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Abstract—In multipath networks each pair of source and des-
tination has multiple paths between them so as to transmit data
packets parallelly, and will obtain a certain level of satisfaction
which is described as utility when obtaining a certain amount
of bandwidth. In this paper we consider resource allocation for
elastic applications in multipath networks with the objective
of utility maximization, which is an intrinsically non-strictly
convex optimization problem. We analyze the resource alloca-
tion model for elastic applications and discuss its implication
from an economic point of view. In order to obtain the optimal
resource allocation, we present a heuristic resource allocation
algorithm via Particle Swarm Optimization (PSO), which is
verified through some numerical examples.

Index Terms—multipath networks, elastic applications, re-
source allocation, Particle Swarm Optimization.

I. INTRODUCTION

In the last several years, there has been much interest
in multipath resource allocation algorithms and applications
([1][2] [3][4]), where each source-destination pair can have
several different routes for it to transmit data packets so as
to improve throughput as well as transmission reliability. In
multipath transmission schemes, maximizing the aggregated
user utility over the network with multipath routing under the
constraint of links’ capacity is the objective of the multipath
network utility maximization problems. They can be viewed
as an example of cross-layer optimization framework [5] in
Internet, where additional benefits are achieved by jointly
optimizing at the routing (network layer) and transmission
control (transport layer). However, the utility maximization
problems to solve in multipath networks are usually concave
but not strictly concave, resulting in non-unique optimums
of the primal resource allocation problems and discontinuous
dual price problems. Thus, most of researchers have to relax
the multipath network utility maximization problems so as
to make them strict concave ([6][7][8]), which means that
the optimums of the network utility maximization problems
are unique.
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In order to solve the mutipath utility maximization prob-
lems for resource allocation and their relaxation versions,
roughly speaking, multipath resource allocation schemes can
be generally classed into three categories: primal algorithm-
s ([9][10][11]), dual algorithms ([12][7][13]), and primal-
dual algorithms ([14][6][15]). The primal algorithms have
a dynamical rule for adjusting user transmission rates and
a static rule for generating link prices, and conversely, the
dual algorithms have a dynamical law for adjusting link
prices and a static law for generating user transmission rates.
Then, the primal-dual algorithms have dynamical laws for
adjusting both user transmission rates and link prices. The
primal algorithms are usually based on a penalty function
approach, i.e., they replace the capacity constraints by a
penalty function in the optimization objective. They always
tend to produce biased approximates of the optimal operating
points, due to the fact that penalties are only incurred when
the capacity constraints are violated. In contrast, the optimal
operating point is defined to be one that satisfies the capacity
constraints. As for the dual algorithms, the advantage is that
they are designed to compute the exact optimal operating
point including resource allocation and link price when the
step-sizes are driven to near zero in an appropriate fashion.

It is very significant to study the resource allocation for
elastic applications in multipath networks and investigate
optimal resource allocation for these applications, so as to
satisfy the QoS requirements of them while achieving the
objective of utility maximization. In this paper we investigate
the optimal resource allocation for elastic applications based
on the idea of network utility maximization in multipath
networks, which applies utility-based method from eco-
nomics into the area of bandwidth allocation in multipath
networks. We give an interpretation for the utility maxi-
mization problem and its sub-problems from an economic
point of view. This paper assumes that users have access
to two or more different routes in the multipath networks.
We investigate the resource allocation for multipath network
utility maximization problem and present an optimal resource
allocation scheme for multipath networks by using Particle
Swarm Optimization (PSO).

The rest of this paper is summarized as follows: We formu-
late the utility maximization model for resource allocation of
elastic applications in multipath networks in Section II. Then
we introduce the optimal resource allocation schemes for
elastic applications in multipath networks in Section III and
give some numerical examples to illustrate the performance
of the proposed scheme in Section IV. Finally we conclude
this paper in Section V.
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II. RESOURCE ALLOCATION MODEL

A. Applications and Utility Functions

In the Internet there are mainly two classes of applications
based on the shapes of their utility functions when users
obtain these applications. That is, the utility of an application
is regarded as the satisfaction or QoS of this application when
one user obtain this application. One type of applications
corresponds to the traditional data applications, such as file
transfer and web application. They are tolerant of delay
and can take advantage of even the minimal amounts of
bandwidth resource. They are elastic and utility functions
for them are usually considered to be concave. The other one
corresponds to delay and rate sensitive real-time applications,
such as real-time streaming video and audio applications.
They are delay-sensitive and always require a fixed minimal
amount of bandwidth resource so as to guarantee adequate
level of QoS. They are regarded to be inelastic in their
demand for bandwidth resource and utility functions for them
are usually modelled to be nonconcave (e.g., sigmoidal or
discontinuous).

