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Abstract— The structure of CNF formulas as well
as classes of formulas is considered here from a group
theoretic perspective, provided by the action under
the complementation group. For this study again,
the fibre view approach to CNF on basis of the con-
cepts of base hypergraphs and its fibre-transversals is
exploited extensively. Several CNF classes are inves-
tigated which are defined via orbits of complementa-
tion subgroups. Besides their stabilizer properties we
also study to some extent the satisfiability aspects of
those classes. In that context it turns out that sev-
eral results regarding stabilizer properties or satisfi-
ability aspects valid for fibre-transversals cannot be
transfered when replacing them with arbitrary CNF
formulas. Further we present an algorithm for com-
puting the isotropy groups of fibre formulas, and in-
vestigate the lifting process to the total case. The
members of several concrete subclasses of CNF are
treated thereby such as linear or symmetric formu-
las.
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hypergraph

1 Introduction

A fundamental open question in mathematics is the NP
versus P problem which is attacked within the theory of
NP-completeness [9]. The genuine and one of the most
important NP-complete [6] problems is the propositional
satisfiability problem (SAT) for conjunctive normal form
(CNF) formulas. More precisely, SAT is the natural NP-
complete problem and thus lies at the heart of compu-
tational complexity theory. Moreover, SAT plays an es-
sential role in the theory of designing exact algorithms.
Numerous applications can be treated within the CNF-
SAT approach on basis of the high expressiveness of the
CNF language, so enabling polynomial-time reductions
of computational problems occuring in the main appli-
cational areas [10, 11]. Important applications of SAT
are, e.g., formal verification [25], bounded model check-
ing [5] or artificial intelligence. In industrial applications
most often the modelling CNF formulas are of a specific
structure. And therefore it would be desirable to have
fast algorithms for such instances. Also from the struc-
tural point of view one is interested in classes for which
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SAT can be solved in polynomial time. There are known
several structured classes having a polynomially bounded
time complexity, such as quadratic formulas, (extended
and q-)Horn formulas, matching formulas, nested and co-
nested formulas etc. [1, 3, 4, 8, 12, 13, 14, 15, 23, 26]. On
basis of the complementation operation on CNF formu-
las, in this work we investigate the orbit structure and
also the isotropy groups of formulas and formula classes
which also had been started in a previous paper [19]. Be-
sides the fundamental aspect of exploring the CNF struc-
ture, another motivation behind this research is the fact
that formulas with large isotropy groups have small or-
bits. On the other hand the generator sets of isotropy
groups are of polynomial size. This might enabling one
to compute class invariants more efficiently, specifically
those that are connected to the satisfiability of formulas
like the monotonicity index. The hope here is to iden-
tify new subclasses of CNF which behave easy for SAT-
decision as well as to gain new structural insight into
CNF-SAT in general. Further it turns out that a useful
tool in revealing the structure of CNF-SAT is provided
by linear formulas (LCNF). Note that the complexity of
various satisfiability problems on linear formula classes is
well studied, confer e.g. [20, 22]. Again the fibre view
approach to CNF on basis of the notions of the base
hypergraph and the fibre-transversals [16] provides the
conceptional basis for this study. After the presentation
of some preliminaries regarding the CNF or group con-
texts, the fibre view perspective is briefly recapitulated
for convenience, as the whole paper relies on the corre-
sponding terminology. Specifically several results directly
are related to structures defined over fibre-transversals.
Section 3 presents basic results on the complementation
operation on the CNF formulas such as stabilizers and
orbits. It also provides a fixed-parameter tractability as-
sertion regarding certain formula classes with bounded
sizes of its orbits. Section 4 studies formulas and formula
classes defined via orbits of subgroups of the complemen-
tation group. Several results regarding the stabilizers of
such structured objects are presented. Section 5 is de-
voted to design an algorithm for computing the stabilizer
of a fibre formula. Section 6 is intended to present sta-
bilizer results for formulas of a given structure such as
the linear case or symmetric formulas. Section 7 briefly
returns to orbit classes for discussing to some extent their
satisfiability properties. Here again the specific role of fi-
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bre transversals turns out. Finally several open problems
and future work perspectives are outlined.

