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Abstract—Accurate classification of unknown input data for
imbalanced data sets is difficult, because the predictions of
learning classifiers tend to be biased towards the majority class
and ignore the minority class. Moreover, the class distribution of
imbalanced data has a significant impact on the misclassification
rate of the learning classifier. So, this paper introduces an
effective data pre-processing approach to improve the efficiency
of imbalanced data classification, focusing on the skewed
distribution of data points in the imbalanced data set. This
proposed approach involves over-sampling and under-sampling
techniques based on k-means clustering to overcome the prob-
lems associated with imbalanced learning of small disjuncts
and small sample size. And, Tomek Link-based under-sampling
method is also incorporated into the proposed cluster-based
resampling methods to solve the class overlapping problem
by eliminating the majority samples in overlapping regions.
Experiments are performed on the 25 standard imbalanced data
sets by applying four learning classifiers, and validated with the
three popular metrics (i.e. Area Under the Curve (AUC), Geo-
metric Mean (G-mean) and Balanced Accuracy (BA)). Specially,
we show that the proposed approach has outperformed the
other state-of-the-art resampling methods using performance
metrics, probabilistic estimation, statistical analysis and multi-
criteria decision-making methodology (MCDM).

Index Terms—Imbalanced Data Classification, Under-
Sampling, Over-Sampling, Ensemble Learning, Probabilistic
Estimation, Multi-Criteria Decision-Making.

I. INTRODUCTION

IN the fields of data mining and machine learning, most
learning algorithms are designed to improve the overall

classification accuracy, and assumed that the number of sam-
ples in different classes is equal. As a result, these algorithms
do not effectively handle the class imbalanced data sets [15].
The class imbalanced data set refers to a data set where
the size of a class is larger than the size of another class
(i.e. majority class and minority class, respectively) [10],
[17]. Without considering the problem of class imbalance,
the performance of learning algorithms is dominated by the
majority class samples and the minority class samples are
ignored as noise.

Nowadays, the class-imbalanced data sets are available
in various real-world applications such as prediction of
natural disaster, prediction of software defect, prediction of
bankruptcy, prediction of rare disease in medical diagnosis
and fraudulent credit card transaction [9], [10], [15], [19],
[30], [51], where the misclassification costs for minority class
are more interesting and important than the majority class
[1], [13], [33]. E.g., In cancer diagnosis, cancer patients and
non-cancer patients can be categorized as the minority class
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and majority class, which means that some patients rarely
have cancer disease and most patients suffer from common
diseases. So, the prediction of cancer patients can be difficult
to predict accurately. Besides, the incorrect prediction on a
medical diagnosis not only endangers the patients, but also
requires additional resources for the right treatments.

So, to overcome the class imbalance problems, many
heuristic approaches have been proposed based on the so-
lutions of data level and algorithm level [11], [15], [46].

(1) Data Level Solution: Data level solution is a re-
sampling technique that modifies the class distribution of the
training set into a balanced class distribution before applying
the learning algorithms [35]. In imbalanced learning, chang-
ing the class distribution is more efficient than modifying the
learning classifiers, as various classifications can be easily
combined [30], [32], [50].

(2) Algorithmic Level Solution: The algorithmic level
solution involves the creation of new learning models or
modification of existing ones without considering class distri-
butions of the training set (e.g. assigning weights to samples
for training). This technique requires special knowledge from
the relevant classifiers and application domains, to find out
why classification is not achieved when the class distribution
is imbalanced [17], [27]. Therefore, the main focus of
data level and algorithmic level solutions is to improve the
efficiency of learning algorithms, affecting the minority class.

Although several solutions related to the class imbalanced
learning have been proposed, most of them focused on the
class distributions of the training data set. Moreover, the
skewed distribution in the imbalanced data sets will lead
to the degradation of predicting results. So, the skewed
distribution of data points is a special challenge for the
learning classifiers. Small disjuncts, class overlapping, and
small sample size are the characteristics of skewed distribu-
tion that are difficult to achieve the precise results for future
predictions [15], [17], [30], [32].

(1) Small Disjuncts: The problem of small disjuncts
occurs when the minority samples are scattered as several
clusters and some clusters are surrounded by the majority
class samples. So, the small disjuncts problem is closely
related to the within-class imbalance problem, which indi-
cates a significant reduction in the performance of learning
classifiers [24], [32], [42].

(2) Class Overlapping: The problem of class overlapping
occurs when the data samples of different classes have
similar data features. If there is an overlap between the
samples of different classes, most classifiers wrongly classify
the minority class samples into the majority class samples
[9], [32], [45].

(3) Small Sample Size: The problem of small sample size
may be identified if the number of minority class samples is
not adequately included in the training data set. This problem
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Fig. 1. Class Distributions of Imbalanced Data Set

is closely related to the between-class imbalance problem.
The number of samples in different classes is an important
part to improve the performance of learning algorithms [15],
[19].

Fig. 1 shows the class distribution of an imbalanced
data set with majority class samples (denoted by “cycle”)
and minority class samples (denoted by “star”) that makes
the classification difficulties. In the next section, the rel-
evant literature review will be discussed, focusing on the
characteristics of skewed class distributions and various re-
sampling techniques, as these characteristics are important
for improving the efficiency of learning algorithms.

In this paper, we propose an effective data pre-processing
approach based on the under-sampling and over-sampling
techniques to overcome this skewed distribution problem
of an imbalanced data set. In this effective resampling
approach, k-means clustering method is combined with Syn-
thetic Minority Over-Sampling Technique (SMOTE) [8] and
Random Under-Sampling Technique (RUS) [3] to handle
small disjuncts and small sample size problems. Furthermore,
Tomek Link-based under-sampling step [43] is integrated
into the proposed cluster-based resampling steps to elim-
inate the majority samples from the overlapping regions.
After executing the proposed data pre-processing approach,
the new training set is applied by embedding the learning
classifiers (including both ensembles and single classifiers)
for the model construction. And, the effectiveness of our
proposed approach is validated with the performance met-
rics, probabilistic estimates, and statistically significant tests.
Finally, the best sampling method each learning classifier
will be determined by implementing TOPSIS (Technique for
Preference Order by Similarity to Ideal Solution) approach
[38], [40].

The main contributions of this paper are as follows:

1) First, we demonstrate the effectiveness of the skewed
distribution in imbalanced data sets by comparing five
state-of-the-art resampling techniques using the four
learning classifiers.

2) Second, we validate the performance of our proposed
approach not only by the evaluation metrics for the
class label prediction, but also by the probabilistic
estimates for the expected cost, which have never been
done before.

3) Finally, TOPSIS approach is implemented to suggest

the best sampling method for each learning classifiers.
The rest of the paper is organized as follows. Section

2 describes some popular sampling methods relating to
this research. The model construction and the architecture
overview of the proposed approach to studying the skewed
distribution of imbalanced data set are introduced in Section
3. And, Section 4 displays the proposed approach’s exper-
imental settings. Experimental results and analysis of the
proposed data pre-processing approach and comparison with
other methods are presented in Section 5. Finally, concluding
remarks and some suggestions of future works are drawn in
the final section.

II. RELATED WORKS

In most studies related to the solution of the class imbal-
ance problem, the use of data level solution has a higher
prospective effect because it can improve the performance
of the learning classifier for the skewed distribution of
imbalanced data [34]. Data level solution is a re-sampling
technique that modifies the class distribution of the training
set to a balanced class distribution before applying the
learning algorithms [30], [35]. This section briefly reviews
the related works of imbalanced learning which emphasize
the methods of the data level solution. The data level solution
can generally be divided into two groups [2]: over-sampling
of minority class and under-sampling of majority class.

Over-sampling involves duplicating samples of the minor-
ity class or synthesizing new samples of the minority class
from existing samples. Random Over-Sampling (ROS) [3]
is a popular over-sampling method, which randomly over-
samples the minority class samples to balance the class distri-
butions [19]. Although ROS method can produce a balanced
class distribution, the training computation’s complexity and
the over-fitting problem may be affected as disadvantages.
To avoid the over-fitting problem, SMOTE method [8] is
used to generate the new minority class samples, but it
can cause the overlapping problem between different classes
[21]. So, to improve the performance of learning classifiers,
many changes had been proposed for SMOTE. For example,
Borderline-SMOTE over-samples the minority samples near
the borderline rather than all samples of a minority class [18].
Safe-level-SMOTE is an improved algorithm of Borderline-
SMOTE that identifies the relative area of the new synthetic
samples [7].

Besides, the noise and borderline samples are very dan-
gerous for the classification performance [35]. The noise
and borderline samples give the class overlapping problem
for the learning algorithms. So, SMOTE-NCL, SMOTE-
ENN, and SMOTE-TL are used to prevent class overlapping
and imbalanced problems with an excessive generalization
of SMOTE and dangers of overlapping problems [3], [42].
SMOTE-IPF not only over-samples the borderline samples
of the minority class, but also introduces the noise filtering
technique to remove the noisy samples in the majority and
minority classes [36].

Under-sampling involves deleting samples from the ma-
jority class. Random Under-Sampling (RUS) method [3] is
a popular under-sampling method involving the random re-
moval of majority class samples to balance the class distribu-
tion [19]. Although RUS method can create a balanced class
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Fig. 2. Framework of Proposed Approach

distribution, it has a useful information loss problem. The
cluster-based under-sampling method is also used to achieve
uniform the class distributions and to avoid the information
loss problem by eliminating the majority samples [30],
[41], [50]-[51]. This cluster-based under-sampling method
improves the classification performance rather than Random
Under-Sampling (RUS) method because it can reduce the
useful information loss problems [30].