Utility functions for elastic applications have been pro-
posed in [16] [17] for single-path network resource alloca-
tion, and then further discussed in [18] [19]. Some interesting
resource allocation algorithms are presented accordingly to
achieve network utility maximization. Recently, migrating
the elastic applications into the cloud has become an in-
teresting research topic, and some novel resource allocation
schemes are also proposed to achieve the objective of max-
imizing applications migration utility functions [20] [21].
Generally, the concave utility functions for elastic applica-
tions are given by Us(ys) = cs(log(asys + bs) + ds) with
resource ys of user s, where as, bs, cs and ds are parameters
of elastic applications for user s. Here all utility functions
are increasing and no less than zero in their arguments, i.e.,
Us(ys) ≥ Us(0) = 0. Meanwhile, each user s incurs a cost
for application providers when it obtains an application. The
cost can be described by a non-decreasing, differentiable
convex function Vs(ys) of the obtained resource ys for its
application providers, which satisfies Vs(ys) ≥ Vs(0) = 0.
Here we choose the following cost function Vs(ys) = ηsy

2
s .

B. Model Description

In a multipath network there are a set S of users where
each user s ∈ S identifies a source-destination pair and uses
an application, a set L of unidirectional links with capacities
Cl, l ∈ L, and a set P of paths where each path p ∈ P
is a collection of links. Each source can send packets to
its destination over multiple paths. In following analysis, let
P (s) be the set of paths that user s uses, P (l) be the set of
paths transmitting along link l for user s, respectively, and
L(p) be the set of links on path p. Hence if a user s uses
path p for transmission, then p ∈ P (s); if a path p transmits
along link l, then p ∈ P (l); if a link l is on the path p, then
l ∈ L(p).

For user s, assume the flow rate on path p ∈ P (s) is
xsp, then the total flow rate of user s is ys =

∑
p∈P (s) xsp,

thus user s attains a utility Us(ys) when obtaining an elastic
application. Meanwhile the aggregated rate on link l is zl =∑

p∈P (l) xsp, which should not exceed the link capacity Cl.

Every user wants to maximize its own utility when ob-
taining an elastic application, but the goal of network is to
maximize the performance of all applications. Therefore, the
resource allocation model for elastic applications in multi-
path networks can be described as the following optimization
problem, which we consider as the primal problem.

max
∑
s∈S

Us(ys)− Vs(ys)

subject to
∑

p∈P (s)

xsp = ys∑
p∈P (l)

xsp ≤ Cl,

over xsp ≥ 0, s ∈ S, p ∈ P.

(1)

Here, the objective is to maximize the aggregated utility
of user flow rate ys over all users with constraints of link
capacity in the network where each user uses multiple paths
for data transmission.

C. Model Analysis

Now we analyze the resource allocation model for elastic
applications using multipath communications, i.e., the non-
linear programming problem (1). The Lagrangian of (1) is

L(x,y;λ, µ) =
∑
s∈S

(Us(ys)− Vs(ys))

+
∑
s∈S

λs

 ∑
p∈P (s)

xsp − ys


+

∑
l:l∈L

µl

Cl −
∑

p∈P (l)

xsp

,

(2)

where λ is the price vector with elements λs, which can be
considered as the price per unit bandwidth paid by user s
when using an elastic application; µ is the price vector with
elements µl, which can be considered as the price per unit
bandwidth charged by link l when transmitting data packets
of an application; x is the flow rate matrix with elements
xsp; y is the flow rate vector with elements ys.

