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Abstract—Automatic program repair (APR) is one of the
necessary software maintenance tasks because most software
systems have errors that need to be fixed. APR techniques are
considered as a search problem where the search space includes
all potential repair candidates, with the aim of identifying the
correct repair code in space. This paper proposes a repair
approach that finds the correct repair code for object-oriented
program bugs such as Java bugs in the minimized search
space using the type of buggy statement and mutation system,
MuJava. This approach consists of four main phases. First,
program bugs are localized by prioritizing the statements based
on their suspiciousness of containing bugs. Second, the mutation
system is employed to mutate the program using two-level
operators of the mutation system. Third, we extract the fixed
candidates that are similar to the buggy statement type within
the mutants and after receiving the ordered list of candidate
patches, the last phase validates their correctness one by one
using the test suite until a correct patch found. The experiment
demonstrates that our strategy can effectively fix 19 out of
21 bugs from four real-world projects and achieves 90.48%
accuracy.

Index Terms—patch generation, fault localization, mutation
system, program repair, single bugs.

I. INTRODUCTION

AUTOMATIC program repair (APR) is a relatively new
field of research that is currently being explored using

different strategies by many research groups. APR techniques
were considered more difficult and complex than fault local-
ization techniques. They automatically generate the patch to
fix the bug based on the specified buggy program and related
test cases. The patch can be used to guide developers or
added to the program automatically to continuously enhance
the quality of the program.

It is generally possible to divide existing approaches into
two categories: search and semantics [1]. Search-based APR
[2], [11]-[13] produces large populations of candidates for
repair through source operations and finds the best among
them. Semantics-based APR [9]-[10] utilizes symbolic exe-
cution and test suites to obtain requirements or constraints
on the repaired techniques and utilizes program synthesis
to produce repairs that fulfill the extracted constraints. Both
categories rely mainly on the primary assumption that if the
output causes the program to pass all the test cases provided,
a program will be repaired correctly [1].

A key issue in patch generation systems is patch quality.
As patches only validate for test cases, the program does not
guarantee that the correct outputs are produced for other test
cases. Recent work has shown that most patches approved
by many systems are not generated and tested to generate
accurate results beyond validation tests for test cases. This
negative impact not only produces plausible patches but also
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emphasizes the importance of fixing patches that have no
potential defects. The success of an APR technique is very
important for a rich search space that contains the correct
patches for the target bugs. Recent systems used the search
space that contains significantly correct patches, so the search
space including more successful patches is needed to make
continued progress in this area. However, the ability of the
technique to identify the correct patch in a larger, relevant
space but the incorrect patch may also be complicated by
these richer spaces. In the search space structure, Long and
Rinard [17] describe a key trade-off for two reasons. Firstly,
validation time increases due to more candidate patches
and secondly, the test suite passes through more incorrect
patches. The quality of the repair is defined as the correctness
and maintenance of the repair, where it indicates how well
a repaired program can retain the required functionality and
how easy it can be understood and maintained. The time and
steps needed to find potential repair are APR performance.

The motivations of automated software repair are to reduce
the cost of fixing errors and increase the likelihood that
the search space will contain correct fixes. To increase the
probability of including the correct patch based on the second
motivation, we propose a mutation-based system using the
type of buggy statement and mutation system for the pro-
gram repair of Java programs. In object-oriented programs,
we assess our approach with real-world bugs from large
programs and it can repair the single line bugs. As input,
it requires a program and a set of test cases in which at
least one test case fails. A search-based algorithm is used to
find the correct patch consisting of a location, a buggy code,
and a repair code. To evaluate and analyze our approach,
we collect 21 bugs from four real-world projects: Closure
Compiler, JFreeChart, Apache Commons Lang, and Apache
Commons Math. Our results show that 19 of the 21 bugs can
be fixed by our approach. The main contributions are:

• We particularly assess the most suspicious statement
in real-world Java programs using a spectrum-based
metric.

• We investigate a mutation-based program repair tech-
nique using the type of buggy statement and mutation
system, called MuJava, to rapidly-produce relevant re-
pair codes among the mutants.

• We evaluate our technique on the Defects4J dataset. The
results show that correct patches can be produced with
90.48% high precision.

The remainder of this paper is structured as follows: some
background information is described in Section 2 followed
by our methodology for automated program repair in Section
3. In Section 4 and 5, we discuss our experiments. Then we
mentioned some state of research in Section 6 and Section
7 concludes our study.
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II. PRELIMINARY

Automatic program repair attempts to locate a program
variant that meets an oracle by providing the source code
and the oracle that can reveal its bugs. Assuming that the
oracle is powerful enough, the repair process resolves these
errors. Some repair techniques use formal specifications, but
in most cases, existing test suites are used. A test suite is a
specification based on input-output. Failure tests are used to
expose bugs in these suites while passing test cases are used
to prevent the destruction of existing and correct behaviors
[2]. The search-based approach is a popular class of auto-
mated repair techniques and can be effective in dealing with
these global optimal problems. It will automatically search
for a program fix in the repair space [2].

The use of mutation techniques to repair programs is based
on a mutation test that evaluates the performance of a test
set by investigating whether a set can detect syntactical code
changes in the program [37]. To create a new program called
a mutant, a mutation operator is used. Each mutant represents
a defective program version [38]. The idea of a mutation-
based program repair is that a resulting mutant can’t only be
a real bug in a certain way, but also a repair for the buggy
program. The APR with the mutation is aimed at finding
the potential mutant with the desired correct program that
has the same behavior. The behavior is generally described
in practice by the execution of test cases [39]. Usually, a
correct program does not cause a failure in a proper operation
system, i.e. all test cases have been passed.

