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Abstract—The preservation of traditional dances as an impor-
tant part of world cultural heritage can be done by recording.
While it is convenience to record the dances using video, this
medium has limited capability in the reconstruction. On the
other hand, recording using a motion capture device gives us the
ability to replay them and add alterations in a creative process.
In this paper, we propose a method to train traditional dance
moves in a generative model using Long Short-Term Memory
(LSTM). We use a traditional dance from East Java, Indonesia,
that is called Remo Dance as the training data. The dance is
recorded with a motion capture device and each basic move
is trained into the model. In the sampling process, the trained
model reiterates its memory into an unlimited length of dance
animation. The generated dance animation has imperfection
relative to the training data. This discrepancy gives the intended
variations. We use visual assessments, dynamic time warping
curves, and a subset of parameters from Laban motion analysis
to evaluate the variations. These evaluations show how the
variations behave and in what pattern they occur. In general,
those variations give slight alterations to the motions that add
human-like imperfection and give opportunities for animators
and choreographers alike to explore new dances creations.

Index Terms—Long Short-Term Memory, LSTM, generative
model, deep learning, Indonesian Traditional dance, Remo
dance, cultural heritage.

I. INTRODUCTION

THE preservation of traditional dances could be done
in many ways, including recording, performing, and

creating new dances based on existing dances. Dances can
be recorded using a digital camera or a motion capture
device. These digital dance performances then be played
back as videos or, in the case of motion capture, as ani-
mations. Creating new dances animation using digital media
usually involves manually posing the 3D model keyframe by
keyframe by the animators. A system that is able to create
new dances animations automatically based on recorded
existing dances should be useful in supporting said activities.

Currently, there is an increasing number of experiments
in artificial intelligence, especially in deep learning; using
artificial neural networks, that tackle the arts as the object.
The grand aspiration of those researches is the capability of
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a virtual artist to create artworks which are indistinguishable
from human-made ones. There are several fine works in
painting domain, such as transferring styles [1] [2], creating
doodles [3], and creating pictures from doodles [4]. In music
domain, we have music production using generative adversar-
ial network [5]. The creation of dances as a subset of human
movements research is also getting more attention. Some
works on modeling human motion using neural networks are
[6] and [7]. An attempt at creating dance moves using deep
learning, specifically for modern dance, has been done in
Chor-RNN [8].

Dance as itself is performing art that lives in spatial
and time dimension. The digital representation of dance
performance is stored in the form of sequential data which
also lie on the spatiotemporal dimension. The most common
architectures for such data are from the recurrent neural net-
work (RNN) family [9]. Long Short-Term Memory (LSTM)
[10] and its variants are types of RNN which have been used
to process language, sound, movies, and other sequential data
with satisfactory results [11][12][13]. Furthermore, LSTM
can act as a classifier or generative model. As a classifier
model, LSTM uses the sequence of input data to predict
an output value. Whereas as a generative model, LSTM will
store the sequence and try to replicate its memory to produce
similar sequences [14] [15]. This replication of the output
may have an arbitrary length with some variations. Naturally,
the ability to produce this kind of output, especially when
the objects are from the arts domain encourages researchers
as they see the potential to build virtual artists with some
level of creativity.

Remo is a traditional dance originating from East Java,
Indonesia; among hundreds of other Indonesian traditional
dances. It is usually performed as a part of the ceremonial
opening of important events[16]. Although Remo represents
a male soldier character, it is also common to have either a
male or a female dancer to perform this dance as shown in
figure 1. Like any other traditional Javanese dances, Remo
is composed of repetitions of several basic moves. These
repetitions in Remo dance make them a good reason to
train those moves into LSTM generative models. The trained
LSTM generative models would remember those basic moves
and could produce similar movements from their memories.

In this paper, we propose a generative animated model
to mimic basic dance moves from a human dancer using
Long Short-Term Memory (LSTM) Network. The main
contribution of this paper: we build a standard LSTM model
which remember basic dance moves. This model can pro-
duce animations of similar moves from their memories. The
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Fig. 1: A Dancer Performing Remo Traditional Dance

resulting animations can be repeated for any length of time,
and they have slight variations in each of their movements.
While we use Remo dance as data in this research, this
model also capable of creating other dances that have similar
characteristics that is, composed of repetition of several basic
moves. With this ability, the model can be seen as a virtual
choreographer that simplifies animators tasks in creating
dance animations.