Furthermore, the classification performance of the imbal-
anced data set may deteriorate not only the problem of class
imbalance, but also the problem of class overlapping. So,
the class overlapping problem is also a key factor in the
imbalanced data set, because it can be difficult to correctly
classify the minority class samples. Earlier studies had been
combined the popular data cleaning methods and resampling
methods to overcome the class imbalance and overlapping
problems [9], [11], [32], [41].

Tomek Link is a popular under-sampling method for
solving the class overlapping problem, that has been modified
by Condensed Nearest Neighbors (CNN) [22]. In Tomek
Link, xj and xi are the two samples of different classes (the
majority class and minority class, respectively) [11], [41],
and d(xj , xi) is the distance between xj and xi. d(xj ,
xi) pair is called a Tomek Link if there is no sample xg ,
such that d(xj , xg) < d(xj , xi) or d(xi , xg) < d(xj
, xi). Edited Nearest Neighbor method (ENN) [49] was
also used to remove the samples of the majority class by
considering its k nearest neighbors that belonging to the
other classes, where k = 3. If the number of neighbors in
each majority sample is predominant from minority class
samples, these majority class samples are removed as the
overlapping samples. Another method of data cleaning is
the neighborhood cleaning rule (NCL) for the removal of
samples from the majority class [29].

Moreover, the noisy minority sample filter method was
also combined with several methods of resampling as the pre-
processing step [25]. And, the effectiveness of the minority
noise filter method is examined in the imbalanced data clas-

sification. The class overlapping and imbalanced problems
[9] are handled by combining with neighbor cleaning rules
(NCL) and ensemble-based random under-sampling (ERUS)
methods [29], [31]. The combination of Tomek Link and k-
means clustering method [41] was also used as an effective
under-sampling technique for addressing the class imbalance
and overlapping problems.

In summary, many heuristic techniques have been con-
ducted to improve the efficiency of imbalanced data classi-
fication. Most of the proposed methods would address the
imbalanced problem among different classes, while some
methods solved the class imbalanced and overlapping prob-
lems. Additionally, the problems of class imbalance and
overlapping have been combated, but the three characteristics
of skewed distribution problems have not been handled.

III. PROPOSED METHODOLOGY

The main objective of this research work is to find an
efficient way for the classification of imbalanced data. Fig. 2
shows the architecture overview of the proposed framework.

A. Data Pre-processing Phase

In this paper, an effective resampling approach is proposed
to improve the efficiency of classification algorithms, in
which the class distribution of an imbalanced data set is
changed before applying the learning algorithms.

The proposed approach combines the cluster-based resam-
pling methods with Tomek Link method in order to alleviate
the skewed distribution of data points from imbalanced data
sets (denoted as COTU). The proposed COTU approach has
been combined with the following three steps:

1) Cluster-Based Over-Sampling Step
2) Tomek Link-Based Under-Sampling Step
3) Cluster-Based Under-Sampling Step
Algorithm 1, 2 and 3 provide a brief description of

proposed COTU approach.
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Algorithm 1 : Cluster-Based Over-Sampling Step
Input: Imbalanced Training Set, T = {Min, Maj}.
Output: New Set, T ′ = {Min′, Maj}.

1: K ← no: of clusters;
2: Min ← set of minority samples in T ;
3: Maj ← set of majority samples in T ;
4: Min′ ← φ;
5: T ′ ← φ;
6: procedure SMALLDISJUNCTS (T , K)
7: SizeMin ← size of minority samples in T ;
8: C ← k-means(Min, K); //Clustering
9: for each ci ∈ C do

10: Mini ← set of minority samples in ci;
11: SizeiMin ← size of minority samples in ci;
12: if SizeiMin > 1 then
13: SyniMin ← SizeMin

Sizei
Min

;

14: if SyniMin > SizeiMin then
15: O ← over-sample, Mini into SyniMin;
16: Min′ ← Min′ ∪ {O};
17: else
18: Min′ ← Min′ ∪ {Mini};
19: end if
20: end if
21: end for
22: T ′ ← {Min′ ∪ Maj};
23: return T ′;
24: end procedure

TABLE I
CLUSTER-BASED OVER-SAMPLING DESCRIPTION

ClusterID SizeMin Syni
Min

0 9 9 ��(5)
1 4 11
2 24 24 ��(2)
3 3 15
4 5 9

SizeMin = 45 SizeMin = 68
Before Over-sampling After Over-sampling

1) Cluster-Based Over-Sampling: Class imbalance in-
cludes between-class imbalance and within-class imbalance
[1], [39]. To achieve better prediction in imbalanced learning,
the small disjuncts problem is one of the harmful problems.
The small disjuncts problem relates to the within-class im-
balance problem because the minority class is composed of
several sub-concepts and the sizes of these sub-concepts are
distinct, indicating a significant reduction in the efficiency of
classification [24], [42].

In this paper, the proposed cluster-based over-sampling
step, Algorithm (1) represents the first step in COTU ap-
proach to solving the small disjuncts problem, depending on
the clustering of k-means and SMOTE [8].

In this Algorithm (1), the entire minority class is clustered
into several groups and determines the sufficient number of
synthesized samples (SyniMin) in the ith cluster (1 ≤ i ≤
K) by considering the ratio of the size of minority class
(SizeMin) to the number of minority class samples in the ith

cluster (SizeiMin). After identifying the number of minority
samples in the ith cluster by using Eq. (1), we use SMOTE

Algorithm 2 : Tomek Link-Based Under-Sampling Step
Input: Data Set, T ′ = {Min′, Maj}.
Output: New Set, T ′′ = {Min′, Maj′}.

1: Min′ ← set of minority samples in T ′;
2: Maj ← set of majority samples in T ′;
3: neg ← majority class value in T ′;
4: Maj′ ← φ;
5: T ′′ ← φ;
6: procedure CLASSOVERLAPPING (T ′)
7: for each xi ∈ T ′ do
8: N ← 1st nearest neighbor sample of xi;
9: if class(xi) ! = class(N ) then

10: if class(xi) == “neg” then
11: X ← X ∪ {xi};
12: else
13: X ← X ∪ {N};
14: end if
15: end if
16: end for
17: Maj′ ← Maj − X;
18: T ′′ ← {Min′ ∪ Maj′};
19: return T ′′;
20: end procedure

to over-sample the minority class samples.
For each cluster ith,

SyniMin =
SizeMin

SizeiMin

(1)

For example, Table I shows the number of synthesized
minority samples in the ith cluster by calculating Eq. (1).
Where, Syni

Min is lower than SizeiMin, SizeiMin acted as
SyniMin. After this step has been taken, the problem of
small disjuncts is resolved in the training set.

2) Tomek Link-Based Under-Sampling Step: Tomek Link-
Based Under-Sampling [43] is the second step of COTU
approach, which is used to identify and eliminate the majority
samples from the overlapping regions. The under-sampling
of overlapping samples is also a reasonable approach for
improving the performance of the learning algorithms [15],
[45].

Tomek Link is a popular under-sampling method for
solving the class overlapping problem, which based on
two closely related samples from the different classes [11],
[41]. In this paper, Algorithm (2) is a cleaning step for
overlapping samples by reducing the majority samples,
which are closely related to the minority samples.

3) Cluster-Based Under-Sampling Step: Another class
imbalance problem is the between-class imbalance problem.
The between-class imbalance problem corresponds to the
small sample size problem, in which the size of minority
class samples is smaller than the size of the majority class
samples [39]. In the imbalanced learning, the prediction of
learning classifier tends to favor the majority samples and
ignores the minority samples, since the layout of learning
classifiers is designed to provide the balanced data sets [21].

In this paper, the proposed cluster-based under-sampling
step, Algorithm (3) is applied in COTU approach as the final
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Algorithm 3 Cluster-Based Under-Sampling Step
Input: Data Set, T ′′ = {Min′, Maj′}.
Output: Balanced Data Set, T ′′′ = {Min′, Maj′′}.

1: K ←no: of clusters;
2: Min′ ← set of minority samples in T ′′;
3: Maj′ ← set of majority samples in T ′′;
4: Maj′′ ← φ;
5: T ′′′ ← φ;
6: procedure SMALLSAMPLESIZE (T ′′, K)
7: C ← k-means(Maj′, K); // Clustering
8: for each ci ∈ C do
9: Maj′

i ← set of majority samples in ci;
10: SizeiMaj′ ← size of majority samples in ci;
11: SizeMaj′ ←size of majority samples in T ′′;
12: if SizeiMaj′ > 1 then

13: UndiMaj ←
Sizei

Maj′

SizeMaj′
∗
∑K

i Syni
Min;

14: if UndiMaj < SizeiMaj′ then
15: R← under-sample, Maj′

i into UndiMaj ;
16: Maj′′ ← Maj′′ ∪ {R};
17: else
18: Maj′′ ← Maj′′ ∪ {Maj′

i};
19: end if
20: end if
21: end for
22: Balanced Data Set, T ′′′ ← {Min′ ∪ Maj′′};
23: return T ′′′;
24: end procedure

TABLE II
: CLUSTER-BASED UNDER-SAMPLING DESCRIPTION

ClusterID SizeiMaj UndiMaj

0 17 14
1 3 2
2 39 31
3 22 18
4 4 3

SizeMaj = 85 SizeMaj = 68
Before Under-sampling After Under-sampling

step for solving the small sample size problem, depending on
k-means clustering and RUS methods [3]. In this Algorithm
(3), the whole majority class samples set into some clusters,
and determines the number of selected majority samples
(UndiMaj) for the ith cluster (1 ≤ i ≤ K) by Eq. (2). After
determining the number of selected majority samples, the
majority samples in each cluster are randomly selected [3].