The techniques for search-based program repair are a
popular class of APR techniques. Given a buggy program,
which fails at least one test in a test suite, the repair process
searches for fixing candidates from mutations in a program,
which can pass all the tests with a certain set of repair
templates. Our repair approach consists of four primary steps
such as fault localization (step 1), mutant generation (step
2), fixed candidate extraction (step 3) and patch validation
(step 4). The effectiveness of search-based program repair is
restricted by the number to be successfully created of correct
patches. There are two reasons. First, there is no correct patch
in the search space. Second, the search space is enormous
and thus it is impossible to create the correct patch.

A. Fault Localization

The fault localization step of the repair method is used
to pick a small range of locations indicated as suspicious
among the program to reduce the scope of the search space.
They correspond to program statements for many existing
automatic repair strategies [2]. The fault localization tech-
nique ranks a buggy statement highly suspicious and the bug
can be fixed to generate possible mutants using the mutation
operators, starting with the most suspicious statement. This
process can be done without the need for human intervention
automatically.

The first step in the process of fault localization is to
calculate coverage information for the program to determine
the set of buggy statements. The coverage value defines the
statements that the program executes for each test within
the suite. Each program statement is wrapped in a coverage
statement, responsible for logging its execution and monitor-
ing it [2]. The next step is to aggregate the data into a fault

spectrum from this coverage information. The fault spectrum
provides a concise description of which statements each test
performed and whether the test result was a failure.

Previous research has found certain coefficients such as
Ochiai [24]-[25], and Tarantula [26], as the best metric for
the spectrum-based method. We use an existing technique of
fault localization in our approach. Existing empirical stud-
ies [27]-[28] have shown that in object-oriented programs,
Ochiai is more effective than other methods in identifying
the root cause of defects. It is defined as follows [24].

Sj =
a11(j)√

(a11(j) + a01(j)) ∗ (a11(j) + a10(j))
(1)

In the above equation, a11 is the number of failed runs
involving part j. a10 is the number of passed runs involving
part j and a01 is the number of failed runs which does not
include part j. Given a buggy program P = S1, S2, . . . ,
Sjwith j statements and executed by i test cases T = T1,
T2, . . . , Ti. The test results of a11 test cases are recorded
in the form of a matrix as program spectra information. The
component in the ith row and jth column of the matrix refers
to the spectral information of statement Sj , by test case Ti,
with 1 indicating Sj , and 0 otherwise [29].

B. Mutation System
Mutation testing is usually done to evaluate the effec-

tiveness of a particular test set by seeing if changes to the
program syntax code can be recognized in the test suite. [14].
A mutation operator is introduced to the original program to
generate a new program called a mutant. All mutants are
the buggy version of the initial program [15]. The principle
of using mutations for program repair is that the resulting
mutants can represent ”real defects” to some extent, then
a buggy program mutant also produces a fix for the buggy
program.

Mutation analysis employs well-defined mutation opera-
tors on syntactic structures to systematically modify the syn-
tax or objects created from the syntax [30]. It is the process
of executing program changes to create new programs, then
executing test cases with new programs, and analyzing the
results of program execution.

First, to generate a mutant P ′, mutant operator m is
used for the program P . Applying m to P is likely to
result not only in one such P ′ being generated but also in
some similar yet different mutants. If the program contains
multiple locations that can be applied, m will apply one at
each location [18].

Given a test set T, it is possible to operate each mutant
P ′ for each test case. If T has a test case (called t) such
that P (t) / = P ′(t) (i.e., the output of P ′ is different from
the output of P ) then it is killed by t. That is, an error was
found in P ′ because P ′ did not produce the expected output.
Mutants that were not killed in any of T lived, meaning that
no errors were found [18]. Since mutant P ′ can functionally
be the same as the original program P , it cannot be killed
by any test case. These mutants are referred to as equivalent
mutants. This set can be assigned the mutation score, which
is the percentage of non-equivalent mutants killed by the test
case in the test set. If the mutation score is 100%, the test
set is considered to be adequate [18].
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C. Single Line Bugs and Statement Types

A bug line in a program is a region that appears weak
and likely to cause problems or failure. So, we concentrate
on single line bugs and evaluate manually to pick them
from four projects in the dissection of Defects4J [22] for
our repair strategy. Our approach considers three categories
of statement types like expression statement, declaration
statement, and control flow statement to extract the mutated
statements that are possible as the fixed candidates from the
mutants. Expression statements modify variable values, call
methods, and object creation. Declaration statements declare
variables and control-flow statements define the order of
execution of statements. Java statements typically parse from
top to bottom. However, the order can be interrupted with
control-flow statements to enforce a branching or looping to
allow a particular code section based on certain conditions
to be implemented by the Java program. If block, return, and
looping statements are control-flow statements.

III. APPROACH

A. Overview

In this subsection, we introduce an overview of our
approach.

We propose a mutation-based program repair approach that
uses the type of bug and a mutation system to increase the
chance of correct fixes included in the search space. A buggy
program and a set of test cases are required, but at least one
test case fails. It potentially locates buggy locations, then
it extracts the potential fixed candidates based on the type
of buggy statements and mutation system, called MuJava.
We use two-level mutation operators of MuJava to find the
fixed candidates and rank the candidates using a variable
model. After receiving the order lists, the proposed system
validates the correctness of them using its test suite to define
a repair. When all of the tests are successful, the candidate is
considered a potential repair. An overview of the proposed
system is given in Figure 1.