Each of the resulting moves from the models has some
differences with another. On some level, these discrepancies
make they seem more human-like. We can assess the output
dance moves visually and by using Dynamic Time Wrapping
(DTW) and Laban Motion Analysis (LMA). DTW can match
two dance performances and compute the difference between
them. LMA, a method that is commonly used in dance
communities, could also could give an assessment in terms
of human body and its movements.

II. RELATED WORKS

The digitalization of several Indonesian traditional dances
using motion capture (mocap) device has been done in [17].
Storing human motions, including dance data in Biovision
Hierarchy (BVH) format is frequently chosen for its prac-
ticality and feasibility. Besides its simplicity for playback
purpose, BVH is also suitable for classifying [18], [19],
recognition [20], and retrieval of human motions [21].

BVH uses a skeletal model and stores the motions as a
chain of sequential poses. Processing the motions with this
format requires a certain kind of architecture that is able
to process sequential data, such as Hidden Markov Model
(HMM). HMM has been used to generate dance motion
in [22], [23]. Other architectures which are able to process
sequential data is RNN. A fully connected RNN used in [24]
is capable to create walking motion without training example.

Deep learning has also been used to generate human
motion in [25]. This motion synthesis uses auto-encoder
to create the abstraction of training data from the captured
motion database. For dance creation, several approaches have
been taken. Using motion transfer [26] we can create an
animation of a person mimicking a dance video by other
performer. The Another dance synthesis uses music as the
input parameter [27]. In this method, dance motions are
cued by varying the music from the training set. Moving on,
Chor-RNN is another generative model that uses LSTM to

memorize contemporary dance motion [8]. Instead of using
skeletal model, this system is using the locations of mocap
system markers as dance representation.

III. REMO DANCE AND ITS MOVES

Remo dance portrays the moves of a soldier or a knight
[28]. This is the most common interpretation of the dance.
The other interpretation is based on Nglana dance, the
precursor of Remo. Nglana dance is believed as the main
inspiration for Remo dance. It portrays the journey of a
knight pursuing spiritual maturity. The dance is also inspired
by Janaka, a character from Ramayana epics and a symbol
for an ideal masculine character.

In Remo dance, said knightly aspects of the inspiration are
interpreted into Javanese dance movements. Following is the
general characteristic description of Javanese dance moves
for a good male character. The performer adopts steady torso
movements, with straight back and chest full of breath. Then,
the arm motions have stability point at the elbow. Moreover,
the dancer performs a series of steady flowing moves and
the overall gestures are done in a controlled way. The head
and the neck also move in a similar manner, with a calm
and sharp gaze from unchanging face expression. These
standard Javanese moves are modified in Remo by adding
East Java characteristics, such as swift, agile, energetic,
as well as quick-tempered-but-quickly-subsided mood. The
modifications are rendered into a unique Remo choreography,
for instance: several broken moves, quick moves repetitions,
and more hand gestures at the front of the torso.

Remo has several variations of movements [29]. Some
renowned Remo variations are Remo Trisnawati (Situbondo),
Remo Tubi (Surabaya), and Remo Tawi (Jombangan). They
are nicknamed after the choreographers’ names and their
city origins. Those differing qualities of each dance are
determined based on the dynamics and the volumes of the
moves. For example, Remo Tubi is known to be more
dynamic and has more volume, because the dancers change
their positions more frequently as compared to those of Remo
Tawi. Another variation is the length of the dances. Remo
can be performed for as long as 30 minutes, 12 minutes,
or—in the case of junior dancers—only 4 minutes.

Currently, there is no formal written documentation of
movements in Remo Dance. Although each basic moves has
its uniqueness, we can refer to standard traditional Javanese
dance moves in [30] to see some connections and similar-
ities. Some moves which are commonly used in traditional
Javanese dances are tanjak (ready position), gedrug (tapping
the heel), and ukel (spiraling move of the hand).