The Lagrangian (2) can be rewritten as

L(x,y;λ, µ) =
∑
s∈S

(Us(ys)− Vs(ys)− λsys)

+
∑
s∈S

∑
p∈P (s)

xsp

λs −
∑

l∈L(p)

µl

+
∑
l∈L

µlCl.
(3)

Notice that the first part in (3) is separable in ys, and the
second part in (3) is separable in xsp. Thus the objective
function of the dual problem is

D(λ, µ) = max
x,y

L(x,y;λ, µ)

=
∑
s∈S

Ps(λs) +
∑
s∈S

∑
p∈P (s)

Rsp(λs, γsp) +
∑
l∈L

µlCl.

(4)
Here

Ps(λs) = max
ys

Us(ys)− Vs(ys)− λsys, (5)

Rsp(λs, γsp) = max
xsp

xsp(λs − γsp), (6)

where γsp =
∑

l∈L(p) µl, p ∈ P (s).
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The sub-problem (5) is regarded as USER problem. In this
sub-problem, user s wants to maximize its own utility minus
its own cost which depends on the total rate ys when he
obtains an elastic application. Meanwhile, the user has to pay
a price for its using bandwidth resource when obtaining an
elastic application. Since λs is the price per unit bandwidth
paid by user s, then λsys is the total cost that user s is willing
to pay. Thus, USER problem (5) is an optimization problem
that every user is to maximize its own profit.

The sub-problem (6) is regarded as PATH problem. In this
sub-problem, µl is the price per unit bandwidth charged by
link l, then γsp is the total price associated with the path p
of user s. Then xspλs is the cost paid by user s for path
p, and xspγsp is the total cost charged by path p of user s.
Hence, PATH problem (6) is an optimization problem that
every path is to maximize its own revenue.

Hence, the dual problem of resource allocation (1) for
elastic applications is described as

min D(λ, µ)
over λs ≥ 0, µl ≥ 0, s ∈ S, l ∈ L.

(7)

The dual problem (7) can be considered as the NETWORK
problem. The objective is to minimize the total price charged
by all links under the constraints that users are guaranteed
with certain levels of satisfaction. The traditional gradient-
based price algorithms (e.g., [12], [1]) are not necessarily
efficient to achieve the optimum since the optimization
problem is not strictly convex. They may produce infeasible
or suboptimal resource allocation of the primal model.

III. RESOURCE ALLOCATION ALGORITHM

A. PSO scheme

1) PSO basic methodology: In a PSO [22] system, par-
ticles fly around in multidimensional search space. During
flight process, each particle adjusts its own position accord-
ing to its experience, and the experience of its neighboring
particles, making full use of the best position obtained by
itself and its neighbors. The swarm direction of a particle is
defined by the set of particles neighboring the particle and its
history experience. PSO has been found very useful to deal
with very complicated optimization problems, such as power
optimization [23], function optimization problems[24][25],
and communication networks [19][26].

Each particle keeps track of its coordinates in the space of
interest, which are associated with the best solution (fitness)
it has achieved so far. This value is called Pbest. Another
best value that is tracked by the global version of the particle
swarm optimizer is the overall best value, and its location,
obtained so far by any particle in the population. This
location is called Gbest. At each iteration step, the particle
swarm optimization concept consists of velocity changes of
each particle toward Pbest and Gbest locations. Let x and v
denote a particle coordinates (position) and its corresponding
flight speed (velocity) in a search space, respectively.

Therefore, the ath particle is represented as Xa =
(xa

11, . . . , x
a
1p; . . . ;x

a
s1, . . . , x

a
sp), and V a = (va11, . . . , v

a
1p;

. . . ; vas1, . . . , v
a
sp) in PSO-based resource allocation scheme.

In the following analysis, let Xa = (xa
jp) and V a = (vajp)

for simplicity. And let Pbesta = (xaPbest
jp ) and Gbest =

(xGbest
jp ) be the best position of individual a and its neigh-

bors’ best position so far, respectively. Using the information
above, the velocity and position of individual a are updated
by the following law

V a(k + 1) = ωV a(k) + c1 ∗ ℜ1 ∗ (Pbesta(k)−Xa(k))
+c2 ∗ ℜ2 ∗ (Gbest(k)−Xa(k)),

Xa(k + 1) = Xa(k) + V a(k + 1),

where ω is the inertia weight factor; c1, c2 are acceleration
constants; ℜ1,ℜ2 are uniform random values between 0
and 1; Xa(k) is the current position of individual a at the
iteration step k; V a(k) is the velocity of individual a at
the iteration step k, V a

min < V a(k) < V a
max; Pbesta(k) is

the best position of the individual a at the iteration step k;
Gbest(k) is the best position of the group.

