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Abstract: This study proposes a method of feature

extraction based on Kernel Fisher Discriminant Analysis
(KFDA) to solve problems in the classification of
underwater targets, specifically the large number of
original characteristic parameters and significant
nonlinearity. First, a large number of features are
combined through serial feature fusion to establish a new
feature vector space, and KFDA is used to extract the
optimal nonlinear discriminant features. Second, a test
bed for an underwater experiment featuring a data
processing system, echo signal acquisition, and feature
extraction is described. Finally, underwater acoustic
experiments are carried out, and the results of the
measurement data indicate that the proposed method is
superior to currently used techniques in the area.

Index Terms: Kernel Fisher Discriminant Analysis
(KFDA), Feature Extraction, Feature Fusion,
Underwater Targets, Classification

I. INTRODUCTION
Features constitute the only source of original information

needed to design a classifier. The recognition and
classification of underwater targets by acoustic methods is
based on the extraction of effective features from underwater
echoes. The quality of the features directly influences the
accuracy of recognition. Considerable progress has been
made in this domain in terms of features for classification,
e.g., the wavelet multi-resolution decomposition of echo
signals, singular value, and echo edge features [1-4]. It is
challenging to describe the characteristics of targets by using
a single feature, and can even lead to loss of useful
information. This in turn leads to a low rate of correct
classification. Parameter indices of multiple features are
usually integrated to solve this problem [5-8]. However, if
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many indices (large dimensions) are directly used as input to
the classifier, the design of the classifier becomes complex.
Moreover, these parameter indices have relatively strong
correlation, and removing these correlations and reducing the
number of dimensions help improve the accuracy of
recognition and reduce the workload. References [6-8] used
principal component analysis (PCA) for
multivariate statistical analysis. PCA determines direction of
injection of the maximal sample dispersion by using a sample
covariance matrix without considering differences among
classes. Although it can maintain an adequate number of
original features, the direction obtained is not the best for
classification and the features extracted are not optimal [9,10].
Fisher Discriminant Analysis (FDA) considers differences
among classes, is characterized by maximizing the inter-class
dispersion matrix and minimizing intraclass dispersion
matrix, and can compensate for the inadequacy of PCA.
Moreover, the features thus extracted are distinct. PCA is
based on linear transformation for feature extraction to obtain
linear features. The results are not always satisfactory when
solving for highly complex nonlinear distribution structures
[11]. Therefore, it is important to extract features with a high
degree of distinction for the recognition and classification of
underwater targets.
This paper proposes a method for underwater feature

extraction from echoes using Kernel Fisher Discriminant
Analysis (KFDA). By integrating the kernel method into the
technique to extract features from underwater echoes, and by
combining the advantages of the kernel method with those of
the FDA method, multiple original features are extracted for
the same sample. These features are combined using feature
integration technology to form a new vector space of features.
Optimal nonlinear features are extracted for identification,
and classification experiments were implemented by KFDA
in this space.

II. FORMATION AND INTEGRATION OF ORIGINAL FEATURES

A. Formation of original features
Research has shown that the shapes of the underwater echo

of normal incident ultrasonic pulses are related to the
roughness of the target surface, attenuation coefficients of
sonic waves in sediment, structures of sound velocity, and
density structures on the seabed. The shapes of the echo
contain information relevant to sediment structures and their
physical properties [12]. The difference in echo shapes is
large for sediments with different hardness and roughness.
For instance, the shapes of hard substrates are narrow and
sharp with relatively large peaks, whereas those of soft
substrates are relatively flat but their tails are long. Therefore,
the time-domain waveform features of echo signals can be
extracted as measures of features for classification, such as
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the maximal peak, peak moment, effective value, absolute
mean value, variance, peak factor, waveform factor, center of
mass, waveform width, kurtosis, and skewness.
Tegowski et al. have noted that seabed echoes carry fractal

features of the seabed sediment. The fractal dimension of
these features can be used to measure the complexity and
roughness of the seabed substrate, which has provided rich
information for classification [13-14]. The fractal dimension
of the echo of the seabed is also used for classification.
Therefore, 12 statistical features are used in this study.

B. Feature fusion
Features generated by the fusion of several features retain

effective verification-related information of features
participating in the fusion from all classes. To some extent,
the redundancy of information among multiple features is
thus eliminated [15]. Current feature fusion technologies are
of two kinds: serial feature fusion and parallel feature fusion.
The latter is feature fusion in unitary space, and combines
two features by adopting the form of a complex vector

i    (i is an imaginary unit, and  and  are,
respectively, feature quantities of the same sample) [16].
Parallel feature fusion can combine only two features, but
serial fusion can combine several features. Assuming that

1 12, ,A A are the 12 feature quantities used in this study, the

new feature quantity after fusion is 1 12( , , )TB A A  .
Although serial features can maintain complementarity

among the features, the dimensions of the new features after
merging is the sum of the number of dimensions of the
original features, which is unfavorable for classifier design.