Moving on, the basic moves are named and defined by
tradition. There is so much variation on the complexity of
each move. Some moves are very simple, like tindak (walk-
ing motion) and kawung (up and down hands movements).
Other moves are quite complex, for instance iket (hands and
upper body gesture of tying a knot) and ayam alas (emulate
the movements of a junglefowl). In addition, certain moves
concentrate on a single body part, for example geter kepala
and pacak gulu (both are done by rhythmically bobbing the
head); whereas other moves require full body movements, for
example during the switch between different kind of moves.
Moreover, there exist some moves which do not require any
movement at all and are only defined by still poses of some
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Fig. 2: A Dancer in Motion Capture Session

body parts. The move ngendewa (pose of the arms nocking
an arrow) is one of these moves.

If we use the traditional definitions of basic moves, the
variations in complexity will create inconsistency in the
length of the training features. To counter this problem, we
manually select certain basic moves and cut some parts of
them as necessary. To illustrate, we select the moves which
focus on arms movements, legs movements, or other parts of
body movements. By using these selections, we can evaluate
our experiments based on certain features of the body parts.

IV. DATA SPECIFICATION

We recorded the short version of the most popular Remo
variation. The total length of the dance is 4 minutes. We used
Optitrack Motion Capture System with 8 cameras to record
the performance as shown in figure 2. The raw data from
the motion capture device are in 60 frames per seconds (fps)
rate. We down-sampled those data into 30 fps animation and
save them in standard Biovision Hierarchy (BVH) format.

BVH format contains two parts of information. The first
part is the definition of the hierarchical skeletal model used in
animation. Then the second part contains the animation data.
In BVH, the animation is defined by a sequence of poses of
the skeletal model. These poses are stored in the keyframes,
a pose for each keyframe. Each pose is defined by rotation
of the bones relative to its joints in the skeletal model. In
this format, each pose that is defined by the skeletal model
in figure 3 can be written as p ∈ R3×|B| where |B| is the
number of the bones. The 3 values in that term are the real
numbers for Euler rotations for each bone on the XYZ axis.
A motion can be expressed as equation 1.

M : [1 : f ]→ P ⊂ R3×|B| (1)

In equation 1, M is the motion that consists of sequence of
poses contained in set P . The number of frames in the motion
is f which lies along the time dimension. The usage of the
real numbers for expressing rotations of the bones (instead of
simple integer symbols) is unique to our model. These real

Fig. 3: Skeletal Model Setup for Mocap

numbers demand more training phases and LSTM layers size
but they are required for smooth animation results.

We use 19 bones in the model as shown in Figure 3. In
addition to bone rotation data, there is also the position of
the root bone (i.e. the hip bone) which must be stored in
each frame. This root position acts as the reference to the
relative position of the model in the 3D world. With this
bone configuration, each frame of the pose should be defined
by (19+1)*3=60 values. The full-length dance animation
is a sequence of these poses in a total of 8,200 frames
(approximately 4 minutes in 30 fps rate animation). From
the full-length dance data, we select several basic moves to
be trained into the neural network model. The specification
of the selected moves can be seen in Table I.

V. SYSTEM ARCHITECTURE AND EVALUATION
METHODS

We use a sequence of LSTM modules with Mixture
Density Module (MDN) augmented at each output (Figure
4.b). There are several variants in LSTM gating system,
but we found those variants have approximately the same
performance as standard LSTM (Figure 4.a). This gating
system allows an LSTM cell to remember, add, or discard
new information based on the previous sequence of inputs.
This gating system is required to overcome the vanishing

Fig. 4: (a) Standard LSTM, (b) LSTM with Augmented
MDN
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TABLE I: Training Data Description for Remo Basic Moves

Movement Name Length (frames) Desciption
Tindak 95 Walking motion, alternately moving the left and right legs

Gejug kaki, seblak tangan 107 Stomp the ground, throw an arm outward

Tanjak, gedrug kaki 95 Ready position with tapping a heel on the ground

Seblak tangan 145 Throw an arm outward

Lawung kanan-kiri 180 Bringing the left and right arms up and down alternately

Geter kepala 72 Rhythmically moving the head left and right

Seblak, gejug, tanjak 140 Sequence of throwing an arm, stomping the ground, and get to the ready position

Gejug kaki, tindak 137 Stomping the ground dan walking around a circle

Selut 87 Bringing the left and right hands alternatively up and down in front of the torso

Ukel trap jamang 188 Emulating movement of the hands putting up a head gear

Iket (part of) 86 This is a part of a complex motion which shows the movement of the hands tying a knot.

gradient problem—which almost certainly occurs in a deep
or long chain of neural network modules [10].