B. Defects4J Dataset

In this subsection, we introduce the Defects4J dataset.
Defects4J is a bug dataset with 395 actual bugs that are de-
signed to assist studies in software testing. Bugs in Defects4J
have been collected from six Java open-source projects:
JFreeChart, Joda Time, Mockito Testing Framework, Closure
Compiler, Apache Commons Math and Apache Commons
Lang. The buggy version and its related fixed version are
supplied by Defects4J for each bug [22].

A bug line in a program is a region that appears weak and
likely to cause problems or failure. So, we concentrated on
single line bugs and evaluated manually to pick the bugs from
four projects in the dissection of Defects4J. Table I represents
a detailed description of the experiment benchmark. Table II
shows the description of the bugs targeted by our approach.
A bug index (Column 2) is called based on the following
rule. Letter F indicates faults, CM refers to Commons Math;
CL refers to Commons Lang; FC refers to JFreeChart and
CC refers to Closure Compiler. For instance, FCM refers
to a bug in the Commons Math project. In Math project,
FCM5, FCM6, and FCM7 come from a same buggy program

Fig. 1. Overview of the Proposed System

TABLE I
EXPERIMENT BENCHMARK DETAILS

Project KLOC 1 #Tests 2 #Bugs 3

Commons Math 85 3602 106
Commons Lang 22 2245 65

JFreeChart 96 2205 26
Closure Compiler 90 7927 133
1 ”KLOC” is thousands of lines of code,
2 ”#Tests” stands for the number of tests and
3 ”#Bugs” stands for the number of bugs.

but their buggy line numbers are different. In Lang project,
we consider as two single line bugs, named FCL2 and
FCL3 contained in FastDateFormat class. Although they
have the same bug ids, we separately fix these bugs as each
single line bug. Column 4 displays the number of suspicious
components of the targeted bugs. We define the functionality
of the method for each method that contains the buggy
code and record its Cyclomatic Complexity (Column 5). The
number of linearly independent paths in the source code of a
system is cyclomatic complexity. The complexity shows how
well a method is tested and how difficult it is for developers
to understand code [40]. As shown in Table II, the average of
suspicious components and complexity are 268.6 and 5.9 and
the median of them are 209 and 4 for 21 bugs, respectively.

C. Two-level Mutation Operators

In our strategy, we use a scheme of mutations called
MuJava 1 [5] to automatically produce the mutants with
mutation operators of both class and method level. The
mutation system modifies the program in small ways and
is called a mutant for each mutated version. Mutants are
based on clearly defined mutation operators that imitate

1https://cs.gmu.edu/ offutt/mujava/
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TABLE II
DESCRIPTION OF TARGETED BUGS

Bug ID Bug Index Bug Class # Suspicious Component # Test Case Complexity

Math2 FCM1 HypergeometricDistribution 71 17 1
Math5 FCM2 Complex 215 138 5
Math22 FCM3 FDistribution 54 19 1
Math41 FCM4 Variance 113 15 7
Math43 FCM5 SummaryStatistics 205 15 4
Math43 FCM6 SummaryStatistics 205 15 4
Math43 FCM7 SummaryStatistics 205 15 4
Math80 FCM8 EigenDecompositionImpl 854 18 4
Math85 FCM9 UnivariateRealSolverUtils 34 9 6
Math96 FCM10 Complex 129 83 4
Lang22 FCL1 Fraction 269 25 12
Lang50 FCL2 FastDateFormat 468 15 4
Lang50 FCL3 FastDateFormat 468 15 4
Lang58 FCL4 NumberUtils 435 54 19
Lang60 FCL5 StrBuilder 661 74 9
Chart1 FFC1 AbstractCategoryItemRenderer 536 10 10
Chart16 FFC2 DefaultIntervalCategoryDataset 190 20 5
Chart24 FFC3 GrayPaintScale 38 5 1

Closure62 FCC1 LightweightMessageFormatter 72 12 9
Closure63 FCC2 LightweightMessageFormatter 72 12 9

Closure100 FCC3 CheckGlobalThis 50 44 2
Average 255 30 5.9
Median 205 15 4

typical errors in the programming (for example by misuse
of the operator or name of the variable). Mutation operators
alter expression by a substitute, delete and insert. They can
produce more mutants by using larger and more diverse sets,
and at the same time, they can also improve the ability
to repair several types of bugs. Consequently, the choice
of the mutation operator to use has a significant effect on
the efficiency and effectiveness of the strategy. Indeed, the
number of bugs that are fixed by the repair approaches
depends on mutant operators choosing. A very effective
strategy must be able to solve many types of failures, but
greatly efficient strategies require minimal overhead. MuJava
is to manage all possible syntactic modifications for object-
oriented characteristics to develop mutation operators [4]-[5].
We apply two-level mutation operators (i.e., class-level and
method-level) of MuJava to generate the mutants. MuJava
provides six types of primitive operators including condi-
tional and arithmetic operators. For some of them, MuJava
provides short-cut operators [5], [7]-[8]. In our approach, we
use all method-level operators of MuJava and ten class-level
operators in the group of Java-specific features. Table III
and Table IV show the method-level and class-level mutation
operators respectively.

In class-level, EAM operator changes to other compatible
accessor method names based on Java-specific features. This
type of mistake happens because there will be many accessor
methods with the same signature and very similar names in
classes with various instance variables. This makes it easy to
confuse programmers [4], [6]. For example, given a program
that contains getA() and getB() functions and point.getA();
is a statement within the program. MuJava generates the
possible mutants when the program is mutated by MuJava
using EAM operator, so point.getB(); is one of the generated
mutants.