In the update law above, the parameters V a
min and V a

max

determine the resolution, or fitness, with which regions
between the present position and target position are searched.
The constants c1 and c2 represent the weighting of the
stochastic acceleration terms that pull each particle toward
Pbest and Gbest positions.

2) The fitness function: Since the utility maximization
problem is subjected to inequality constraints, we use the
PSO with penalty function in the algorithm. In the penalty
method, the fitness function is described as follows:

Ff =

{
f(X), if the solution is feasible
f(X) + h(k)H(X), otherwise

(8)
where f(X) is the original objective function to be opti-
mized, h(k) is a penalty value, and H(X) is a penalty factor.

3) The adaptive inertia weight factor (AIWF): In PSO
scheme, global exploration and local exploitation should be
coordinated so as to efficiently find the optimum [27]. A
larger inertia weight pressures toward global exploration,
while a smaller inertia weight pressures toward fine-tuning
of the current search area. In [28] an adaptively varying
inertia weight was presented to achieve trade-off between
exploration and exploitation. The adaptive inertia weight
factor (AIWF) is generalized as the following expression

ω =


ωmin +

(ωmax − ωmin)(f − fmin)

favg − fmin
,

if f ≤ favg,
ωmax, otherwise,

(9)

where ωmax and ωmin are the maximum and minimum of ω
respectively, f is the current objective value of the particle,
favg and fmin are the average and minimum objective
values of all particles, respectively. The improved inertia
weight factor (9) varies depending on the objective values
of the particles. Thus particles with low objective values
can be protected while particles with objective values over
the average will be dropped. That is, good particles tend to
perform exploitation to improve results by local search, while
bad particles tend to perform large modification to explore
space with large steps.

B. Algorithm Description

In this subsection, we present a heuristic algorithm us-
ing PSO to resolve the utility maximization model (1)
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for resource allocation of elastic applications in multipath
networks. The important notations in the proposed resource
allocation algorithm using PSO are listed as following:

Particle: Position of each particle within the population
in PSO represents a candidate solution for solving the
resource allocation problem (1). For example, each particle
Xa represents one possible bandwidth resource allocation for
model (1), and the jpth dimension of the particle corresponds
to the flow rate allocation of user j on path p.

Velocity: V a, the velocity in PSO, is the auxiliary variable
for the algorithm to find the final optimal solution.

Fitness function: The objective of model (1) is to maxi-
mize the aggregated utility with constraints of links’ capac-
ities in the network, so when there are elastic applications
in the network the fitness function here given according to
(8) has the following form (note that the first term of Ff is
obtained by substituting the equality ys =

∑
p∈P (s) xsp into

the objective):

Ff =



∑
s∈S

Us

 ∑
p∈P (s)

xsp

− Vs

 ∑
p∈P (s)

xsp

,

if
∑

p∈P (l)

xsp ≤ Cl

∑
s∈S

Us

 ∑
p∈P (s)

xsp

− Vs

 ∑
p∈P (s)

xsp


+
∑
l∈L

µl

Cl −
∑

p∈P (l)

xsp

, otherwise.

(10)

So if one particle satisfies all constraints, it is a feasible
particle. Otherwise, an extra charge should be paid which
is proportional to the amount of violation with very large
positive constant.

C. Main Steps

Next we present the resource allocation scheme using PSO
to resolve the utility maximization model (1) of resource allo-
cation problem for elastic applications in multipath networks
(i.e., position) according to the objective function (i.e., fitness
function) through the auxiliary variable (velocity in PSO).

Step1: Initialize the variables and the parameters.
Let k be zero and set the maximum number of iterations

as K. Initialize position of particle Xa, which corresponds
to a set of bandwidth resource allocation, and initialize
velocity of particle V a, which is the auxiliary variable
in the scheme. The particle must be one of the feasible
candidate solutions satisfying the inequality constraints on
link capacities. Initialize PSO parameters (ω, c1, c2).