2 Notation and Preliminaries

A Boolean or propositional variable x taking values from
{0, 1} can appear as a positive literal which is x or as
a negative literal which is the negated variable x. To
flip or complement a literal always means to negate the
underlying variable. Setting a literal to 1 means to set
the corresponding variable accordingly. A clause c is a
finite non-empty disjunction of different literals and it
is represented as a set c = {l1, . . . , lk}. If all literals
in c are complemented one gets cγ . A clause contain-
ing no negative literal is called positive. A clause con-
taining only negated variables is called negative. A unit
clause contains exactly one literal. A conjunctive nor-
mal form formula C, for short formula, is a finite con-
junction of different clauses and is considered as a set
of these clauses C = {c1, . . . , cm}. Let |C| be refered
to as the size of C. Cγ is the formula obtained from
C by transfering c → cγ for all c ∈ C. A formula can
also be empty which is denoted as ∅. Let CNF be the
collection of all formulas. For a formula C (clause c),
by V (C) (V (c)) denote the set of variables occurring in
C (c). Let CNF+ (CNF−) denote that part of CNF
containing only positive (negative) clauses. A formula
C ∈ CNF is called linear if it contains no complemen-
tary unit clauses and additionally every pair ci, cj ∈ C,
i 6= j, satisfies |V (ci) ∩ V (cj)| ≤ 1. By LCNF the
class of linear formulas is denoted. Given C ∈ CNF, let
A(C) := {c ∈ C : cγ 6∈ C} and S(C) := {c ∈ C : cγ ∈ C}
defining the classes A := {C ∈ CNF : C = A(C)} of anti-
symmetric and S := {C ∈ CNF : C = Cγ} of symmetric
formulas [21]. Note that A∩S = {∅}, and that for every
non-empty C ∈ CNF one has C = A(C) ∪ S(C) as dis-
joint union. However, clearly S ∪A is a proper subset of
CNF. Let S± ⊆ S contain all formulas C = C ∪ Cγ ,
where ∅ 6= C ∈ CNF+. For a finite set M , let 2M

denote its powerset. As usual for a positive integer
n, let [n] := {1, . . . , n}, and for convenience we set
[0] := ∅. For any set system, i.e., a finite family of sets
M := {Mi : i ∈ [r]} which all are subsets over any base
set, as usual we set

⋃
M :=

⋃
i∈[r] Mi. Throughout log

means the logarithm function with respect to base 2; and
groups always are assumed to be finite. Given a group
G, recall that the order of any subgroup of G is a divisor
of its cardinality |G| according to a central theorem of
Lagrange. Let Gn(G) denote a set of generators of G.
Let < g >≤ G denote the cyclic subgroup generated by
g ∈ G. Further recall that every abelian group can be
written as a direct product of cyclic subgroups. Given
C ∈ CNF, SAT asks whether there is a truth assignment
t : V (C) → {0, 1} such that there is no c ∈ C all literals
of which are set to 0. If such an assignment exists it is
called a model of C. Let SAT ⊆ CNF denote the collec-
tion of all formulas for which there is a model. Clauses

containing a complemented pair of literals are always sat-
isfied. Hence, it is assumed throughout that clauses only
contain literals over different variables, i.e., |V (c)| = |c|.
As usual iff means if and only if.