The useful mutation operator can handle all the possible
syntactic changes for a programming language. Generally,
the mutation operators can be created by one of the ways

TABLE III
METHOD-LEVEL MUTATION OPERATORS

Operator Description

AODU Deletiion of unary arithmetic operator
AODS Deletion of short-cut arithmetic operator
AOIS Insertion of short-cut arithmetic operator
AOIU Insertion of basic unary arithmetic operator
AORB Replacement of basic binary arithmetic operator with

alternative
AORS Replacement of short-cut arithmetic operator
ASRS Replacement of short-cut assignment operator
COD Deletion of unary conditional operator
COI Insertion of unary conditional operator
COR Replacement of conditional operator
ROR Replacement of entire predicate by true and false and

relational operator with alternative relational operator
SOR Replacement of shift operator
LOR Replacement of logical operator
LOI Insertion of unary logical operator
LOD Deletion of logical operator
CDL Deletion of constant
ODL Each relational, arithmetic, bitwise, logical, and shift

operator deletion from assignment and expression
SDL Each deletion of the executable statement by com-

menting on it and replacement of entire predicate by
true and false. It does not remove statement.

VDL Deletion of variable deletion

like delete, insert and change a target syntactic element. The
use of larger and more diverse sets of mutation operators
may generate more mutants, but at the same time, it may also
improve the ability to repair several types of bugs. Therefore,
choosing the mutation operator to use has a major impact
on the efficiency and effectiveness of the strategy. MuJava
is to manage all possible syntactic modifications for object-
oriented characteristics to develop mutation operators. This
system monitors the selective method in planning for two-
level mutation operators by manually investigating the buggy
statement and human patches.
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TABLE IV
CLASS-LEVEL MUTATION OPERATORS

Operator Description

JTI Java-specific this keyword insertion
JTD Java-specific this keyword deletion
JSI Java-specific static modifier insertion
JSD Java-specific static modifier deletion
JID Java-specific member variable initialization deletion
JDC Java-supported default constructor creation
EOA Java-specific reference assignment and content as-

signment replacement
EOC Java-specific reference comparison and content as-

signment replacement
EAM Java-specific accessor method change
EMM Java-specific modifier method change

TABLE V
NUMBER OF MUTANTS GENERATED BY MUJAVA

Bug Index Method-level Mutants Class-level Mutants Total

FCM1 856 75 931
FCM2 2395 40 2435
FCM3 683 40 723
FCM4 1315 11 1326
FCM5 544 510 1054
FCM6 544 510 1054
FCM7 544 510 1054
FCM8 16534 50 16584
FCM9 449 0 449
FCM10 1571 22 1593
FCL1 3177 104 3281
FCL2 14024 75 14099
FCL3 14024 75 14099
FCL4 4298 18 4316
FCL5 7903 18 7921
FFC1 1831 393 2224
FFC2 1269 56 1325
FFC3 344 15 359
FCC1 318 4 322
FCC2 318 4 322
FCC3 234 6 240

D. Mutant Generation using MuJava

MuJava is a Java-based mutation framework that creates
mutants automatically in the case of traditional mutations and
class-level mutations. It adapts the existing Mutant Schemata
Generation (MSG) method for mutants that modify the
behavior of the program and uses byte code translation for
mutants that modify the structure of the program. The MSG
method uses compile-time reflection and encodes all mutants
for a program into a specially parameterized program, called
a metamutant. Compile-time reflection, called OpenJava acts
as an evaluation of the source of the program and builds the
Java source for mutants. Structural mutants change elements
of the structure of the program such as variables and method
declarations. Behavioral and structural mutants are generated
and performed by different engines and their effects are then
combined. The number of mutants generated by MuJava
is shown in Table V. MuJava made the largest number of
mutants for bug index FCM8 but for FCM9, it can’t make
any mutant at class-level. This is because it can’t initialize
the parse tree when many packages have been imported into
the buggy program.

Fig. 2. Buggy Statement and Some of Fixed Candidates for Bug FCM9

E. Fixed Candidate Search

We extend the bug fixing strategy of Debroy and Wong
[18] and it comes by combining the concepts of mutation
and fault localization. They work Our approach generates all
of the mutant versions that are generated by MuJava using
two-level mutation operators of MuJava. These mutants may
be the search area for repair candidates but we extract all
mutated statements that are the same statement type with
the most suspicious statement from the mutant programs. All
extracted statements are repair candidates of our approach so
that our search space is minimized by choosing the mutated
statements that are the same type with the buggy statement.

To prevent the costly recompilation, we directly create all
repair candidates in the JVM byte code level and choose
the candidates based on three categories of statement types
(explained in Section II) according to the type of buggy state-
ment obtained by fault localization. Our approach represents
the statements as abstract syntax tree nodes together with
their line numbers and we consider three types of control
flow statements such as if statement, for statement and return
statement. For example, if the type of buggy statement is the
expression statement, we extract all expression statements
from the mutated statements. They are the fixed candidates
for our approach. Table VI shows the number of fixed
candidates extracted by our approach. As an example, Figure
2 illustrates the buggy statement and some of the fixed
candidates extracted by our approach for FCM9.