For each cluster ith,

UndiMaj =
SizeiMaj

SizeMaj
∗

K∑
i

Syni
Min (2)

In Eq. (2), the number of selected majority samples for the
ith cluster (UndiMaj) is the combination of

∑K
i Syni

Min

which is the total number of synthesized samples that are
supported with Eq. (1) and (

SizeiMaj

SizeMaj
) which is the ratio of the

number of majority samples in the ith cluster to the number
of whole majority class samples. Table II describes the
example of a cluster-based under-sampling step for handling
the small sample size problem.

After COTU approach has been established, a new bal-
anced training data set can be created by avoiding the three
challenges of skewed distribution.

B. Classification Phase

After executing the data pre-processing phase, the refining
training data set is fed into the classification phase to predict
the unknown input variables for a specific class. In this paper,
Decision Tree (C4.5) and Navies Bayes (NB) are used to
investigate the impact of COTU approach and existing data
pre-processing techniques on classification tasks by using the
WEKA Machine Learning Tool, which is an open-source
data mining suite [20]. C4.5 is a learner of a decision tree
using an entropy-based splitting criterion based on informa-
tion theory [21], [37]. In this study, we used J48 algorithm
in Weka to implement C4.5. Naive Bayes (NB) uses Bayes’s
rule of conditional probability to classify samples, where all
variables of the predictor are conditionally independent [21].

Furthermore, the individual classifier is combined
with AdaBoost mechanism (such as AdaBoost-C4.5 and
AdaBoost-NB) to form the final prediction model. AdaBoost
is a popular boosting algorithm that uses the entire data set
to serially train each classification, but it focuses on misclas-
sifying samples in every round to correctly classify samples
in the next iteration [16], [17]. In our evaluation, all learning
classifiers are constructed with the default parameters setting
of WEKA Machine Learning Tool [20].

C. Result Analysis Phase

In this section, the details of the results analysis
arrangements for evaluating the performance of COTU
approach are presented. First, we described the performance
metrics for experimental analysis. Then, the accuracy of
the probabilistic estimation is briefly described. Moreover,
Wilcoxon Signed Rank Test is discussed to perform a
statistical analysis of all experiments. Finally, TOPSIS
strategy is discussed to decide the best sampling method for
each learning classifier.

1) Performance Metrics: The performance of learning al-
gorithms is evaluated by the confusion matrix. The confusion
matrix of a two-class problem records the results correctly
and incorrectly recognized samples of each class [25]. This
research work focuses on the two-class imbalanced data sets,
where the smallest number of instances is a positive class
(minority class) and the largest number of instances is a
negative class (majority class).

In the class imbalance learning, the performance measures
are crucial to evaluate the performance learning algorithm.
Some widely used measures, such as accuracy, the predom-
inance of majority class can mask the poor classification
performance for minority class. The imbalanced data per-
formance metrics must depend on results from both classes,
and measurements for each class are inadequate [41]. The
main performance metrics of this research are Area Under
the Curve (AUC) Eq. (3) Geometric Mean (G-mean) Eq. (4)
and Balance Accuracy (BA) Eq. (5). AUC, G-mean and BA
metrics are evaluated based on the results of the majority
class and the minority class, simultaneously.
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In Eq. (3) to (5), TP is the number of minority samples
correctly predicted (True Positive), TN is the number of
majority samples correctly predicted (True Negatives) and
FP is the number of majority samples incorrectly predicted
as minority samples (False Positives) [35].

AUC =
(1 + TPrate− FPrate)

2
(3)

G−mean =
√
(TPrate× TNrate) (4)

BA =
TPrate+ TNrate

2
(5)

Area under the ROC curve (AUC) represents a trade-off
measure between TP rates and FP rates. It estimates the area
under the receiver operating characteristics (ROC) curves.
ROC is obtained by plotting a set of TP rates versus FP rates
related to various classification thresholds [14]. A higher
AUC shows better classifier efficiency [9], [33]. G-mean is
the geometric average of TP rate and TN rate. G-mean value
produces the high scores when errors in the majority and
minority classes are low [28]. Similarly, BA is the arithmetic
average of true positive and true negative rates [44], as
shown in Eq. (5). The measurement of BA is identical to the
conventional accuracy when the classifier performs equally
well in either class. However, if the conventional accuracy
is high only because the classifier takes advantage of good
prediction on the majority class, then the balanced accuracy
will be lower [4], [6].

So, AUC, G-mean and BA are the best metrics for
evaluating model performances, as these measures can
provide an opportunity to evaluate the results of majority
class and minority class, simultaneously [2], [41].

2) Accuracy of Probabilistic Estimation: To estimate the
expected costs of classification decisions, Brier score (BS)
Eq. (6) [5] [47] is used. BS is a measure of the average
squared difference between the estimated probabilities and
the observed class value. (yi − P̂ yi|xi) is the difference be-
tween the observed labels and the corresponding probability
estimation. In Eq. (6), we are assuming that, y ∈ {0,1} and N
is the number of instances in the test set. For the probabilistic
predictions of a model, the lower brier score is more accurate.

BS =

N∑
i=1

(yi − P̂ yi|xi)2

N
(6)

However, when estimating the probability of imbalanced
scenario, the overall Brier score (BS) may increase the
uncertainty due to the underestimation of the probability of
minority class instances. So, the stratified Brier score is used
to measure the probability calibration Eq. (7) and Eq. (8)
offer a lot more detail than the overall Brier score (BS) Eq.
(6) because the stratified Brier score can provide the model
calibration for both classes [47]. BS+ is a Brier score of
minority class which measures the goodness of the minority
class estimation. In Eq. (7), P̂ yi|xi is the probability estimate
of minority sample xi and Nmin is the total number minority

class samples. And also, BS− Eq. (8) is a Brier score for
the best estimation of the majority class, in which P̂ yi|xi is
the probability estimate of majority sample xi and Nmaj is
the total number majority class samples.

BS+ =

Nmin∑
yi=1

(yi − P̂ yi|xi)2

Nmin
(7)

BS− =

Nmaj∑
yi=1

(yi − P̂ yi|xi)2

Nmaj
(8)

BSBal =
BS+ +BS−

2
(9)

BSBal Eq. (9) is the arithmetic mean of BS+ and BS−,
which measures the probability estimations of minority
class and majority class simultaneously. If BSBal is good,
the probability estimation of minority class and majority is
completely reliable.

3) Statistical Significance Tests: In our Statistical Signif-
icance Tests, Wilcoxon Signed Rank Test is performed with
SPSS software to test the statistical analysis of comparative
results. Wilcoxon’s Signed Rank Test was a hypothetical test
of non-parametric statistical tests that used to compare two
different sampling methods for the same data sets and assess
for the significant difference (i.e. It is a paired difference
test) [12], [48].

In Wilcoxon’s Signed Rank Test, W+ and W− are
the sum ranks of positive and negative, and PWilcoxon

is the Pvalue of Wilcoxon’s test. Win-Tie-Loss is the
number of cases, where the results of COTU approach
are greater − than, equal − to and less − than the
comparison methods. For all statistical tests of this paper,
the level of significance is set at Pvalue = 0.05. When
PWilcoxon is less than 0.05, the comparison of the paired
difference methods will be significantly different. In our
statistical analysis, all significant differences in each data
pre-processing techniques are highlighted in boldface.

4) Sampling Method Selection: In this part, we illustrate
how to determine the appropriate sampling method for
each learning model using TOPSIS strategy in the MCDM
methodology. TOPSIS is the best way to select the best action
from a set of alternatives, each of which is evaluated using
several criteria. TOPSIS finds the best possible alternative
by minimizing the distance from the positive ideal solution
(PIS) and maximizing the distance from the negative ideal
solution (NIS) [38], [40].

In the experiment, the goodness of sampling methods is
measured based on AUC, G-mean, BA and BSBal results
from 25 imbalanced data sets (Criteria) and six sampling
methods (Alternatives). Then, the results of TOPSIS are
collected and detailed analyses are carried out in the section
of results and discussions.

The processes of TOPSIS strategy for the experimental
analysis is summarized as follows:

Where, the construction of a decision matrix (DM) is the
first step of TOPSIS strategy. In Table III, i is the alternative
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TABLE III
DECISION MATRIX CONSTRUCTION

Alternatives
Criteria

C1 C2 C3 ... Cy

A1 a11 a12 a13 ... a1y

A2 a21 a22 a23 ... a2y

: : : : :
Ax ax1 ax2 ax3 ... axy

index (i = 1, ..., x) and j is the criteria index (j = 1, ..., y).
The elements C1, C2, ..., Cy refer to the criteria, while
A1, A2,..., Ax refer to the alternatives. Alternative Ai’s
performance value on the criterion Cj is represented by aij .

Step 1 : Calculate the normalized decision matrix. The
normalized value rij is calculated as;

rij =
aij√∑
a2ij

(10)

Step 2 : The weighted normalized decision matrix is con-
structed while the criterion’s weight value plays an important
role for MCDM technique, which affects the final ranking of
alternatives.

In the experiments of this paper, the criterion
weights are determined by (Wj= 1

n ). The weighted normal-
ized value vij is calculated as V .