2.1 Base Hypergraphs of CNF’s

For convenience, let us briefly recall the fibre struc-
ture of CNF which is closely related to the notion of
the base hypergraph, both concepts were introduced in
[16]. So, the hyperedge set B(C) of the base hypergraph
H(C) = (V (C), B(C)) assigned to a formula C ∈ CNF
is defined as B(C) := {V (c) : c ∈ C} ∈ CNF+. The
collection of all clauses c such that V (c) = b, for a fixed
b ∈ B(C), is the fibre Cb of C over b yielding the fibre-
decomposition C =

⋃
b∈B(C) Cb of C. Therefore b is also

refered to as the base point of the fibre. Conversely, a hy-
pergraph H = (V,B) can be regarded as base hypergraph
if its vertex set V is a non-empty finite set of Boolean
variables such that for every x ∈ V there is a b ∈ B
containing x. Every b ∈ B is assumed to be non-empty.
Further throughout, if not stated otherwise, it is assumed
that C 6= ∅, B 6= ∅. By Wb := {c : V (c) = b} denote the
collection of all possible clauses over a fixed b ∈ B. By
definition, a hypergraphH = (V,B) is linear if |b∩b′| ≤ 1,
for all distinct b, b′ ∈ B, and H is exact linear if ≤ above
is replaced with =. Recall that a hypergraph H = (V,B)
is called loopless if |b| ≥ 2, for all b ∈ B [2]. Observe that
H(C) is loopless iff C is free of unit clauses, and H(C)
is (exact) linear if C is (exact) linear. The intersection
graph I(H) of H = (V,B) gets a vertex for each b ∈ B
and there is exactly one edge joining a pair of vertices
b 6= b′ iff b ∩ b′ 6= ∅. A hypergraph H is called connected
iff I(H) is connected in the usual sense. A hypergraph
H is called Sperner if no hyperedge is contained in any
other hyperedge of H [2]. Clearly, any loopless and linear
hypergraph is Sperner; the converse however does not
hold true in general.. The set of all clauses over H is
KH :=

⋃
b∈B Wb. A H-based formula is a subset C ⊆ KH

such that Cb := C ∩ Wb 6= ∅, for every b ∈ B. For
a H-based C ⊆ KH, let C̄ := KH \ C be its comple-
ment formula. If C satisfies C̄b := Wb \ Cb 6= ∅, for all
b ∈ B, then C̄ also is H-based. A fibre-transversal of KH
is a H-based formula F ⊂ KH such that |F ∩Wb| = 1,
for every b ∈ B, this clause is denoted as F (b). By
F(KH) denote the set of all fibre-transversals of KH.
Observe that, given a linear base hypergraph H then ev-
ery fibre-transversal F ∈ F(KH) is linear. Similarly, a
linear formula always is a fibre-transversal over its base
hypergraph, as it is assumed to be free of complemen-
tary unit clauses. A compatible fibre-transversal is de-
fined by the property that

⋃
b∈B F (b) ∈WV . Fcomp(KH)

is the set of all compatible fibre-transversals of KH. As
an example for a compatible fibre-transversal, consider
the base hypergraph with variable set V := {x1, x2, x3}
and B := {b1 := x1x2, b2 := x1x3, b3 := x2x3}. Then,
e.g., the clauses c1 := x1x̄2 ∈ Wb1 ,c2 := x1x̄3 ∈ Wb2
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and c3 := x̄2x̄3 ∈ Wb3 , denoted as literal strings, form
a compatible fibre-transversal of the corresponding KH,
because c1 ∪ c2 ∪ c3 = x1x̄2x̄3 ∈ WV . A diagonal fibre-
transversal F is defined through the property that for
each F ′ ∈ Fcomp(KH) one has F ∩ F ′ 6= ∅. Finally,
let Fdiag(KH) be the collection of all diagonal fibre-
transversals of KH. According to [17] a base hyper-
graph H is called diagonal iff Fdiag(KH) 6= ∅. As for
the total clause set KH we can define fibre-transversals
for a H-based formula C ⊂ KH as follows. A fibre-
transversal F of C contains exactly one clause of each
fibre Cb of C. The collection of all fibre-transversals
of C is denoted as F(C). We also have compatible
and diagonal fibre-transversals of C via Fcomp(C) :=
F(C)∩Fcomp(KH), and Fdiag(C) := F(C)∩Fdiag(KH).
For a base-hypergraph H and a class C ⊆ CNF let
C(H) := {C ∈ C : H(C) = H}, denote the H-based frac-
tion of C. For convenience let us cite a central fact in that
context shown in [16]. It characterizes the satisfiability
of a formula C in terms of compatible fibre-transversals
in its based complement formula C̄.