We search the correct patches according to Algorithm 1.
Firstly, our algorithm selects the most suspicious statement
according to fault localization and all mutated statements
from the mutants. Line 6 checks the type of buggy statement
pointed out by fault localization and Line 7 extracts the
mutated statements that are the same with the type of buggy
statement. We assume all extracted statements as the fixed
candidates of our approach. For all fixed candidates, we find
the correct patch by passing through the two sets of test cases
and collect if it passes through both sets of test cases i.e.,
Lines 8 to 20. Then, our approach generates a set of patches
that contain a buggy location, a buggy statement and a fixed
candidate in each patch.
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TABLE VI
NUMBER OF FIXED CANDIDATES EXTRACTED BASED ON TYPE OF BUG STATEMENT

Bug Index Method-level Candidates Class-level Candidates Total

FCM1 261 32 293
FCM2 1126 12 1138
FCM3 321 0 321
FCM4 151 0 151
FCM5 116 16 132
FCM6 116 16 132
FCM7 116 16 132
FCM8 3765 1 3766
FCM9 135 0 135
FCM10 47 6 53
FCL1 1458 15 1473
FCL2 3786 0 3786
FCL3 3786 0 3786
FCL4 2607 0 2607
FCL5 744 0 744
FFC1 453 9 462
FFC2 775 39 814
FFC3 57 3 60
FCC1 119 0 119
FCC2 119 0 119
FCC3 3 0 3

Algorithm 1 Correct Patch Search Algorithm
1: Input : Failing test cases Tf and passing test cases

Tp, ranking list of fault localization FL, mutants M
generated by MuJava and buggy program P .

2: R← Φ; // R is a set of patch
3: C ← Φ; // C is a candidate set
4: Select the most suspicious statement s on the top of FL.
5: Select all mutated statements sm from M .
6: tp ← check(s); // check type of buggy statement
7: C ← extract(tp, sm); // collect candidate statements

that are the same type with s
8: for all ci ∈ C do
9: P ← substitute(s, ci); // substitute with each can-

didate from C into P
10: for all failing test case ti ∈ Tf do
11: if ti passed P then
12: R ← R ∪ ci;
13: end if
14: end for
15: for all passing test case ti ∈ Tp do
16: if ti passed P then
17: R ← R ∪ ci;
18: end if
19: end for
20: end for
21: Output : A set of correct patch R.

F. Patch Prioritization

We assume that the appropriate repair candidates will share
high similarities with the buggy code. This is consistent
with current empirical studies [13], [19]-[20]. To generate
candidate patches, our approach prioritizes the fixed can-
didates by modeling the variables used within the source
and target codes to produce the correct patch quickly. The
similarity of variable names concerns whether the variable
names between a buggy statement (target) and the mutated
statements (sources) are similar. This idea was developed

from an existing study called the context-aware patch gener-
ation technique [13]. It is used to rank the fixed ingredients
by modeling the context information obtained from three
different aspects according to the node types of abstract
syntax tree (AST).

Given an AST node, our approach extracts a set of vari-
ables (including local variables and fields) that are accessed
by this node. We use JDT 2 packages to generate the tree
nodes. The number of variables involved in AST nodes is
used to represent the weight of the statements. Variable
usages can provide the ranking of fix candidates with more
similar variables usages compared with the buggy statement
at the higher position. We use the Jaccard coefficient to
measure the feasibility of two nodes.

f(S, T ) = |Si| ∗
|Si ∩ T |
|Si ∪ T |

(2)

Two elements are the same only if they match both the type
and the name. However, for nodes such as SimpleName
(i.e. variables), their names must be different if we replace
them with another. Therefore, for such cases, we only require
the data type to be the same.

IV. EMPIRICAL EVALUATION

In this section, we presents the evaluation of our approach
on Defects4J dataset.

Our approach is analyzed on 21 bugs from four real-world
projects in Defects4J. Our experiment is intended to answer
the following research questions:

RQ1: Are the output patches as correct as the patches
written by the developer?

RQ2: Can our approach fix real bugs in large-scale Java
programs?

RQ3: How are the fixing capabilities of mutation opera-
tors?

2https://www.eclipse.org/jdt/
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A. Patch Correctness

Due to a weak test-suite is used as an oracle, passing the
test suite may result in the test suite not being able to the
adequate patch for specific bugs. This is a condition called
patch overfitting [3], [16]. In this section, we manually assess
the accuracy of the patches generated by our approach. The
test-suite adequate patches are considered correct if they are
the same or semantically equivalent to a patch manually
written by the developer.

For RQ1, patches should be more than just passing test
suites because test cases may not be sufficient to specify
program behavior. In this article, we assume that if the
patch is functionally equivalent to the manually written patch
by developers is correct. We have followed Qi et al. [3]
to manually investigate the correctness of each generated
patch. The manual analysis involves understanding the role of
patches in computing, understanding the realms (for example,
testing mathematical functions in the Apache Commons
Math project), and understanding the meaning of test cases
as that assertion.

Table VII shows the patch evaluation of 21 bugs. Columns
2 and 3 represent the buggy code and the fixed code by our
approach. Column 4 demonstrates the fixed code that is writ-
ten manually by developers as discovered in the Defects4J
benchmark anatomy 3. Our manual patch correctness analysis
is shown in column 5 (explained in RQ1). In this column,
we illustrate that the patches produced by our technique for
8 out of 19 bugs are the same as the patches of developers.

Table VIII shows the performance on four projects of
Defects4J. To check correctness, the suggested patches are
manually compared with the actual developer patches in the
Defects4J. The index of the bugs we say is described in
column 2 and the number of correct patches is displayed in
column 3. In columns 4 and 5, we show the result for the
first correct patch obtained by patch prioritization and the
time taken by our approach in seconds respectively.

Table IX shows the code coverage analysis of the outputs
produced by the proposed system. To measure the quality
and effectiveness, we analyze the coverage values of test
cases, instruction, branch, line, and method of the repaired
programs that are used the fixed code suggested by the pro-
posed system using EclEmma Java code coverage tool 4. Test
coverage finds the area of a requirement not implemented
by a set of test cases. It will include gathering information
about which parts of a program are executed when running
the test suite to determine which branches of conditional
statements have been taken [42]. According to the previous
studies [43]-[44], code coverage of 70-80% is a reasonable
point for system tests of most projects with most coverage
metrics. In Table IX, our approach gets reasonable coverage
values except for FFC1 in JFreeChart project.