V = vij =Wj ∗ rij (11)

Where Wj is the weight of the jth criterion and n is the
number of criteria.

K∑
j=1

Wj = 1 (12)

Step 3 : Determine the positive ideal (A+) and negative
ideal solutions (A−) that are defined by the weighted
decision matrix.

(1) Positive Ideal Solution
PIS = A+ = V +

1 , V +
2 , V −3 ,..., V +

n , where:
V +
j = max (vij) if j ∈ J; min(vij) if j ∈ J ′

(2) Negative Ideal Solution
NIS = A− = V −1 , V −2 , V −3 ,..., V −n , where:
V −j = min (vij) if j ∈ J; max(vij) if j ∈ J ′

Where, J is associated with the beneficial attributes
and J ′ is associated with the non-beneficial attributes.

Step 4 : Calculate the distance between positive and
negative for each competitive alternative:

(1) Positive Ideal Separation

S+ =

√√√√ y∑
j=1

(V +
j − vij)

2
(13)

(2) Negative Ideal Separation

S− =

√√√√ y∑
j=1

(V −j − vij)
2

(14)

TABLE IV
CHARACTERISTICS OF EXPERIMENTAL DATA SETS

DataSets #Att #Maj #Min IR

glass1 9 138 76 1.82
vehicle1 18 629 217 2.9
vehicle3 18 634 212 2.99
vehicle0 18 647 199 3.25
new-thyroid1 5 180 35 5.14
newthyroid2 5 180 35 5.14
segment0 19 1979 329 6.02
glass6 9 185 29 6.38
yeast3 8 1321 163 8.1
ecoli-034 Vs 5 7 180 20 9
yeast-2 Vs 4 8 463 51 9.08
yeast-02579 Vs 368 8 905 99 9.14
ecoli-0267 Vs 35 7 202 22 9.18
ecoli-067 Vs 5 6 200 20 10
led7digit-02456789 Vs 1 7 406 37 10.97
glass-0146 Vs 2 9 188 17 11.06
glass2 9 197 17 11.59
ecoli4 7 316 20 15.8
glass-016 Vs 5 9 175 9 19.44
yeast-2 Vs 8 8 462 20 23.1
yeast4 8 1240 244 28.1
winequality-white-9 Vs 4 11 163 5 32.6
ecoli-0137 Vs 26 7 274 7 39.14
yeast6 8 1449 35 41.4
winequality-white-39 Vs 5 11 1457 25 58.28

Step 5 : For ideal solution, calculate the relative closeness.

Ci =
S−i

(S+
i + S−i )

(15)

Step 6 : Finally, rank the order of preferences.

IV. EXPERIMENTAL SETTINGS

This section presents the experimental arrangements for
evaluating the performance of COTU approach. The experi-
mental setting has the two things. First, we demonstrate the
nature of training data sets. Then, some sampling methods
are discussed to evaluate and compare the performance of
COTU approach.

A. Data Sets

In order to provide conclusive results, we use 25 im-
balanced data sets that are taken from the KEEL-Data Set
Repository 1. Table IV provides the main characteristics
of these data sets. For each one, the number of attributes
(#Att), the number of majority class samples (#Maj), the
number of minority class samples (#Min) and the ratio of
majority class samples to minority ones (IR) [25] are shown.

These data sets have IR ratios between 1.82 and 58.28,
with the number of samples ranging from 168 sam-
ples (winequality − white − 9 vs 4) to 2308 samples
(segment0). And, the number of attributes is ranging from
5 to 19 attributes. In Table IV, the data sets are sorted from
the lowest IR to the highest IR ratio.

1htt,http://sci2s.ugr.es/keel/imbalanced.php

IAENG International Journal of Computer Science, 47:2, IJCS_47_2_12

Volume 47, Issue 2: June 2020

 
______________________________________________________________________________________ 



TABLE V
AUC RESULTS FOR 25 DATA SETS AND SIX DATA PRE-PROCESSING TECHNIQUES USING ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Data Sets
AdaBoost-C4.5 AdaBoost-NB

SMOTE
Center -

SBC BDSK
SMOTE -

COTU SMOTE
Center -

SBC BDSK
SMOTE -

COTU
NN TL NN TL

glass1 0.875 0.853 0.745 0.845 0.867 0.875 0.732 0.753 0.721 0.703 0.731 0.729
vehicle1 0.83 0.826 0.806 0.835 0.826 0.841 0.778 0.764 0.768 0.737 0.779 0.773
vehicle3 0.827 0.825 0.81 0.804 0.823 0.823 0.765 0.77 0.764 0.743 0.778 0.778
vehicle0 0.994 0.988 0.764 0.991 0.987 0.986 0.963 0.926 0.795 0.942 0.958 0.962
new-thyroid1 0.962 0.961 0.965 0.961 0.977 0.996 1 0.997 0.997 0.996 1 0.996
newthyroid2 0.956 0.961 0.944 0.957 0.966 0.958 0.998 0.997 0.998 0.999 0.998 0.998
segment0 0.997 0.995 0.951 0.998 0.995 0.995 0.996 0.98 0.951 0.998 0.996 0.985
glass6 0.944 0.959 0.937 0.935 0.944 0.964 0.885 0.899 0.948 0.873 0.96 0.949
yeast3 0.956 0.956 0.957 0.952 0.955 0.961 0.951 0.95 0.942 0.945 0.963 0.958
ecoli-034 Vs 5 0.96 0.96 0.958 0.974 0.958 0.963 0.947 0.937 0.923 0.952 0.897 0.921
yeast-2 Vs 4 0.974 0.957 0.94 0.958 0.966 0.971 0.961 0.947 0.935 0.928 0.96 0.969
yeast-02579 Vs 368 0.954 0.946 0.943 0.932 0.95 0.952 0.909 0.91 0.893 0.856 0.905 0.914
ecoli-0267 Vs 35 0.906 0.911 0.888 0.855 0.857 0.896 0.903 0.87 0.914 0.878 0.923 0.856
ecoli-067 Vs 5 0.901 0.897 0.941 0.956 0.931 0.943 0.855 0.843 0.876 0.831 0.848 0.872
led7digit-02456789 Vs 1 0.955 0.961 0.92 0.939 0.906 0.948 0.919 0.908 0.904 0.933 0.904 0.934
glass-0146 Vs 2 0.849 0.73 0.767 0.812 0.93 0.845 0.611 0.652 0.723 0.721 0.607 0.736
glass2 0.905 0.565 0.539 0.845 0.858 0.866 0.638 0.665 0.649 0.733 0.634 0.744
ecoli4 0.914 0.931 0.86 0.966 0.911 0.95 0.943 0.99 0.995 0.959 0.99 0.987
glass-016 Vs 5 0.894 0.943 0.943 0.974 0.891 0.959 0.94 0.971 0.866 0.967 0.94 0.946
yeast-2 Vs 8 0.776 0.785 0.8 0.845 0.875 0.83 0.771 0.723 0.78 0.795 0.75 0.792
yeast4 0.899 0.872 0.892 0.898 0.904 0.902 0.885 0.858 0.88 0.821 0.887 0.876
winequality-white-9 Vs 4 0.788 0.814 0.639 0.891 0.794 0.825 0.578 0.836 0.571 0.682 0.669 0.785
ecoli-0137 Vs 26 0.843 0.807 0.773 0.826 0.834 0.872 0.878 0.974 0.889 0.888 0.828 0.967
yeast6 0.898 0.903 0.918 0.901 0.928 0.93 0.925 0.906 0.894 0.876 0.912 0.928
winequality-white-39 Vs 5 0.669 0.633 0.654 0.638 0.74 0.674 0.76 0.745 0.718 0.683 0.75 0.778
Avg. Val 0.897 0.878 0.850 0.900 0.903 0.909 0.860 0.871 0.852 0.858 0.863 0.885
Avg. Rank 3 3.9 4.9 3.6 3.4 2.2 3.2 3.6 4.1 4.1 3.3 2.6

B. Compared Methods

In our experiments, the performance of COTU approach
has been compared with the five state-of-the-art sampling
methods. Where, SMOTE is an over-sampling method
and Center-NN and SBC are the under-sampling methods.
BDSK, SMOTE-TL and the proposed COTU approach are
hybrid resampling methods. In COTU approach, the setting
of cluster numbers for small disjuncts and small sample size
problems is set to five.

All pre-processing methods are implemented in the
framework of the WEKA Machine Learning Tool and
used the same classification algorithms for each set of
experiments. The details of comparative resampling methods
are provided as follows:

1) Synthetic Minority Over-Sampling Technique
(SMOTE): SMOTE [8] is an over-sampling method
that generates the synthetic samples based on the minority
class samples and its kth nearest neighbors. To generate
new samples, the kth nearest neighbor samples are selected
based on a user-defined threshold (k). In our evaluation,
for all SMOTE-related procedures, k = 5 is assigned to
maintain the same parameter settings for all methods and
data sets.

To generate the synthesis samples, SMOTE operates with
three steps. Firstly, a minority sample (a) is randomly se-
lected. And, its kth nearest minority class neighbor (x) is

randomly selected. Finally, the new sample (n) is generated
by the following formula Eq. (16):

n = a+ r ∗ (x− a) (16)

Where, (r) is the random weight between 0 and 1.
SMOTE method is the available jar file that is created by
Chawla et al., [8].