Theorem 1 [16] For H = (V,B), let C ⊂ KH be a H-
based formula such that C̄ is H-based, too. Then C is
satisfiable iff C̄ admits a compatible fibre-transversal F .
Moreover, the union c :=

⋃
F γ of all clauses in F γ is a

clause with V (c) = V and corresponds to a model of C.

3 Basic Concepts and Results

For a fixed finite and non-empty set of propositional
variables V , let Bt = 2V and Ht = (V,Bt). Denote
by CNF := 2KHt the set of all CNF formulas with
V (C) ⊆ V , B(C) =: B ⊆ Bt. Let cX be the clause
obtained from c ∈ KHt

by complementing all variables in
X ∩ V (c), where X is an arbitrary subset of V , for short
we set cγ := cV (c), and further c∅ := c. This complemen-
tation operation ϕ(c,X) := cX acting on KHt

induces
an action on CNF by observing that {c} ∈ CNF: For
C = {c1, . . . , cm} ∈ CNF and X ∈ 2V let ϕ : CNF×2V →
CNF, such that ϕ(C,X) := {cX

1 , . . . , cX
m} =: CX ∈ CNF.

Again set Cγ := CV (C) in case that all variables in
C are complemented, and C∅ := C. Thus formally
we obtain the GV -action on CNF of the abelian group
GV := (2V ,⊕) with neutral element ∅. Indeed, let
X, Y ∈ GV , then (CX)Y = CX⊕Y . Further we set
∅X := ∅ ∈ CNF, for every X ∈ GV . In case V (C)  V ,
the relevant subgroup of GV is GV (C) = (2V (C),⊕). We
shall use the abbreviation E := {∅} ≤ GV for the
trivial group. By O(C) := {CX : X ∈ GV (C)} =
{CX : X ∈ GV } denote the (GV -)orbit of C in CNF
yielding the classes of an equivalence relation on CNF.
This quotient space CNF/GV therefore usually is called
the orbit space. Recall that a group acts transitively on its
orbits. Let GV (C)(C) := {X ∈ GV (C) : CX = C} denote
the isotropy group also called stabilizer of C ∈ CNF. For a
fibre-subformula Cb ⊆ C, there are two kinds of isotropy

groups, namely, the first GV (C)(Cb) := {X ∈ GV (C) :
CX

b = Cb} which is refered to as the total level. And the
second Gb(Cb) := {X ∈ Gb : CX

b = Cb}, which is refered
to as the fibre level, where Gb := (2b,⊕), V (Cb) = b; thus
Gb(Cb) ≤ GV (C)(Cb). Similarly, for any c ∈ KHt

with
b := V (c) one has its stabilizer Gb(c) := {X ∈ Gb : cX =
c} on the fibre level, and also that one on the total level,
namely GV (c) := {X ∈ GV : cX = c}.

Lemma 1 Given H = (V,B), and non-trivial subgroups
G ≤ GV and H ≤ Gb then |Gn(G)| ≤ |V | and |Gn(H)| ≤
|b|, b ∈ B.

Proof. Clearly Gn(GV ) = {{x} : x ∈ V } thus
|Gn(G)| ≤ |Gn(GV )| = |V |. Also Gn(Gb) = {{x} : x ∈
b} hence |Gn(H)| ≤ |b|, b ∈ B. 2

Lemma 2 Let C ∈ CNF with H(C) =: (V,B).

(i) X ∈ GV (C) is equivalent with c ∈ C ⇔ cX ∈ C.

(ii) X ∈ GV (C) iff X ∈ GV (Cb), for all b ∈ B.

