B: Planning and
Design, vol. 12, no. 1, pp. 31–53, 1985.

[27] T. W. Knight, Transformations in design: A formal approach to stylistic
change and innovation in the visual arts. Cambridge University Press,
1995.

[28] ——, “Shape grammars and color grammars in design,” Environment
and Planning B: Planning and Design, vol. 21, no. 6, pp. 705–735,
1994.

[29] S. Ahmad and S. Chase, “Transforming grammars for goal driven
style innovation,” in Predicting the future, Proceedings of the 25th
Conference on Education in Computer Aided Architectural Design in
Europe (eCAADe), Frankfurt am Main, Germany, 2007, pp. 879–886.

[30] F. Drewes, C. du Toit, S. Ewert, B. van der Merwe, and A. P.
van der Walt, “Bag context tree grammars,” in Proceedings of the 10th
International Conference, DLT 2006, Santa Barbrara, CA. Springer,
June 26-29, 2006, pp. 226–237.

[31] S. Ewert, “Random context picture grammars: The state of the art,”
Manipulation of Graphs, Algebras and Pictures. Essays Dedicated to
Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 135–
147, 2009.

[32] C. Anthony and D. Robert, Foundation Maths, 6th ed. Edinburgh
Gate, United Kingdom: Pearson Education Limited, 2016.

[33] K. Subramanian, R. Siromoney, V. Reda, and A. Saoudi, “Basic puzzle
languages,” International Journal of Pattern Recognition and Artificial
Intelligence,, vol. 9, no. 5, pp. 763–775, 1995.

[34] ——, “Basic puzzle grammars and isosceles right triangles,” Inter-
national Journal of Pattern Recognition and Artificial Intelligence,,
vol. 6, no. 5, pp. 799–816, 1992.

[35] P. Isawasan, R. Muniyandi, I. Venkat, and K. Subramanian, “Array-
rewriting P systems with basic puzzle grammar rules and permit-
ting features,” in International Conference on Membrane Computing,
Cham, Switzerland. Springer, 2017, pp. 272–285.

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_10

Volume 47, Issue 1: March 2020

__