2) Center-NN: The cluster-based under-sampling method
(Center-NN) [30] uses k-means clustering method to cluster
all majority samples into multiple clusters. In the Center-NN
method, the number of clusters is equal to the sample size
of minority class. Then, the nearest samples of all cluster
centers are selected as the majority class. The selected
majority samples and minority samples are combined as
the new training set for applying the learning algorithms.
The target of Center-NN is to solve the between-class
imbalanced problem.

3) SBC: SBC is also the cluster-based under-sampling
method for solving the between-class imbalanced problem,
[50] in which all training samples are divided into k clusters
and the subset of majority samples from each cluster is
randomly selected, based on the ratios of majority samples
to minority samples. Finally, the selected majority samples
and the entire minority class samples are combined as the
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TABLE VI
G-MEAN RESULTS FOR 25 DATA SETS AND SIX DATA PRE-PROCESSING TECHNIQUES USING ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Data Sets
AdaBoost-C4.5 AdaBoost-NB

SMOTE
Center -

SBC BDSK
SMOTE -

COTU SMOTE
Center -

SBC BDSK
SMOTE -

COTU
NN TL NN TL

glass1 0.803 0.79 0.622 0.773 0.75 0.813 0.625 0.631 0.585 0.678 0.654 0.695
vehicle1 0.706 0.73 0.72 0.748 0.734 0.764 0.696 0.71 0.682 0.663 0.717 0.699
vehicle3 0.702 0.74 0.745 0.704 0.746 0.76 0.704 0.705 0.703 0.691 0.714 0.725
vehicle0 0.96 0.946 0.727 0.961 0.956 0.938 0.886 0.865 0.741 0.851 0.879 0.889
new-thyroid1 0.949 0.96 0.945 0.934 0.974 0.974 0.98 0.977 0.954 0.962 0.989 0.977
newthyroid2 0.938 0.945 0.906 0.953 0.95 0.954 0.977 0.969 0.969 0.992 0.971 0.983
segment0 0.995 0.991 0.899 0.994 0.991 0.991 0.979 0.938 0.868 0.987 0.974 0.961
glass6 0.902 0.913 0.894 0.896 0.909 0.916 0.847 0.867 0.931 0.855 0.881 0.939
yeast3 0.867 0.902 0.889 0.885 0.924 0.917 0.881 0.898 0.881 0.87 0.914 0.904
ecoli-034 Vs 5 0.936 0.893 0.87 0.907 0.891 0.87 0.878 0.857 0.881 0.872 0.876 0.867
yeast-2 Vs 4 0.872 0.911 0.913 0.884 0.913 0.913 0.853 0.879 0.865 0.804 0.854 0.906
yeast-02579 Vs 368 0.895 0.875 0.868 0.882 0.905 0.891 0.895 0.865 0.831 0.766 0.887 0.899
ecoli-0267 Vs 35 0.836 0.818 0.787 0.846 0.835 0.856 0.87 0.823 0.777 0.551 0.853 0.797
ecoli-067 Vs 5 0.809 0.817 0.865 0.919 0.809 0.868 0.823 0.769 0.821 0.822 0.823 0.796
led7digit-02456789 Vs 1 0.9 0.869 0.862 0.873 0.515 0.885 0.851 0.89 0.85 0.804 0.868 0.875
glass-0146 Vs 2 0.549 0.578 0.624 0.437 0.84 0.743 0.559 0.564 0.59 0.531 0.559 0.653
glass2 0.651 0.536 0.513 0.521 0.545 0.824 0.603 0.546 0.581 0.498 0.609 0.656
ecoli4 0.853 0.913 0.842 0.965 0.88 0.902 0.884 0.925 0.951 0.909 0.886 0.941
glass-016 Vs 5 0.794 0.941 0.941 0.934 0.794 0.959 0.794 0.906 0.864 0.536 0.791 0.891
yeast-2 Vs 8 0.612 0.718 0.724 0.76 0.793 0.761 0.693 0.688 0.636 0.678 0.695 0.727
yeast4 0.653 0.776 0.822 0.678 0.742 0.809 0.794 0.759 0.783 0.703 0.755 0.781
winequality-white-9 Vs 4 0.587 0.728 0.393 0.597 0.584 0.789 0.397 0.708 0.198 0.397 0.397 0.713
ecoli-0137 Vs 26 0.533 0.689 0.706 0.538 0.735 0.664 0.735 0.707 0.669 0.536 0.73 0.762
yeast6 0.769 0.849 0.843 0.778 0.782 0.852 0.848 0.831 0.812 0.787 0.865 0.88
winequality-white-39 Vs 5 0.349 0.568 0.587 0.175 0.358 0.602 0.678 0.722 0.657 0.307 0.639 0.667

Avg. Val 0.777 0.816 0.780 0.782 0.794 0.849 0.789 0.800 0.763 0.722 0.791 0.823
Avg. Rank 4.2 3.5 4.4 3.7 3.2 2 3.2 3.5 4.3 4.9 3 2.1

new training set for building the learning model.

4) BDSK: The hybrid method, BDSK [39] can handle
within-class imbalanced and between-class imbalanced prob-
lems. In the under-sampling stage of BDSK, the majority
class samples are clustered into the mean class size groups,
and the nearest samples of cluster centers from each group
[30] are chosen to solve the between-class imbalance prob-
lem.

Subsequently, the minority class samples are clustered
into two clusters, and the smaller cluster is over-sampled
by using SMOTE to deal with the within-class imbalance
problem. In the over-sampling stage, SMOTE is performed
until both classes are equal in size. Since, BDSK clusters
both classes separately, is oblivious to the overlapping class
and can lead the generation of noise.

5) SMOTE-TL: SMOTE in combination with Tomek
Link (SMOTE-TL) [3] is a hybrid technique, through
using SMOTE [8], and to remove noise and borderline
samples by combining Tomek Link [43]. In SMOTE-TL,
SMOTE over-samples the original data set, and removes the
noisy and borderline samples by using Tomek Links. So,
SMOTE-TL can solve the class imbalance and overlapping
problems between two classes.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, the experiments are conducted with four
learning classifiers (AdaBoost-C4.5, AdaBoost-NB, C4.5,
and NB) by applying the proposed COTU approach and the
five state-of-the-arts resampling techniques (SMOTE, Center-
NN, SBC, BDSK, and SMOTE-TL) on 25 imbalanced data
sets. The main aim of this section is to examine the impact
of COTU approach. For all experimental evaluations, a 5-
fold cross-validation approach [26] is used for the training
set and testing set.

During the experimental analysis, the analysis of experi-
mental results is divided into five parts, according to the eval-
uation criteria. The first four parts offer a detailed analysis of
the effectiveness of the COTU approach over the ensemble-
based learning classifiers. The last part is the overall results
of four learning classifiers for all representative resampling
methods. In all experiments, the test models achieving the
highest results for each data set and all significant results
are highlighted in boldface.

A. Classification Results by Ensemble-Based Learning Clas-
sifiers

In the first experimental analysis, we contrasted our
COTU approach with SMOTE, Center-NN, SBC, BDSK,
and SMOTE-TL by comparing the class label prediction
measures. Tables V to VII report the AUC, G-mean and BA
results of each resampling method across the two learning
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TABLE VII
BA RESULTS FOR 25 DATA SETS AND SIX DATA PRE-PROCESSING TECHNIQUES USING ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Data Sets
AdaBoost-C4.5 AdaBoost-NB

SMOTE
Center -

SBC BDSK
SMOTE -

COTU SMOTE
Center -

SBC BDSK
SMOTE -

COTU
NN TL NN TL

glass1 0.805 0.792 0.66 0.775 0.756 0.814 0.659 0.671 0.639 0.703 0.673 0.717
vehicle1 0.721 0.731 0.739 0.752 0.736 0.766 0.699 0.712 0.704 0.667 0.721 0.706
vehicle3 0.715 0.741 0.749 0.713 0.748 0.765 0.709 0.714 0.71 0.695 0.725 0.73
vehicle0 0.96 0.947 0.764 0.961 0.956 0.939 0.887 0.868 0.775 0.852 0.881 0.889
new-thyroid1 0.952 0.961 0.947 0.937 0.975 0.975 0.98 0.978 0.956 0.963 0.989 0.978
newthyroid2 0.94 0.947 0.911 0.954 0.952 0.955 0.977 0.969 0.969 0.992 0.972 0.983
segment0 0.995 0.991 0.904 0.994 0.991 0.991 0.979 0.94 0.877 0.987 0.974 0.962
glass6 0.906 0.915 0.896 0.9 0.912 0.918 0.855 0.87 0.932 0.861 0.888 0.94
yeast3 0.872 0.902 0.891 0.888 0.925 0.917 0.885 0.899 0.883 0.873 0.915 0.905
ecoli-034 Vs 5 0.939 0.9 0.875 0.917 0.9 0.881 0.889 0.867 0.889 0.883 0.886 0.878
yeast-2 Vs 4 0.877 0.914 0.915 0.889 0.916 0.914 0.856 0.879 0.867 0.815 0.859 0.908
yeast-02579 Vs 368 0.899 0.875 0.87 0.887 0.907 0.892 0.897 0.867 0.834 0.777 0.889 0.899
ecoli-0267 Vs 35 0.853 0.828 0.796 0.863 0.85 0.863 0.873 0.836 0.792 0.693 0.863 0.804
ecoli-067 Vs 5 0.828 0.825 0.875 0.922 0.825 0.87 0.832 0.782 0.828 0.832 0.833 0.805
led7digit-02456789 Vs 1 0.906 0.873 0.866 0.877 0.64 0.887 0.855 0.892 0.852 0.814 0.872 0.877
glass-0146 Vs 2 0.674 0.602 0.671 0.635 0.847 0.756 0.59 0.62 0.664 0.59 0.59 0.711
glass2 0.758 0.553 0.538 0.661 0.665 0.847 0.634 0.573 0.637 0.621 0.639 0.703
ecoli4 0.867 0.915 0.847 0.967 0.892 0.904 0.891 0.928 0.953 0.914 0.892 0.942
glass-016 Vs 5 0.894 0.943 0.943 0.941 0.891 0.96 0.894 0.916 0.874 0.741 0.891 0.901
yeast-2 Vs 8 0.727 0.731 0.737 0.792 0.815 0.772 0.725 0.695 0.652 0.719 0.731 0.745
yeast4 0.708 0.778 0.825 0.725 0.77 0.811 0.801 0.762 0.787 0.727 0.763 0.784
winequality-white-9 Vs 4 0.788 0.814 0.639 0.791 0.784 0.825 0.691 0.805 0.534 0.697 0.694 0.801
ecoli-0137 Vs 26 0.741 0.783 0.771 0.746 0.843 0.765 0.843 0.815 0.779 0.743 0.837 0.864
yeast6 0.798 0.854 0.846 0.803 0.807 0.855 0.856 0.836 0.818 0.805 0.87 0.881
winequality-white-39 Vs 5 0.558 0.581 0.612 0.524 0.587 0.639 0.704 0.734 0.677 0.535 0.685 0.693