Proof. X ∈ GV (C) means CX = C and (i) follows
directly. Addressing (ii) observe that for distinct b, b′ ∈ B
there is no X ∈ GV such that CX

b = Cb′ . Thus X ∈
GV (C) iff CX =

⋃
b∈B CX

b = C =
⋃

b∈B Cb iff CX
b = Cb,

b ∈ B, iff X ∈ GV (Cb), b ∈ B. 2

Assertion (ii) above shall be restated as follows, for con-
venience:

Corollary 1 GV (C) =
⋂

b∈B GV (Cb), where H(C) =
(V,B).

More generally we set for the stabilizer of a formula class:

Definition 1 GV (C) := {X ∈ GV : C ∈ C ⇒ CX ∈ C}
is called the isotropy group (or stabilizer) of the class
C ⊆ CNF.

Indeed that is a group, as for X, Y ∈ GV (C) and C ∈ C
assume CX =: C ′ ∈ C then CX⊕Y −1

= CX⊕Y = C ′Y ∈ C
hence X ⊕Y −1 ∈ GV (C). Further note that according to
the theorem of Lagrange every subgroup G ≤ GV here
is of order 2e(G) with the integer e(G) := log |G| ≥ 0. A
mapping g : CNF → CNF is GV -equivariant, by defini-
tion, if g(CX) = [g(C)]X , for every X ∈ GV and every
C ∈ CNF. As shown in [18] one has:

Lemma 3 GV (C)(C ′) = GV (C)(C) for all C ′ ∈ O(C).

As usual a fixed point of an operation [24] is the unique
member of an 1-point invariant (also called stable) sub-
space, so by definition its isotropy group equals the whole
group. According to Theorem 4 proven in [17] one has:
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Lemma 4 ∅ 6= C ∈ CNF is a fixed point of the GV -
action iff Cb = Wb, for all b ∈ B(C).

Lemma 5 Let C ∈ CNF, such that H(C) = H(C̄) =: H
then GV (C) = GV (C̄).

Proof. Let X ∈ GV (C) and assume c ∈ C ∩ C̄X then
cX ∈ C̄ hence cX /∈ C yielding a contradiction. So,
C ∩ C̄X = ∅ which directly implies C̄ = C̄X , because
also H(C̄X) = H. Thus it is X ∈ GV (C̄). The reverse
inclusion follows by exchanging the roles of C, C̄. 2

Lemma 6 For C,C ′ ∈ CNF with V (C) = V (C ′) =: V ,
assume GV (C) = GV (C ′) then |O(C)| = |O(C ′)|.

Proof. Let G := GV (C), then G ≤ GV is a normal
subgroup so that the left coset space GV /G is the group
of cosets Y G := {Y ⊕ X : X ∈ G}, for every Y ∈ GV .
Clearly, |Y G| = |G| and CY ′

= CY , for all Y ′ ∈ Y G,
implying |O(C)| = |GV /G| = |O(C ′)| by assumption. 2

Note that the last equation in the previous proof directly
corresponds to the usual orbit rule of group theory relat-
ing the orbit size with the stabilizer index. Recall that
for C ∈ CNF the value µ(C) := min{min{|C ′

+|, |C ′
−|} :

C ′ ∈ O(C)} is the monotonicity index [17] of C. Hence
µ is a class invariant having the same value for all orbit
members. Moreover, as shown in [17] one has C ∈ SAT
iff µ(C) = 0. Recall that the fixed-parameter tractabil-
ity (FPT) w.r.t. parameter k means a worst case upper
bound for the computational time complexity of the form
O(p(n, k)g(k)), for instances of size n, where p is a poly-
nomial and g is an arbitrary function of the parameter k
only, cf. e.g. [7].

Theorem 2 For a constant positive integer k, let C :=
C(k) ⊆ CNF be such that |Gn(GV (C)(C))| ≥ |V (C)| − k,
and such that Gn(GV (C)(C)) can be computed in polyno-
mial time, for every C ∈ C, then SAT is FPT w.r.t. k,
for instances from C.