The purpose of the MDN is to add the capability of
predicting ambiguous output to the LSTM[31]. In dance
movements, ambiguous data commonly occur. In the training
process, the MDN are trained to create a collection of
Gaussian probability functions. The probability density P
as expressed in equation 2, is a combination of m number
of Gaussian kernels. It generates vector t from input vector
x using α as mixing coefficients.

P (t | x) =
m∑
i=1

αi(x)φi(t | x) (2)

Each kernel is computed using Gaussian function in equation
3.

φi(t | x) =
1

(2π)c/2σi(x)c
exp(−‖t− µi(x)‖2

2σi(x)2
) (3)

In equation 3, the center of the i-th kernel is denoted by µ
and the variance by σ. All those MDN values are trained
alongside the main LSTM module. Without the addition of
MDN, the LSTM tends to collapse all probable outputs into
a single average value.

Furthermore, the random aspect in MDN could eventually
direct the training into an unsuccessful one. The solution
to this problem is simply to retry the training process with
a different random seed. The visual assessment method is
useful for checking whether the model has been trained prop-
erly or not. The more detailed evaluation is done by using
DTW to compute the distance between the original training
data and the generated output. DTW is a common method to
compute the similarity between any of two sequential data
[32][33][34]. These sequences of data can be asynchronous
and differing in lengths.

Besides the aforementioned, we also use LMA to evaluate
the generated dances. LMA analyzes dance moves based on
four components: body, effort, shape, and space [35]. The
body component describes the relationship between different
body parts. The effort component describes how energy is
used in motions. Then the shape component characterizes
how the shape of the body changes over time, and the space
component specifies spatial factors covered in a movement.
Because LMA evaluates motions both in visual and feel-
ing qualities, there are some challenges to interpret those
evaluations into numerical values. In this research, we use

a subset from [36] to calculate the numerical values of the
LMA components from motion data.

The evaluation using LMA requires explicit positions of
body parts. In the skeletal model, the body part positions are
defined by the bone joint’s locations. Equation 4 converts
rotation angles from BVH data into positions of the joints.

P =

Xr

Yr
Zr

 =Mr

Mr−1

...
M1

X0

Y0
Z0

 (4)

In Equation 4, the position of the hip is defined by X0, Y0,
and Z0 coordinates. P is the final position of any joint. If r
is the level of the joint in the hierarchical model, its position
is computed by merging the transformation matrices from its
ancestors’ bones up to the root bone. The matrices M are
transformation matrices which are composed of translation
and rotation matrices.

VI. TRAINING AND SAMPLING PROCESS

The training process involves the feeding of training data
consisting of pairs of features and labels into the model.
The training data are prepared by cutting the dance data into
several segments, which would become the features. These
features contain sequences of poses as defined in Equation 1.
They are illustrated as the sequence of Xq in Figure 5.a. A
single body pose after each segment acts as the label for
that particular segment (denoted by Xq+s in Figure 5.a).
Moreover, the cutting positions of the dance data must cover
all possible moves, so that the number of the features is equal
to the number of the total frames in the dance data (denoted
by n), so an epoch in the training process requires the set of
Xq where q = 1..n.

For optimal training, we set the parameters for the model
based on [37]. The constraint of the training process mainly
depends on the GPU memory limit. The capacity of GPU
RAM determines how many batches of training data can be
processed at the same time. Using 8 gigabyte GPU RAM,
on average, each move requires 4 hours of training.

After a successful training, the trained model remembers
the correlations between each movement segment (i.e. a
sequence of body poses) and a body pose after that. With
these memories, the model could predict the next probable
pose after processing a sequence of poses as the feature
(Figure 5.b). So, at the beginning of the generation process,
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Fig. 5: (a) Training Process, (b) Sampling Process

the trained model is warmed up by giving several known
poses. For each segment of the input, it produces an output
pose. This output is also augmented to the next input and
being fed back to the model. After several cycles, the model
will be able to produce consecutive output poses which form
an animation that is similar to the trained dance move.