Avg. Val 0.827 0.828 0.803 0.833 0.836 0.859 0.818 0.817 0.795 0.780 0.821 0.840
Avg. Rank 4 3.7 4.3 3.6 3.2 2.2 3.4 3.6 4.3 4.7 2.9 2.1

classifiers and 25 imbalanced data sets. In these Tables, the
second-to-last row shows the total average results of all data
sets (Avg.V al) for each resampling method, and the last
row shows the average rank (Avg.Rank) in the computation
of the Friedman test [12] for each resampling method over
all data sets. For the Avg.Rank, the lowest at Avg.Rank
indicated the best ranking of all representative methods.

Table V presents the AUC results of all representa-
tive methods, which are trained by AdaBoost-C4.5 and
AdaBoost-NB. For the results from the AUC of AdaBoost
C4.5 classifier, our proposed COTU approach obtained the
highest total average value (Avg.V al) at 90.9% for all test
data sets, with the highest average rank (Avg.Rank) value
2.2. For AdaBoost-NB classifier, our proposed approach
obtained the highest results on 8 out of 25 data sets and
the highest total average value (Avg.V al) was 88.5% overall
test data sets, resulting in the best average rank (Avg.Rank)
with a value of 2.6. But, SMOTE-TL and Center-NN take
the second place in both classifiers, while SBC is the last.

Similarly, Table VI shows the G-mean results for all
representative methods. For AdaBoost-C4.5 classifier, COTU
approach obtained the highest results on 13 out of 25 data
sets and the highest total average value (Avg.V al) overall
test data sets at 84.9%, resulting in the best average rank
(Avg.Rank) with a value of 2. For AdaBoost-NB, COTU
approach achieved the highest results on 12 out of 25 data
sets and the highest total average value (Avg.V al) at 82.3%

overall test data sets, with the best average rank (Avg.Rank)
value 2.1.

In Table VII, considering the BA results for AdaBoost-
C4.5 and AdaBoost-NB classifiers, our proposed COTU
approach achieved the best overall average values (Avg.V al)
at 85.9% and 84% respectively, and obtained the best aver-
age ranking (Avg.Rank) among all tested models. While,
SMOTE-TL performed better on the other resampling meth-
ods, especially AUC and BA results.

According to the details results from Tables V to VII,
COTU approach has achieved better results and rankings
than other resampling techniques, in terms of AUC, G-mean
and BA results. Besides, the results from Tables V to VII
indicated that both true positive and true negatives had been
relatively increased by COTU approach.

B. Probabilistic Estimation by Ensemble-Based Learning
Classifiers

In the second experimental analysis, the probabilistic pre-
diction, Balanced Brier score (BSBal) is used as a measure
of uncertainty, which calculates the probability estimates of
observed data for all representative methods. In the prob-
abilistic predictions of all resampling methods, the smaller
BSBal result is more accurate than the larger BSBal result
because it measures the distance between the probabilities of
the predicted class value and the actual class value.
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TABLE VIII
BSBal RESULTS FOR 25 DATA SETS AND SIX DATA PRE-PROCESSING TECHNIQUES USING ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Data Sets
AdaBoost-C4.5 AdaBoost-NB

SMOTE
Center -

SBC BDSK
SMOTE -

COTU SMOTE
Center -

SBC BDSK
SMOTE -

COTU
NN TL NN TL

glass1 0.362 0.393 0.669 0.432 0.413 0.346 0.421 0.42 0.625 0.436 0.449 0.428
vehicle1 0.512 0.481 0.493 0.458 0.506 0.44 0.392 0.396 0.445 0.428 0.408 0.404
vehicle3 0.52 0.467 0.462 0.53 0.455 0.445 0.389 0.39 0.424 0.418 0.391 0.392
vehicle0 0.073 0.093 0.467 0.077 0.081 0.118 0.168 0.205 0.443 0.196 0.173 0.161
new-thyroid1 0.093 0.08 0.096 0.117 0.051 0.051 0.037 0.028 0.063 0.057 0.02 0.032
newthyroid2 0.116 0.097 0.145 0.089 0.097 0.087 0.047 0.041 0.06 0.012 0.05 0.027
segment0 0.011 0.017 0.175 0.01 0.017 0.018 0.032 0.09 0.242 0.023 0.034 0.061
glass6 0.173 0.151 0.2 0.188 0.175 0.14 0.258 0.254 0.121 0.261 0.179 0.113
yeast3 0.229 0.187 0.192 0.21 0.146 0.159 0.157 0.164 0.209 0.214 0.149 0.159
ecoli-034 Vs 5 0.122 0.168 0.243 0.135 0.193 0.238 0.194 0.26 0.212 0.222 0.222 0.243
yeast-2 Vs 4 0.233 0.168 0.163 0.219 0.156 0.163 0.211 0.195 0.237 0.265 0.234 0.162
yeast-02579 Vs 368 0.2 0.231 0.251 0.221 0.186 0.206 0.188 0.233 0.287 0.343 0.207 0.183
ecoli-0267 Vs 35 0.295 0.266 0.376 0.275 0.299 0.272 0.231 0.31 0.399 0.476 0.236 0.36
ecoli-067 Vs 5 0.344 0.335 0.247 0.154 0.282 0.233 0.321 0.352 0.326 0.321 0.324 0.35
led7digit-02456789 Vs 1 0.182 0.202 0.253 0.221 0.719 0.198 0.249 0.205 0.285 0.276 0.217 0.212
glass-0146 Vs 2 0.632 0.658 0.603 0.689 0.301 0.46 0.519 0.552 0.641 0.589 0.551 0.479
glass2 0.481 0.802 0.92 0.639 0.585 0.316 0.488 0.563 0.608 0.542 0.507 0.413
ecoli4 0.266 0.163 0.301 0.068 0.216 0.184 0.18 0.111 0.089 0.175 0.215 0.08
glass-016 Vs 5 0.211 0.103 0.114 0.119 0.217 0.076 0.158 0.161 0.247 0.475 0.178 0.186
yeast-2 Vs 8 0.488 0.523 0.533 0.412 0.365 0.435 0.442 0.528 0.609 0.487 0.475 0.478
yeast4 0.562 0.402 0.341 0.529 0.456 0.366 0.318 0.328 0.345 0.452 0.338 0.313
winequality-white-9 Vs 4 0.425 0.372 0.594 0.419 0.423 0.351 0.617 0.378 0.93 0.606 0.613 0.385
ecoli-0137 Vs 26 0.515 0.429 0.46 0.511 0.321 0.414 0.314 0.347 0.426 0.514 0.323 0.27
yeast6 0.383 0.282 0.287 0.391 0.384 0.279 0.226 0.274 0.344 0.344 0.242 0.228
winequality-white-39 Vs 5 0.854 0.772 0.751 0.929 0.793 0.658 0.432 0.486 0.613 0.745 0.495 0.491

Avg. Val 0.331 0.314 0.373 0.322 0.313 0.266 0.280 0.291 0.369 0.355 0.289 0.264
Avg. Rank 4 3.3 4.6 3.8 3.3 2.1 2.3 3.3 5.1 4.6 3.3 2.4

Table VIII shows the Brier score results for all representa-
tive methods obtained by AdaBoost-C4.5 and AdaBoost-NB.
For AdaBoost-C.45 classifier, our proposed COTU approach
is more successful on 11 out of 25 data sets than the other
five methods of resampling, and the lowest total average
value (Avg.V al) is 26.6%, resulting in the best average
rank (Avg.Rank) with a value of 2.1. As for AdaBoost-
NB classifier, the lowest average BSBal result (Avg.V al) at
26.4% has been obtained from COTU approach.

The results of this experiment indicated that COTU ap-
proach was successful not only in the class label prediction
results (i.e. AUC, G-mean and BA), but also in the estimation
of the probability (i.e. BSBal).