Proof. For C ∈ C, let G := GV (C) and let H :=
GV (C)(C) be the isotropy group of C. The factor group
G/H may be identified with a set of representatives of
its cosets. We claim that Gn(G/H) = Gn(G) \ Gn(H).
Indeed, first assume that there is any X ∈ Gn(H) which
is also in Gn(G/H) then X ∈ H and also X ∈ G/H
implying X = ∅ ∈ G/H but ∅ 6∈ Gn(H) providing a
contradiction. Next let Y ∈ Gn(G) \Gn(H) then clearly
∅ 6= H ∈ G/H therefore Y ∈ Gn(G/H). So, by assump-
tion one has |Gn(G/H)| = |Gn(G)| − |Gn(H)| ≤ k, and

according to the proof of Lemma 6, O(C) = {C
⊕

Y∈Z
Y :

Z ⊆ Gn(G/H)}. Thus |O(C)| ≤ 2k meaning that µ(C)
can be computed in FPT time O(p(|C|, |V (C)|)2k) where
p is an appropriate polynomial. 2

4 Orbits, Orbit Classes, and Stabilizers

This section considers rather structured formulas respec-
tively formula classes. These are defined over a subgroup
of the complementation operation as orbit formulas or
different types of orbit classes. We are interested in their
stabilizers as well as its satisfiability aspects. To that
end, let us fix an arbitrary base hypergraph H = (V,B)
used throughout the section.

Definition 2 For b ∈ B, subgroups G ≤ GV , H ≤ Gb,

(1) Rb(G):={X ∩ b : X ∈ G} is the (b)-restriction of G,

(2) Lb(H):={X∈GV : X ∩ b ∈ H} is the (GV )-lift of H.

As an example consider V = {u, x, y, z}, b = {x, z},
G := {∅, {x, y}} ≤ GV . Then one obtains Rb(G) =
{∅, {x}} =: H ≤ Gb, and Lb(H) = 2{u,x,y} ≤ GV .
For every b ∈ B one obviously has Rb(E) = E and
Lb(E) = 2V \b. More generally, any lift or restriction
turns out to be a group, and further one has:

Lemma 7 For b ∈ B, and any non-trivial subgroups
G ≤ GV , H ≤ Gb, one has:

(i) Rb(G) ≤ Gb, e(Rb(G)) ≤ min{e(G), b}, H ≤ Lb(H)
≤ GV .

(ii) G ≤ Lb(Rb(G)), H = Rb(Lb(H)).

(iii) Gn(Lb(H)) = {{x} : x ∈ V \ b} ∪Gn(H).

Proof. Recall that |G| = 2e, where e := e(G) ≥ 0, as a
subgroup of GV . As b ∈ GV , one has {X ∩ b : X ∈ G} ⊆
GV ∩ Gb hence |Rb(G)| ≤ Gb, and also |Rb(G)| ≤ 2e.
Moreover, Rb(G) is a subgroup of Gb. Indeed, for any
X, Y −1 = Y ∈ G, let Xb := X ∩ b, Yb := Y ∩ b ∈ Rb(G)
then one has

Xb ⊕ Yb = (Xb ∪ Yb) \ (Xb ∩ Yb)
= (X ∪ Y ) ∩ b \ (X ∩ Y ) ∩ b

= (X ⊕ Y ) ∩ b

which can be verified easily. Thus Xb ⊕ Yb ∈ Rb(G) be-
ing a subgroup. Hence there is eb := e(Rb(G)) ≥ 0 such
that eb ≤ min{b, e} and |Rb(G)| = 2eb . Next, choose
arbitrary X, Y ∈ GV such that as previously defined
Xb, Yb ∈ H. Then reversing the sequence of equations
above one directly obtains (X ⊕ Y ) ∩ b = Xb ⊕ Yb ∈ H
implying X ⊕ Y ∈ Lb(H) thus being a subgroup of GV .
Further, H ⊆ Gb ⊆ GV therefore H ⊆ Lb(H) thus
H ≤ Lb(H), hence (i) is verified. Both assertions in
(ii) are obvious. For (iii), observe that H ≤ Lb(H), as
H ≤ Gb ≤ GV therefore Gn(H) ⊆ Gn(Lb(H)), as by
assumption H 6= E. The elements of H are the only
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members of Lb(H) which are subsets of b. Additionally,
for fixed X ∈ H one has X ∪ Y = X ⊕ Y ∈ Lb(H) for
every Y ∈ 2V \b. As Gn(2V \b) = {{x} : x ∈ V \ b}, (iii) is
verified, because by assumption Gn(H) 6= {∅}. 2