III. KFDA FEATURE EXTRACTION ALGORITHM

The idea of Kernel Fisher Discriminant Analysis is to
transform linear, indivisible, original features to a linear,
divisible, high-dimensional space and apply FDA “kernel
skill” to implement nonlinear discriminant analysis relative
to the original feature space [17-20].
Assume that the new feature space X has D dimensions

after fusion. X contains N training samples divided into c
classes: the number of samples of class i is ( 1, , )iN i c  ;
ixk is the k-th sample ( 1, , )ik N  in class i and jx is the

j-th ( 1, , )j N  sample. The corresponding pattern vector
after nonlinear mapping is ( )X H  . Therefore, the
inter-class and intra-class dispersion matrices of the training
samples in the high-dimensional feature space H are
estimated as
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The Fisher criterion function can be defined in
high-dimensional feature space H as
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where w is any nonzero vector in H . Because the number
of dimensions of H is large, even infinite, the optimal
Fisher discriminant vector cannot be calculated directly
according to Formula (3). It is converted to include the inner
product of the data after mapping, which can be expressed
through the kernel function ( , ) ( ), ( )i j i jK x x x x 

defined in the original feature space. Common kernel
functions include the Gaussian kernel function
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function ( , ) ( ) dK x y x y c   , where  , c , and d are all
constants.
According to the theory of reproducing the kernel [18], the

solution vector w of any optimal criterion function is located
in the space formed by all training samples 1( ), , ( )Nx x 
in feature space H
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where 1( ( , ), , ( , ))
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x j N jK x x K x x   is the kernel sample

vector of sample jx in the original space.

In a similar way, the mean im
 of sample sets in H and

overall mean m are injected into w :
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respectively, the mean of the kernel samples and the overall
mean of the kernel sample set.
By using Formulae (5), (6), and (7) in Formula (4), the

Fisher criterion function in H is equivalent to:
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When K is nonsingular, the optimal solution
vector set of criterion (8) is maximized by
generalized Rayleigh quotient theorem, which is
the eigenvector 1, , da a corresponding to the d
maximum eigenvalues of generalized eigenvalue
equation bK a K a . Because the generalized
feature equation has 1c  nonzero eigenvectors at
most (c is the total number of classes in the samples
set), the number of optimal solution vectors of
Formula (8) is 1d c  .
The nonlinear optimal discriminant vector d dw a

( 1, , 1d c  ) of the kernel Fisher can be obtained by the
set of optimal solution vectors and Formula (4). The
projection of arbitrary samples Dy R on the optimal

discriminant vectors dw in H is
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Therefore, the 1c  -dimensional kernel Fisher optimal
discriminant feature extraction 1 1( , , )TcY Y Y   of the
original D-dimensional sample y can be obtained.
If K is singular, the formalization method can be used.

K K I     (  ) (compared with the nonzero feature value
of K ,  is a very small constant and I is a unit matrix) is
used instead of K , so that K is nonsingular. Then, kernel
Fisher optimal discriminant feature extraction is
implemented according to the above method [17].

IV. INTRODUCTION TO TEST SYSTEM

A. Pool testbed

Fig. 1. Pool testbed.

A 2,000 mm × 1,600 mm × 1,800 mm rectangular pool was
built in the Deep Sea Technology and Equipment Lab of

Center South University with a horizontal undersurface. A
guiderail with a stroke of 1,800 mm was installed along the
pool’s edge.
An operational mechanism with idler wheels could walk

along the edge to change the position of detection. A trolley
with a span of 1,600 mm was used. There was a fixing device
for the ultrasonic transducer in the middle of the trolley
platform that fixed it just below the middle of the trolley. The
pool testbed is shown in Figs. 1.

B. Data acquisition system
The underwater acoustic signal acquisition system was

constituted by the ultrasonic transducer, radiating circuit,
echo-receiving circuit, master control circuit, and an
industrial personal computer. As the transducer operated
under the water, an integrated ultrasonic transducer for
underwater reception and transmission, developed by Wuxi
CSSC Acoustic Research Technology center, was selected.
The transducer was composed of piezoelectric ceramics with
a resonant frequency of 500 KHz, probe diameter of 140 mm,
and a 3-dB direction angle of 3º.
The radiating circuit was constituted by a signal-producing

circuit, power amplifier circuit, and an impedance matching
circuit. The echo-receiving circuit was constituted by a
pre-amplification electric circuit, TGC circuit, band-pass
filtering circuit, PCI-1714 high speed acquisition card, and a
computer. The master control circuit was the SCM system
with AT89C52 as core. It was used to complete the
generation of the ultrasonic pulse signal, synchronize the
triggering of the PCI-1714 high speed acquisition card, and
adjust the gain in the TGC circuit. The overall structure of the
underwater acoustic signal acquisition system is shown in Fig.
2.
The working process of the system was as follows: A