C. Statistical Analysis by Ensemble-Based Learning Classi-
fiers

In the third experimental analysis, the statistical sig-
nificance tests of COTU approach are presented using
Wilcoxon’s Signed Rank Test and the detail results are
shown in Tables IX, X, XI and XII. In these Tables, the
Win–Tie-Loss statistics by summarizing the results, all
positive-sum ranks (W+), all negative-sum ranks (W−) and
Pvalue of Wilcoxon’s Signed Rank Tests between the pairs
of COTU and comparative resampling methods based on 25
imbalanced data sets are presented. The performance of two
resampling methods is significantly different if Pvalue is less
than 0.05.

In Tables IX, X, XI and XII, all positive-sum ranks
(W+) are higher than the negative-sum ranks (W−) in every
pair. In both two classifiers, COTU approach performed
significantly better than the other resampling methods, in
terms of AUC, G-mean, BA and BSBal results, but COTU
approach does not differ in AdaBoost-C4.5’s SMOTE-TL
method, especially AUC, BA and BSBal results.

D. Determination of Best Sampling Method by Ensemble-
Based Learning Classifiers

In the fourth experimental analysis, we suggested the
best resampling method for each learning classifier by im-
plementing TOPSIS strategy in the MCDM methodology
[38], [40]. To rank sampling methods for each classifier, the
performance of six resampling methods of all data sets is
entered in TOPSIS method. For each classifier, we used the
six alternatives (sampling methods) with 25 criteria (data
sets) because the effectiveness of each resampling method
depends on the performance of all data sets.

Table XIII reports the relative closeness to the ideal
solution and the ranking of all resampling methods in terms
of AdaBoost-C4.5 and AdaBoost-NB. In these tables, the
higher ideal solution value is more accurate than the lower
ideal solution, in terms of AUC, G-mean and BA results. But,
the lower ideal solution of BSBal is more accurate than the
higher ideal solution value because the smaller BSBal result
is more accurate than the larger BSBal result.
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TABLE IX
WILCOXON’S SIGNED RANK TEST OF AUC RESULTS OF ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Methods
AdaBoost-C4.5 AdaBoost-NB

W+ W− Win− T ie− Loss Pvalue W+ W− Win− T ie− Loss Pvalue

COTU Vs SMOTE 219 81 15-1-9 0.0486 230 70 16-1-8 0.0223
COTU Vs Center-NN 273 27 19-1-5 0.0004 240.5 84.5 17-0-8 0.0358
COTU Vs SBC 325 0 25-0-0 0.0000 261 39 18-1-6 0.0015
COTU Vs BDSK 240.5 84.5 17-0-8 0.0358 258 42 18-1-6 0.0020
COTU Vs SMOTE-TL 199 77 17-2-6 0.0634 206 70 14-2-9 0.0385

TABLE X
WILCOXON’S SIGNED RANK TEST OF G-MEAN RESULTS OF ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Methods
AdaBoost-C4.5 AdaBoost-NB

W+ W− Win− T ie− Loss Pvalue W+ W− Win− T ie− Loss Pvalue

COTU Vs SMOTE 293 32 20-0-5 0.0004 258.5 66.5 18-0-7 0.0098
COTU Vs Center-NN 261.5 38.5 20-1-4 0.0014 250.5 49.5 19-1-5 0.0041
COTU Vs SBC 260 16 21-2-2 0.0002 302.50 22.50 21-0-4 0.0002
COTU Vs BDSK 266 59 20-0-5 0.0054 311 14 21-0-4 0.0001
COTU Vs SMOTE-TL 188.5 64.5 13-3-7 0.0441 258.50 66.50 18-0-7 0.0098

TABLE XI
WILCOXON’S SIGNED RANK TEST OF BA RESULTS OF ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Methods
AdaBoost-C4.5 AdaBoost-NB

W+ W− Win− T ie− Loss Pvalue W+ W− Win− T ie− Loss Pvalue

COTU Vs SMOTE 287 38 20-0-5 0.0008 250.5 74.5 18-0-7 0.0178
COTU Vs Center-NN 242 34 19-2-4 0.0016 249 51 18-1-6 0.0047
COTU Vs SBC 312.5 12.5 21-0-4 0.0001 302 23 21-0-4 0.0002
COTU Vs BDSK 227 73 18-1-6 0.0278 310 15 21-0-4 0.0001
COTU Vs SMOTE-TL 190.5 85.5 15-2-8 0.1103 239 86 18-0-7 0.0394

TABLE XII
WILCOXON’S SIGNED RANK TEST OF BSBal RESULTS OF ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Methods
AdaBoost-C4.5 AdaBoost-NB

W+ W− Win− T ie− Loss Pvalue W+ W− Win− T ie− Loss Pvalue

COTU Vs SMOTE 289.5 35.5 20-0-5 0.0006 191 134 13-0-12 0.4430
COTU Vs Center-NN 277 48 20-0-6 0.0021 253 72 16-0-9 0.0149
COTU Vs SBC 295 5 23-1-1 0.0000 317.5 7.5 23-0-2 0.0000
COTU Vs BDSK 252.5 72.5 19-0-6 0.0154 300 25 21-0-4 0.0002
COTU Vs SMOTE-TL 210 90 15-1-9 0.0865 233 92 16-0-9 0.0578

TABLE XIII
RELATIVE CLOSENESS TO IDEAL SOLUTION AND FINAL RANKING FOR 25 DATA SETS AND SIX DATA PRE-PROCESSING TECHNIQUES USING

ADABOOST-C4.5 AND ADABOOST-NB CLASSIFIERS

Methods
Relative Closeness to Ideal Solution Final Ranking

SMOTE
Center -

SBC BDSK
SMOTE -

COTU SMOTE
Center -

SBC BDSK
SMOTE -

COTU
NN TL NN TL

AUC
AdaBoost-C4.5 0.7 0.403 0.133 0.707 0.755 0.77 4 5 6 3 2 1
AdaBoost-NB 0.381 0.675 0.35 0.516 0.447 0.813 5 2 6 3 4 1

G−mean
AdaBoost-C4.5 0.453 0.644 0.528 0.355 0.507 0.867 5 2 3 6 4 1
AdaBoost-NB 0.587 0.811 0.428 0.273 0.577 0.91 3 2 5 6 4 1

BA
AdaBoost-C4.5 0.57 0.45 0.352 0.511 0.547 0.784 2 5 6 4 3 1
AdaBoost-NB 0.624 0.656 0.42 0.349 0.631 0.849 4 2 5 6 3 1

BSBal AdaBoost-C4.5 0.358 0.289 0.68 0.292 0.387 0.204 4 2 6 3 5 1
AdaBoost-NB 0.315 0.323 0.679 0.481 0.319 0.184 2 4 6 5 3 1

In Table XIII, based on the relative closeness to ideal
solution and the final ranking of all learning classifiers and
resampling methods, COTU approach ranked first because
it obtained rank 1 for each classifier. Especially, COTU
approach combined with AdaBoost-C4.5 and AdaBoost-NB

classifiers will significantly improve performance compared
to the five well-known resampling methods, while SBC and
BDSK are last-rank.
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Fig. 3. Comparison of six pre-processing techniques for the twenty-five imbalanced data sets trained by the classifiers; AdaBoost-C4.5, AdaBoost-NB,
C4.5 and NB (a) Average AUC Results (b) Average G-mean Results (c) Average BA (Balanced Accuracy) Results (d) Average BSBal (Brier score)
Results

TABLE XIV
AVERAGE VALUE AND AVERAGE RANK OF AUC, G-MEAN, BA AND BSBal RESULTS FOR FOUR CLASSIFIERS

Methods
Avg. Val Avg. Rank

SMOTE
Center -

SBC BDSK
SMOTE -

COTU SMOTE
Center -

SBC BDSK
SMOTE -

COTU
NN TL NN TL

AUC

AdaBoost-C4.5 0.897 0.878 0.85 0.9 0.903 0.909 3 3.9 4.9 3.6 3.4 2.2
AdaBoost-NB 0.86 0.871 0.852 0.858 0.863 0.885 3.2 3.6 4.1 4.1 3.3 2.6
C4.5 0.834 0.837 0.799 0.819 0.846 0.859 3.4 3.3 4.7 3.8 3.3 2.4
NB 0.855 0.863 0.852 0.809 0.858 0.872 3.7 3.1 3.3 4.8 3.2 2.8

G−mean

AdaBoost-C4.5 0.777 0.816 0.78 0.782 0.794 0.849 4.2 3.5 4.4 3.7 3.2 2
AdaBoost-NB 0.789 0.8 0.763 0.722 0.791 0.823 3.2 3.5 4.3 4.9 3 2.1
C4.5 0.797 0.813 0.762 0.755 0.817 0.836 3.5 3 4.8 4.3 2.9 2.5
NB 0.786 0.793 0.76 0.665 0.788 0.806 2.6 3.4 4.3 5.1 2.7 2.8

BA

AdaBoost-C4.5 0.827 0.828 0.803 0.833 0.836 0.859 4 3.7 4.3 3.6 3.2 2.2
AdaBoost-NB 0.818 0.817 0.795 0.78 0.821 0.84 3.4 3.6 4.3 4.7 2.9 2.1
C4.5 0.833 0.827 0.788 0.81 0.846 0.848 3.3 3.3 5 4.1 2.7 2.6
NB 0.817 0.812 0.793 0.738 0.818 0.826 2.6 3.4 4.4 5.1 2.7 2.8