VII. RESULTS AND EVALUATIONS

The trained model produces an infinite length of dance.
Generally, the outputs are in the form of a sequence of trained
moves which are played in loops. We apply the resulting
motions onto a 3D human model and visually compares them
to assess the dance animation output. We also evaluate these
results using DTW [32] and LMA [35] [36]. DTW evaluates
the full-length output to find when and how the variances
may occur. Then from DTW results, we select two output
samples with the least and the most variances. Using LMA
method, we analyze further on how those variances occur
and describe how the body parts move on the two extremes.

Figure 6 shows three examples from the moves in Table
I. These figures are from the rendered 3D model animations
of the dance data. The renditions are in simple flat colors
and outlines to avoid unnecessary details. The first example
in this figure is the tindak move. This move only uses legs
movement (Figure 6.a). The second example is the kawung
move, it represents the arms movement with stationary legs
(Figure 6.b). Finally, the last example is a transition move
from gejug to tindak. This third example shows the motion
of all body parts. In this move, the dancer swirls both his
hands as he walks and turns his body sideward, then swivels
it back forward (Figure 6.c).

In Figure 6, each move contains three rows of figures. The
figures on top rows are the training data. In the middle rows,
there are figures for the output motions which are the most
similar to the training data, while at the bottom rows are
the most different. For clarity purposes, not all frames are
included in the figures, but they are down sampled into 1/4
for Figure 6.a and 6.b, and 1/8 for Figure 6.c. The figures
show that the variations of the outputs can take forms in the
gesture and the position of the dancer. The gesture variations
are caused by deviation of the bone rotation angles in the
output; whereas the position differences are caused by the

shifting of hip bone location. Because this hip bone acts as
the root of the model, the difference in its value gives some
offset to the overall body.

When we use visual assessment, we can quickly judge the
outputs. Then, the analyses using DTW [32] and LMA [35]
[36] give more detail about them. In DTW analysis, each
repetition in the output is compared with the training data and
their distances are calculated. Specifically, the DTW method
computes the differences between every single bone in the
skeletal model from the output and from the training data.
The difference between motions is simply the summation of
the differences between all bone pairs. Figure 7 shows the
differences over some periods of repetition. The vertical axis
shows the DTW distance between the output and the training
data; while the horizontal axis shows the repetition number
(for example, 40 represents the 40th loop of certain dance
move). Each tick in the horizontal axis represents a different
length of frames because the length of each motion is varied.
In addition, not all DTW bone diagrams are represented
in the graph, but only of which are visually important for
variation assessment. Usually, the included bones are hip (as
the root bone), head, and four body appendages. The graph
plot labelled TOTAL is the total DTW distance of all 19
bones in 3D model.

The graphs show that there are consistent behaviors in all
of the outputs. They show periodic increasing and decreasing
of DTW distance in each loop. Sometimes, the dance moves
deviate further from the training data, but they settle back to
be more similar after some period. These pattern is repeated
for the entire length of the output. Using these peaks and
valleys, we can choose the least or most extreme variation
from the outputs. For example in Figure 7.a, the output
motion for tindak moves, the output motion at the 30th
repetition has the most similar motion as compared to the
training data. This is shown by a low valley in the graph.
In contrast, the peak at the 39th point of the horizontal
scale shows that the repetition has the most variance. This
undulations of the DTW distance occur on all dance moves;
although there are differences in how and which different
body parts contribute to the total deviations.

Moving on, by using DTW diagrams, we can explain
how different parts of the body take part in contribute to
the difference in motions. For example, the graph show that
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Fig. 6: The Generated Moves of (a) Tindak shows the variation in the legs movement, (b) Kawung for the arms, and (c)
Gejuk-Tindak transition for showing the variation in a full body movement. The top rows are the training data, the middle
rows are the most similar, and the bottom rows are the most different output

difference in legs motion have a prominent effect on the total
difference. Besides, the different scales in the vertical axis
must also be carefully observed. Some moves like kawung
(Figure 7.b) have steep peaks and valleys in the graph
plot. Nevertheless, because the distance is relatively small,
the difference is hardly noticeable in visual representation.
Logically, motions involving full body parts like transition
move in Figure 7.c, generally have a large DTW distance
as more bones contribute their own differences to the total
distance.