B. Real-world Bug Fix

Our methodology focused on single line bugs from De-
fects4J benchmark [22], [36]. We use the Ochiai coefficient
to detect the suspiciousness of the buggy statements. In our
experiment, we compare three well-studied fault localization
techniques: Ochiai [24], Tarantula [26] and Jaccard [41].

3http://program-repair.org/defects4j-dissection/#!/
4https://www.eclemma.org/

Fig. 3. Analysis on Repair Rate of Our Approach

Table XI presents the comparison among the fault local-
ization techniques using the top-N rank that is widely used
to evaluate techniques for fault localization. According to
their ranking result, Ochiai obtains 52.38% in top-1 while
Tarantula and Jaccard obtain 4.76% and 19.05% in top-1
respectively. For our approach, Ochiai is a reasonable choice.

For RQ2, our methodology reinforced the state of the
art techniques by evaluating the overlap of repaired bugs
between our approach and state of the art APR techniques
including CapGen, jGenProg, Nopol, and ssFix. Our ap-
proach can fix 9 of the 21 bugs that have never been fixed
by existing techniques. Figure 3 illustrated the analysis of
the repair rate of our approach and existing techniques. Our
approach can fix four bugs that are not possible with existing
techniques in the Math project and can also fix three bugs
in Lang, each one bug in Chart and Closure projects. When
we calculate the failure rate of current techniques on our
bugs, their rate is 36% in Math, 20% in Lang and 8% and
12% in Chart and Closure, respectively. Our success rate is
90% in Math, 67% in Chart and 100% in Lang and Closure
projects, respectively. The failure rate of our approach is
10% in Math and 33% in Chart. There is no failure rate
in Lang and Closure projects. In our experiments, we found
that our approach can generate the correct patches for 19
bugs in Defects4J [22], [36], which are displayed in Table
X. We achieve a precision rate of 90.48%. Our experiments
demonstrate that our approach outperforms and complements
existing techniques, beyond this quantitative performance.

C. Bug Fixing Capabilities

Our approach finds the fixed candidates among all mutants
generated by MuJava. Such mutations are produced with
well-defined mutation operators, which are program transfor-
mations that introduce small artificial faults into the program
under test systematically. For RQ3, we applied all method-
level operators and ten class-level operators of MuJava in
our approach. The bug fixing capabilities of these mutation
operators are shown in Figure 4. From this figure, we note
that ROR (the relational operator) can produce fixes for
43.14% of all the bugs that we have been able to make
fixes for the use of the mutation operators. This is followed
by COI (13.73%) which corresponds to the replacement of
the conditional operator. AOIS, COR and EAM mutation
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TABLE VII
BUGGY CODE, FIXED CODES BY OUR APPROACH AND DEVELOPERS

Bug Index Buggy Code Fixed code by our
approach

Fixed code by developers Same/Difference

FCM1 return (double) (getSampleSize() *
getNumberOfSuccesses()) / (double)

getPopulationSize();

return (double)
(getSampleSize() *

getSupportUpperBound())
/ (double)

getPopulationSize();

return getSampleSize() *
(getNumberOfSuccesses() /

(double) getPopulationSize());

Difference

FCM2 return NaN; − return INF; −
FCM3 return true; return false; return false; Same
FCM4 for (int i = 0; i < weights.length; i++) for (int i = begin; i !=

begin + length; i++)
for (int i = begin; i < begin +

length; i++)
Difference

FCM5 if (!(meanImpl instanceof Mean)) if (meanImpl instanceof
Mean)

if (meanImpl != mean) Difference

FCM6 if (!(varianceImpl instanceof Variance)) if (varianceImpl
instanceof Variance)

if (varianceImpl != variance) Difference

FCM7 if (!(geoMeanImpl instanceof
GeometricMean))

if (geoMeanImpl
instanceof

GeometricMean)

if (geoMeanImpl != geoMean) Difference

FCM8 int j = 4 * n - 1; int j = 4 * -n - 1; int j = 4 * (n - 1); Difference
FCM9 if (fa * fb >= 0.0 ) if (fa * fb > 0.0) if (fa * fb > 0.0 ) Same

FCM10 ret = (Double.doubleToRawLongBits(real)
== Dou-

ble.doubleToRawLongBits(rhs.getReal()))
&&

(Double.doubleToRawLongBits(imaginary)
== Dou-

ble.doubleToRawLongBits(rhs.getImaginary()));

ret = Dou-
ble.doubleToRawLongBits(

real ) >= Dou-
ble.doubleToRawLongBits(
rhs.getReal() ) && Dou-
ble.doubleToRawLongBits(

imaginary ) == Dou-
ble.doubleToRawLongBits(

rhs.getImaginary() );

ret = (real == rhs.real) &&
(imaginary == rhs.imaginary);

Difference

FCL1 if (Math.abs(u) <= 1 | | Math.abs(v) <= 1) if (Math.abs( u ) == 1 | |
Math.abs( v ) <= 1)

if (Math.abs(u) == 1 | |
Math.abs(v) == 1)

Difference

FCL2 if (locale != null) if (locale == null) if (locale == null) Same
FCL3 if (locale != null) if (locale == null) if (locale == null) Same
FCL4 if (dec == null && exp == null &&

isDigits(numeric.substring(1)) &&
(numeric.charAt(0) == ’-’ | |

Character.isDigit(numeric.charAt(0))))

if (dec == null && exp
== null && isDigits(

numeric.substring( 1 ) ) |
| (numeric.charAt( 0 ) ==
’-’ | | Character.isDigit(
numeric.charAt( 0 ) )))

if (dec == null && exp == null
&& (numeric.charAt(0) == ’-’