Step2: Calculate fitness.
The current searching points are evaluated by using the

objective functions of the target problem, i.e., Ff in (10).
Pbesta(k) is set to be the searching point, and Gbest(k) is
the best evaluated value among all Pbesta(k) at the iteration
k, respectively.

Step 3: Update the searching points.
If the evaluation of each point is better than the previ-

ous Pbesta(k), the value is set to Pbesta(k). If the best
Pbesta(k) is better than Gbest(k), the value is set to be
Gbest(k). All the Gbest(k) are candidates for the final

control strategy. Update velocities and positions according
to the update law.

Step 4: Set stop criterion.
When the link capacity constraint is violated, an extra

charge should be paid, which is proportional to the amount
of violation with the penalty value. When the number of
iterations reaches the maximum or the optimal objective is
achieved (i.e., the objective of resource allocation model
does not change any more), the searching procedure can be
stopped. The last Gbest(k) can be drawn as the optimal
position, and the corresponding xGbest

jp (k) is the optimal
allocation allocation for user j on path p in the network.

IV. NUMERICAL EXAMPLES

Consider the following concave utility function Us(ys) =
ξs log(ys + 1) when user s requests and obtains an elastic
application, where ξs is a private parameter which captures
the willingness-to-pay of user s for the obtained elastic
application. Choose the convex cost function Vs(ys) = ηsy

2
s ,

where ηs is a parameter which describes the cost valuation
of user s when he is granted an amount ys of bandwidth
resource for the elastic application.

We first consider a simple multipath network consisting
of 50 users who transmit data packet to each other. Each
user has the same access link capacity Cl =20Mbps. In
order to ensure the convergence of the proposed scheme, the
acceleration coefficients c1, c2 are set to 2, and the inertia
weight factor range is set to [0.4, 0.9]. The swarm size is
chosen to be 20.

We consider the impacts of parameters ξs and ηs on the
performance of the resource allocation scheme, and depict
the evolution of aggregated utility for this network in Fig.
1. The scheme is gradually driven to a steady state where
the utilization of each access link is approximately 100% as
we observed in the simulation, since each user tries to best
utilize the bandwidth resource of each access link so as to
maximize its own utility. From the results, we also observe
that in the case with larger ξs/ηs utility functions users obtain
more bandwidth resource and finally higher perceived utility.
This is expected since the original problem is to maximize
the aggregated utility of all users.

Now we analyze the influence of the swarm size on
the convergence performance of the proposed resource al-
location scheme and depict the simulation results in Fig.
2. We observe that increasing the swarm size from 20 to
160 slightly improves the convergence performance of the
resource allocation scheme. In fact, recall that the global
exploration and local exploitation discussed in Section III,
the convergence performance mainly depends on algorithm
parameters such as swarm size other than the number of
users.

Finally we investigate the impact of user numbers on the
performance of our resource allocation scheme. The simu-
lation setup is identical with the one above except that the
users are not static, i.e., after a period time some users leave
the network while other new users join. Assume at iteration
k = 300, 20 users leave the network after completion of
one elastic application (e.g., transmission) and at iteration
k = 600 new 10 users join the network for requesting new
elastic applications. We depict the evolution of aggregated
utility for the dynamic network in Fig. 3. We find that the
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Fig. 1. Performance of the resource allocation scheme for the multipath
network
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Fig. 2. Performance of the scheme with different swarm sizes

proposed resource allocation scheme behaves well after the
transitional points of user arrivals and departures and also
finally converges to the optimum within reasonable iteration
times.

V. CONCLUSIONS

We considered resource allocation for elastic applications
in multipath networks in this paper and investigated resource
allocation for elastic applications with the objective of utility
maximization, which can be summarized as how to maximize
the aggregated utility of all users under the constraint of
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e

Fig. 3. Performance of the scheme with user arrivals and departures

links’ capacities. Moreover, we presented a heuristic resource
allocation scheme via PSO to achieve the optimal resource
allocation. Finally, we gave some numerical examples to
verify the research results obtained. For future research
work, we will investigate the resource allocation for inelastic
applications in multipath networks and try to develop the
resource allocation scheme for inelastic applications which
can be implemented into multipath networks.
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