signal acquisition command was sent through the signal
acquisition software of the computer once the system had
been charged. The SCM AT89C52 immediately started the
555 oscillating circuit to generate 500 KHz of a square signal.
The PCI-1714 was started for sampling. The transducer was
stimulated to transmit ultrasonic waves after four cycles of
the square signal had been subject to power amplification.
The SCM was used to adjust the magnification of the TGC
circuit according to time to guarantee that the echo signals
were sufficiently amplified. The incident signals of the
ultrasonic wave were reflected after touching an object and
received by the ultrasonic transducer. The PCI-1714
conducted A/D conversion of the echo signals once they had
been subject to pre-amplification, the TGC circuit, and
analog band-pass filtering. Then, the echo signal data were
stored in the computer. The internal control program of the
SCM prepares the master control circuit for the next emission
after signal acquisition. The control subprogram of the SCM
was programmed in assembly language. The computer’s data
acquisition program was developed in VC++.

Fig. 2. Structural composition of signal acquisition system.
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Fig. 3. DSP and A/D sampling card module

Fig. 4. Microcontroller module

Figs. 3 and 4 show the DSP and A/D sampling card
modules, and the microcontroller module of the detection
system, respectively.

C. Echo signal acquisition

Fig. 5. Waveform of sampled signal.

The waveform of a sampled signal is shown in Fig. 6. The
20,000 sampling points included both the transmitting signal
and the true echo signal of the sediment. The waveform
before the 2,000th point was the incident signal and that
around the 16,000th point was the echo signal. The echo
signal of the 20,000 points and their incident signal was
subjected to cross-correlation to find the starting point of the
true echo. A total of 1,024 points were intercepted at the
starting point of the echo as true echo. This number of

sampling points was sufficient to contain the true echo
through several experimental observations. A sample was
randomly extracted from 160 true echo signal sets for each
kind of sediment. The waveform of a sampled signal is shown
in Fig. 5.

D. Feature extraction of generalized dimensions
The procedure for the calculation of generalized

dimensions was used to extract features of generalized
dimensions for the collected echo signals of the sediments.
The range of values of q was  100100 ， at intervals of two.

The result is shown in Fig. 6.

Fig. 6. One kind of generalized dimension spectrum.

V. EXPERIMENTAL ANALYSIS

We considered reflected echoes of four kinds of
sediments, rock, gravel, sand, and mud, as research targets,
and each had 80 samples. Preprocessing was first applied
to the echo data by extracting the statistical features
introduced at II.B. Then, serial feature fusion technology
was used to combine the features. Different feature
extraction methods were then used for analysis and
comparison.

Fig. 7. Four kinds of target features extracted by PCA.

Fig. 7 show the features extracted by PCA. Because it did
not consider the differences among classes, the extracted
features were not optimal classification features, and there
were overlaps among different targets.
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Fig. 8. Four kinds of target features extracted by KPCA.

Fig. 8 shows features extracted by PCA based on the kernel
method, where the Gaussian kernel function with 165 
was selected. Although the method made use of the kernel,
the features extracted did not have the desirable effect
because the method inherited the inadequacy of PCA.

Fig. 9. Four kinds of target features extracted by FDA

Fig. 10 The four kinds of target characteristics extracted by
KFDA

Fig. 9 shows features extracted by the FDA method. The
method ensured maximal interclass distance and minimal
intra-class distance so that the features extracted were more
easily distinguishable, but it failed to solve for nonlinear
relations among the features. Because of this, there was a
partial overlap among the targets.
Fig. 10 shows the features extracted by the proposed

method, where the Gaussian kernel function with 15  was
used, and 0.00001  . The method combined the
advantages of the kernel method and FDA, because of which
the features extracted were easily distinguishable.
The features extracted previously were classified by the

k-means clustering algorithm, as shown in Table 1, to obtain
the results.

TABLE 1
CLASSIFICATION RESULTS OF FOUR FEATURE EXTRACTION

METHODS

Method PCA KPC
A FDA KFD

A
Average rate
of correct

classification

86.6
%

90.3
%

95.0
%

99.4
%

Table 1 shows that the proposed method delivered a higher
correct classification rate than all the other methods tested.
The results show that the nonlinear optimal judgment vector
extracted from the fusion feature space by using kernel Fisher
judgment analysis can better solve problems of the
classification of highly complex substrates .

VI. CONCLUSION
1) By fusing multiple features, the benefits of

complementary features can be reaped to obtain richer
identification information.

2) The extraction of nonlinear optimal features of
identification by using Fisher judgment analysis
eliminated redundant information and reduced the
number of dimensions while yielding more distinct
features.

3) Tests showed that the proposed feature extraction
method based on KFDA yielded a higher rate of correct
classification than other methods.
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