Note that the comparisons using DTW only calculate the
distance between the rotation angles of the bones excluding
hip bone. As the root bone, the location of the hip bone
would affect the positions of other bones. However, although
the hip bone causes location displacement which is visually
perceptible in 3D models, it does not affect the DTW
distances of bones other than itself. Hence, it would be
a different case when we use LMA features to assess the
movements. Unlike DTW that allows many kinds of data,
LMA features are strictly computed from various locations
of body parts. By converting rotation data into position of
the joints using Equation 4, it means that the position of the

hip bone would likely affect the LMA greatly.
LMA has a full range of features which can be used to

analyze various aspects of human motion. In this paper, we
choose a subset from those features to help us get further
insight into the resulting variations of the generated dance
moves. For instance, for tindak move which relies heavily on
legs movement, we use feet velocity as well as right and left
volume features (Figure 6.a). Next, we use hands velocity to
examine hands-intensive movement in kawung (Figure 6.b).

Each LMA diagram in Figure 8 uses three graph plots
to show how the most similar and the most different output
vary from the training data. The diagrams show how the
variations occur in terms of several LMA parameters. In
velocity diagrams (Figure 8.a), the peaks show when the
body parts move quickly and the valleys show when they
momentarily pause (e.g. at the moment before changing the
direction). In volume diagrams, the peaks show when the
body taking most spaces, usually when the dancer spread her
arms or feet (Figure 8.b and 8.c). The other LMA features
are used accordingly.

We can notice that even though the shapes of the output
graphs are similar or at least they have some resemblances to

IAENG International Journal of Computer Science, 47:2, IJCS_47_2_14

Volume 47, Issue 2: June 2020

 
______________________________________________________________________________________ 



Fig. 7: The DTW distance between output moves and training
moves, (a) tindak, (b) kawung, and (c) gejuk-tindak transition

the training data, they are generally more jagged. This shows
that there are inherent noises in the output. In the active
movements of the body parts, big motions usually overcome
the noises, thus making them invisible. The noises are more
visible when they occur in stationary body parts. The noises
can also exist in the time domain. The jerk diagram in Figure
8.d depict the values from the first derivative of acceleration
of the hip. They show erratic values, signifying the noises
which occur in the time domain. However, these values are
relatively small and their effects are not visible.

VIII. DISCUSSION AND FUTURE WORKS

Along with the aforementioned examples, the evaluation
of the outputs from the trained models for other Remo dance
moves shows similar behaviors. As Figure 6 shows, the
shifting in the hip bone position can be a problem when
the variation on the hip position gives undesirable sliding
legs animation or makes the legs to float over or be buried
underground. Applying an inverse kinematics mechanism
[38] on the legs can fix this problem. Other than that, a
more complex solution can be applied by adding physics
simulation which is able to compute the hip location based
on the pacing of the legs[24].

As compared to that of hip location, variations of the bone
angles are smaller and even desirable. The slight difference
in bone rotations gives a human imperfection aspect which
adds a natural looks to the animation. The more challenging

problem is when the variations are caused by time shifting.
For most dances, including Remo, the accompaniment music
gives the cue for the dance beat. Specifically, the Remo
dancers follow the sound of Javanese hand drum called
kendhang for the timing. Naturally, these discrepancies in
time produce invalid moves for standard Remo dance. From
another perspective, however, when these variations can sway
a motion into an invalid move, a choreographer can take
advantage of them. Choreography process always involves
observation, emotional response, improvising, and evaluation
[39][40]. Using these generated variations should help the
choreographer at least at the observation, improvisation, and
evaluation phases.

IX. CONCLUSION

The trained generative models of Remo dance basic moves
using LSTM can help animators to create unlimited vari-
ations of said basic moves. These variations in the output
animation can be both in the spatial and temporal dimension.
The generated variations also have a potential ability to help
the choreographers explore new dance moves. The current
limitation in using this method lies on the computation
process requirement—capped by the availability of the GPU
memory. When this limitation is overcome in the next
development of GPU technology, theoretically, the limit of
the length of the dance moves that can be trained into the
models also increases. In that condition, it is feasible to build
virtual choreographers which are able to combine and vary
the trained dance moves.
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