BSBal

AdaBoost-C4.5 0.331 0.314 0.373 0.322 0.313 0.266 4 3.3 4.6 3.8 3.3 2.1
AdaBoost-NB 0.28 0.291 0.369 0.355 0.289 0.264 2.3 3.3 5.1 4.6 3.3 2.4
C4.5 0.319 0.306 0.386 0.348 0.3 0.272 3.4 3 5 4 3.1 2.5
NB 0.331 0.322 0.373 0.457 0.33 0.302 2.8 3.4 4.5 5 3.1 2.2

E. Overall Results by Four Learning Classifiers

In the last experimental analysis, the average perfor-
mance scores of all representative methods implemented by
AdaBoost-C4.5 and AdaBoost-NB, C4.5 and NB classifiers

are presented. Fig. 3 shows the graphical representation of
average value and average ranks for all data sets, using six
resampling methods and four learning classifiers. In addition,
to clear the representation of graphs, the notations used in
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TABLE XV
WILCOXON’S SIGNED RANK TEST RESULTS FOR FOUR CLASSIFIERS

Methods COTU Vs SMOTE COTU Vs Center-NN COTU Vs SBC COTU Vs BDSK COTU Vs SMOTE-TL

AUC

AdaBoost-C4.5 0.0486 0.0004 0.0000 0.0358 0.0634
AdaBoost-NB 0.0223 0.0358 0.0015 0.0020 0.0385
C4.5 0.0133 0.0164 0.0001 0.0214 0.1657
NB 0.0394 0.7422 0.2528 0.0005 0.0296

G−mean

AdaBoost-C4.5 0.0004 0.0014 0.0002 0.0054 0.0441
AdaBoost-NB 0.0098 0.0041 0.0002 0.0001 0.0098
C4.5 0.0185 0.0632 0.0001 0.0094 0.5011
NB 0.3259 0.2056 0.0003 0.0000 0.1887

BA

AdaBoost-C4.5 0.0008 0.0016 0.0001 0.0278 0.1103
AdaBoost-NB 0.0178 0.0047 0.0002 0.0001 0.0394
C4.5 0.0450 0.0485 0.0001 0.0255 0.9893
NB 0.4841 0.2105 0.0002 0.0000 0.3833

BSBal

AdaBoost-C4.5 0.0006 0.0021 0.0000 0.0154 0.0865
AdaBoost-NB 0.4430 0.0149 0.0000 0.0002 0.0578
C4.5 0.0128 0.0926 0.0000 0.0119 0.1228
NB 0.1388 0.0494 0.0001 0.0000 0.0197

TABLE XVI
RELATIVE CLOSENESS TO IDEAL SOLUTION AND FINAL RANKING FOR FOUR CLASSIFIERS

Methods
Relative Closeness to Ideal Solution Final Ranking

SMOTE
Center -

SBC BDSK
SMOTE -

COTU SMOTE
Center -

SBC BDSK
SMOTE -

COTU
NN TL NN TL

AUC

AdaBoost-C4.5 0.7 0.403 0.133 0.707 0.755 0.77 4 5 6 3 2 1
AdaBoost-NB 0.381 0.675 0.35 0.516 0.447 0.813 5 2 6 3 4 1
C4.5 0.582 0.497 0.296 0.392 0.694 0.821 3 4 6 5 2 1
NB 0.648 0.725 0.57 0.243 0.662 0.842 4 2 5 6 3 1

G−mean

AdaBoost-C4.5 0.453 0.644 0.528 0.355 0.507 0.867 5 2 3 6 4 1
AdaBoost-NB 0.587 0.811 0.428 0.273 0.577 0.91 3 2 5 6 4 1
C4.5 0.595 0.61 0.412 0.276 0.657 0.868 4 3 5 6 2 1
NB 0.648 0.845 0.5 0.099 0.647 0.905 3 2 5 6 4 1

BA

AdaBoost-C4.5 0.57 0.45 0.352 0.511 0.547 0.784 2 5 6 4 3 1
AdaBoost-NB 0.624 0.656 0.42 0.349 0.631 0.849 4 2 5 6 3 1
C4.5 0.633 0.463 0.284 0.371 0.717 0.791 3 4 6 5 2 1
NB 0.762 0.735 0.563 0.196 0.77 0.853 3 4 5 6 2 1

BSBal

AdaBoost-C4.5 0.358 0.289 0.68 0.292 0.387 0.204 4 2 6 3 5 1
AdaBoost-NB 0.315 0.323 0.679 0.481 0.319 0.184 2 4 6 5 3 1
C4.5 0.368 0.277 0.73 0.373 0.349 0.226 4 2 6 5 3 1
NB 0.262 0.304 0.428 0.666 0.233 0.172 3 4 5 6 2 1

Fig. 3 is represented in Table XIV.
Based on the average results of all experiments in Table

XIV and Fig. 3: (a) to (d), the results obtained by COTU
approach are not found to be significantly lower than any
other resampling methods. In particular, COTU approach
combined with AdaBoost-C4.5 remains at the top of four
learning models, and it’s BSBal result is lower than the
other three learning classifiers. But, the combination of NB
classifier and BDSK remains at the last position of all
learning classifiers, and it’s BSBal result is larger than the
other three learning classifiers.

The Pvalue of Wilcoxon’s Signed Rank Test shown in
Table XV, COTU approach can significantly increase among
all representative methods in AdaBoost-NB classifier, but it
does not differ with SMOTE-TL in AdaBoost-C4.5 and C4.5
classifiers.

Based on the final ranking of four learning classifiers

for all resampling methods shown in Table XVI, COTU
approach achieved the first-rank in all learning models.
COTU approach, combined with AdaBoost-C4.5 classifiers
will significantly improve performance compared with the
five well-known resampling methods, while AdaBoost-NB
classifier takes the second place.

In order to the above results of all experiments and
statistical tests, we can conclude that the efficiency of the
learning classifier for imbalanced data is predominated by the
class distribution. Moreover, COTU’s results are not found
to be significantly lower than any other resampling methods
since COTU approach can overcome the three characteristics
of class distribution problems between classes.

VI. CONCLUSION AND FUTURE WORK

This paper had proposed an effective resampling approach
(COTU) to address the problems of skewed distribution in
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the imbalanced data sets. Firstly, the proposed over-sampling
step based on k-means clustering was used to handle the
small disjuncts problem in the minority class. As a second
step, Tomek Link-based under-sampling method was also
integrated among cluster-based sampling steps to remove
the overlapping majority samples. The cluster-based under-
sampling step was also used as the final step of COTU
approach for solving the problem of small sample size in
the training set. After executing the proposed approach, the
refining training data set was fed into the classification phase
to predict unknown input variables.

In the experimental analysis, we evaluated the performance
of each resampling method by using the four different
learners. And, the performance of our proposed approach
was validated with the three-class label predictive metrics
(such as AUC, G-mean and BA), as well as the expected
probabilistic cost estimates (BSBal). The performance of
data sets varied according to the methods of resampling and
learning classifiers. Our results show that COTU approach
outperformed the five state-of-the-art resampling methods.
Moreover, the performance of COTU approach was signifi-
cantly improved among the representative methods according
to the Pvalue of Wilcoxon’s Signed Rank Test. And, the best
sampling method was suggested by implementing TOPSIS
method.

In future work, we plan to expand COTU approach so that
the multi-class imbalanced data can be classified. Moreover,
an optimal value of clusters (K) will be specified for the
problems of small disjuncts and small sample size, as the
number of clusters (K) influences the efficiency of classifi-
cation.

REFERENCES

[1] A. Agrawal, H. L. Viktor and E. Paquet, “SCUT: Multi-class imbalanced
data classification using SMOTE and cluster-based under-sampling,”
In 2015 7th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management (IC3K), IEEE
vol. 1, pp226-234, 2015.

[2] M. Y. Arafat, S. Hoque, S. Xu and D. M. Farid, “Machine Learning for
Mining Imbalanced Data,” IAENG International Journal of Computer
Science, vol. 46, no. 2, pp332-348, 2019.

[3] G. E. Batista, R. C. Prati and M. C. Monard, “A study of the behavior
of several methods for balancing machine learning training data,” ACM
SIGKDD explorations newsletter, vol. 6, no. 1, pp20-29, 2004.

[4] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation measures
for models assessment over imbalanced data sets,” J Inf Eng Appl, vol.
3, no. 10, pp27-38, 2013.

[5] G. W. Brier, “Verification of forecasts expressed in terms of probability,”
Monthly weather review, vol. 78, no. 1, pp1-3, 1950.

[6] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann,
“The balanced accuracy and its posterior distribution,” In 2010 20th
International Conference on Pattern Recognition, IEEE, pp3121-3124,
2010.

[7] C. Bunkhumpornpat, K. Sinapiromsaran and C. Lursinsap, “Safe-
level-smote: Safe-level-Synthetic minority over-sampling technique for
handling the class imbalanced problem,” In Pacific-Asia conference on
knowledge discovery and data mining, pp475-482, 2009.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp321-357, 2002.

[9] L. Chen, B. Fang, Z. Shang and Y. Tang, “Tackling class overlap and
imbalance problems in software defect prediction,” Software Quality
Journal, vol. 26, no. 1, pp97-125, 2018.

[10] T. Choeikiwong and P. Vateekul, “Two Stage Model to Detect and
Rank Software Defects on Imbalanced and Scarcity Data Sets,” IAENG
International Journal of Computer Science, vol. 43, no. 3, pp344-355,
2016.

[11] D. Devi and B. Purkayastha, “Redundancy-driven modified Tomek-
link based under-sampling: a solution to class imbalance,” Pattern
Recognition Letters, vol. 93, pp3-12, 2017.
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