&&
isDigits(numeric.substring(1)) | |

isDigits(numeric)))

Difference

FCL5 for (int i = 0; i < thisBuf.length; i++) for (int i=0; i <= size;
i++)

for (int i = 0; i < this.size; i++) Same

FFC1 if (dataset != null) if (dataset == null) if (dataset == null) Same
FFC2 if (categoryKeys.length !=

this.startData[0].length)
if (this.startData == null) if (categoryKeys.length !=

getCategoryCount())
Difference

FFC3 if (categoryKeys.length !=
this.startData[0].length)

− if (categoryKeys.length !=
getCategoryCount())

−

FCC1 if (excerpt.equals(LINE) && 0 <= charno
&& charno < sourceExcerpt.length())

if (excerpt.equals( LINE )
&& 0 <= charno &&

charno <=
sourceExcerpt.length())

if (excerpt.equals(LINE)&& 0
<= charno && charno <=

sourceExcerpt.length())

Same

FCC2 if (excerpt.equals(LINE) && 0 <= charno
&& charno < sourceExcerpt.length())

if (excerpt.equals( LINE )
&& 0 <= charno &&

charno <=
sourceExcerpt.length())

if (excerpt.equals(LINE)&& 0
<= charno && charno <=

sourceExcerpt.length())

Same

FCC3 return false; return true; return parent != null &&
NodeUtil.isGet(parent);

Difference

operators can only fix one bug each. This is extremely
suggestive as operators such as ROR and COI are better for
methods of repairing programs based on mutations.

D. Analysis on Variable Model

In this subsection, we analyze the variable model based
on two similarity metrics for patch prioritization.

In the variable model, we used the overlap coefficient [45]
as well as Jaccard to analyze the ranking of the patches.
It measures the overlap between two sets. The measure is
determined by dividing the size of the intersection by the
smaller of the size of the two sets. We found that the ranking
result of Jaccard is better than that of Overlap. Table XII
shows the comparison between Jaccard and Overlap metrics

for the variable model. Jaccard can locate the correct patches
in top-1 for 14 bugs while Overlap can locate only for 7 bugs.
So, Jaccard got 73.68% in top-1.

V. DISCUSSION, LIMITATION, AND THREATS TO
VALIDITY

A. Discussion

The experiments in Sections 4 demonstrate that our ap-
proach can efficiently fix many types of bugs in off-the-shelf
Java programs. Our approach performs a mutation to generate
patches, indicating that it can only target those bugs that
currently require a single repair action. Our experiment was
performed on the Defects4J benchmark [22], [36], which is
a widely used dataset for studies into automatic program
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TABLE VIII
PERFORMANCE OF OUR APPROACH ON DEFECTS4J

Project Bug Index Correct Patch Rank Average Time (s)

Math FCM1 1 34 63.69
Math FCM3 1 1 26.69
Math FCM4 1 23 44.57
Math FCM5 4 1 53.26
Math FCM6 4 1 55.07
Math FCM7 4 1 55.46
Math FCM8 5 1 302.61
Math FCM9 5 1 45.89
Math FCM10 1 1 135.12
Lang FCL1 3 1 87.86
Lang FCL2 4 1 115.00
Lang FCL3 4 1 69.52
Lang FCL4 1 1 108.81
Lang FCL5 7 1 120.35
Chart FFC1 2 1 83.86
Chart FFC2 4 61 47.78

Closure FCC1 1 1 58.59
Closure FCC2 1 1 26.97
Closure FCC3 2 1 47.56

TABLE IX
CODE COVERAGE ANALYSIS OF THE PROPOSED SYSTEM

Bug Index Coverage (%)
Test Instruction Branch Line Method

FCM1 72 99 96 96 95
FCM3 65 97 100 96 94
FCM4 82 84 70 87 76
FCM5 85 89 62 84 75
FCM6 85 89 62 84 75
FCM7 85 89 62 84 75
FCM8 91 89 81 89 89
FCM9 65 70 73 82 83
FCM10 80 96 92 97 100
FCL1 84 98 92 98 100
FCL2 76 68 67 72 65
FCL3 76 68 67 72 65
FCL4 85 97 90 98 100
FCL5 84 65 70 68 73
FFC1 85 25 26 28 45
FFC2 79 72 56 73 84
FCC1 93 88 60 87 63
FCC2 93 88 60 87 63
FCC3 82 93 85 94 100

Fig. 4. Fault Fixing Capabilities of Mutation Operators

repair research. It comprises of six big projects developed
by various developers and includes 395 bugs in total.

In the experiment, we reference the bug-related developer
patch to determine the validity and accuracy of the patch pro-

duced by our approach manually. In specific, there are other
techniques for defining it. While determining the significance
or validity of some of the possible patches produced by our
strategy and other methods is not simple, some patches may
be valid and correct even if they are not syntactically equal
or similar to developer patches.

B. Limitation and Threats to Validity

Like most previous test-suite based program repair work,
our approach can only address buggy programs where there is
a single bug. We cannot currently repair multiple bugs in Java
programs. The repair efficiency of our approach significantly
depends on how code searches are conducted within mutant
programs. With a better code search, our approach can be
more efficient and can produce more valid/correct patches.

Our approach depends on the mutation system, so if we
can modify the mutation system to produce more mutants,
we will be able to get more fixes. Our choice of subject
programs is a threat that may limit the generalization of
our results. However, we performed our experiments on four
projects to alleviate this threat. We evaluated our approaches
on 21 buggy programs from four real-world projects of the
Defects4J benchmark [22], [36].

VI. RELATED WORKS

A. Search-based Program Repair

SearchRepair [12] is a system inspired by the code search,
was proposed by Ke and colleagues. First, the code fragment
is indexed as an SMT constraint, and then the fragment is
combined with the required I/O pairs and fragments into
a constraint problem at the time of repair. The system is
designed by students to evaluate online courses in the Small
C programs.

CapGen [13] is a context-aware repair technique, which
works at the AST node level to improve the likelihoods of
search space incorporating the correct patches. The context
information is extracted for fixing ingredients by three dif-
ferent models, such as genealogy, variable and dependency.
It used three types of mutation operators to rank the fixing
ingredients. It operates in terms of AST nodes at a good
granularity. At the expression level, CapGen considers con-
text similarity, dependency similarity and name similarity
between the fragment of buggy code and the ingredients.
It produces patches from the top of the ranking through
statements using the policy of brute force.

In 2014, Debroy et al. [18] proposed an automatic bug
fixing technique by combining the concepts of mutation and
fault localization. They use Tarantula to locate the bugs, and
mutants are generated from the top of the ranking through
statement and use policy of brute force. The mutation oper-
ators, such as logical, relational, arithmetic and assignment
operators, were considered to replace with another operator
of the same type, negating if/while conditions were met.

SsFix [19] conducted a syntactic code search and used
existing bug repair code fragments to find new code in a code
database whose syntax is related to bug contexts. It depends
on the Apache Lucene search engine to gather similar code
fragments, which have been developed for plain text but
programs. The ingredients are then obtained by making a
patch from a similar code chunk.
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TABLE X
REPAIR RATES OF OUR APPROACH AND OTHER APPROACHES

Project Our Approach CapGen jGenProg Nopol ssFix

Math 9 2 3 4 0
Lang 5 0 0 1 0
Chart 2 1 0 0 1

Closure 3 1 1 0 0
Total 19 3 4 6 1

Precision 90.48 14.29 19.05 28.57 4.76

TABLE XI
TOP-N COMPARISON AMONG THREE FAULT LOCALIZATION

TECHNIQUES

Metric Top-1 Top-3 Top-5 Top-10

Ochiai 52.38 66.67 66.67 85.71
Tarantula 4.76 4.76 4.76 4.76
Jaccard 19.05 19.05 19.05 19.05

TABLE XII
COMPARISON BETWEEN TWO METRICS FOR VARIABLE

MODEL

Metric Top-1 Top-3 Top-5 Top-10

Jaccard 73.68 73.68 73.68 73.68
Overlap 36.84 42.11 52.63 63.16

Jiang et al. [20] proposed a program repair technique,
called SimFix which is considered the structure similarity,
method name similarity and variable name similarity be-
tween the buggy statement and ingredient. But they remove
ingredients that are less frequent in existing patches. From
this point of view, SimFix and CapGen are two very similar
approaches.

Wang and colleagues [21] proposed an automatic operator
error debugging technique. It combines program repair with
mutation analysis based on the location of the bug. Depend-
ing on their experiments, it can fix the programs correctly
with specific errors.

In 2012, GenProg [23] seeks to repair programs without
any specifications and to apply genetic programming without
the guidance of historical patches to statement level mutation
of existing source code. Originally designed for building
repair approaches, Astor [34]-[35] was named jGenProg, a
Java implementation of GenProg initially intended to repair
C code. The concept is to create a program by using repair
operators to reach a modified version without the bug.

B. Semantics-based Program Repair

Nopol [9] is a repair approach for conditional statement
bugs. It can fix the programs by either adding a precondition
(i.e. a guard) or modifying an existing IF condition to state-
ment or block in the code. SMT synthesizes the condition
that is modified or inserted. To facilitate repair, several test
cases are modified. According to the empirical analysis of
these bugs, it can effectively fix bugs with two types of
conditions. It has been extended to repair infinite loops as
well.

Based on symbolic execution and code synthesis, Nguyen
et al. [10] proposed a repair technique called Semfix. They
considered the bugs in boolean conditionals and the right-
hand side of assignments. Angelic debugging [31] is used

to discover the repair location, then synthesize the fixed
expression with the input-output components. The same
group proposed Angelix [32] to overcome this problem.
It is a repair system such as Semfix [33], the symbolic
execution stage was significantly designed to scale up to large
programs and to gain more than one angelic value, which is
the “angelic forest”.

PAR [11] is a program repair for Java bugs. It is based
on templates for repairing and a repair template of PAR is
a common way to fix a common bug. For example, access
to a null point is a common bug, and a common fix is to
add a null-ness check just before the undesirable access. It
is the template used to test the null pointer exception. The
templates are randomly applied and tested.

VII. CONCLUSION

In this paper, we proposed a search-based program repair
technique to detect the bug and fix it based on the type
of buggy statement and mutation system called MuJava as
quickly as possible. We used both two-level mutation oper-
ators of MuJava to find the fixed candidates and prioritized
the candidate patches by modeling the variables of the buggy
code and fixed candidates. We considered modifying the
source codes for its impact on the overall structure of the
software system with little consideration. We concentrated
on single line bugs, and we evaluated our approach on four
real-world projects of the Defects4J dataset. Our approach
can produce the correct patch for 19 bugs of 21 bugs, where
9 bugs have never been fixed by existing techniques. We have
a plan to evaluate our approach in the future to address more
real-world bugs and more types of mutation operators.
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