Note that in general the first part G ≤ Lb(Rb(G)) of (ii)
above cannot be sharpened to G = Lb(Rb(G)), which can
be seen via Lb(Rb(E)) = 2V \b and E < 2V \b. From part
(iii) and its proof above one obtains:

Corollary 2 Lb(H) =
⋃

Y ∈2V \b Y H as the union of
cosets in GV /H. for every not necessarily non-trivial
H ≤ Gb.

However, the first relation in part (ii) of Lemma 7 can
be sharpened by replacing its right hand side with the
smallest group contained in all restriction lifts of a fixed
group, so one obtains:

Proposition 1 Let G ≤ GV then

(a) G ≤
⋂

b∈B Lb(Rb(G)).

(b) If there is U ⊆ V with G = 2U then

G =
⋂
b∈B

Lb(Rb(G))

Proof. According to Lemma 7 it is G ≤ Lb(Rb(G)) for
all b ∈ B therefore G ≤

⋂
b∈B Lb(Rb(G)). For (b), let

Y ∈
⋂

b∈B Lb(Rb(G)) then Y ∩ b ∈ Rb(G), hence there is
X(b) ∈ G with Y ∩ b = X(b)∩ b, for all b ∈ B. Clearly as⋃

B = V one has Y = Y ∩V = Y ∩
⋃

B =
⋃

b∈B(Y ∩b) =⋃
b∈B(X(b)∩b). On the other hand, X(b)∩b ⊆

⋃
Gn(G),

for all b ∈ B. Since by assumption Gn(G) = {{x} : x ∈
U}, thus

⋃
Gn(G) = U , it follows that

⋃
b∈B(X(b)∩ b) =

Y ∈ G, and with (a) one obtains (b). 2

As an example that in general statement (a) does not
hold true as an equation take the following example of
a Sperner base hypergraph, even more restricted as con-
sisting of disjoint base points, only: Let V = {u, x, y, z},
B = {b1, b2} where b1 = {u, x}, b2 = {y, z}. Let
G := {∅, {u, y}, {u, z}, {y, z}} ≤ GV . Then H1 :=
Rb1(G) = 2{u} and H2 := Rb2(G) = 2{y,z}. Further
one has Lb1(H1) = 2{u,y,z} and Lb2(H2) = 2V hence
Lb1(H1) ∩ Lb2(H2) = 2{u,y,z} > G. However, note that
the converse of statement (b) above does not hold true in
general by considering a Sperner counterexample: Let
again V = {u, x, y, z}, B = {b1, b2}, but where now
b1 = {u, x, y}, b2 = {u, x, z}. Let G := {∅, {u, x}} ≤ GV .
Then H1 := Rb1(G) = G = Rb2(G) =: H2. Further one
has Lb1(H1) = {∅, {z}, {u, x}, {u, x, z}} and Lb2(H2) =
{∅, {y}, {u, x}, {u, x, y}} hence Lb1(H1) ∩ Lb2(H2) = G.
An obvious but useful fact directly following from the
definitions is stated next.

Fact 1 For b ∈ B, and a fibre formula Cb ⊆ Wb the
stabilizers of the fibre and the total levels are related as
Lb(Gb(Cb)) = GV (Cb).

For a subgroup G ≤ GV , and c ∈ KH let OG(c) :=
OG({c}) = {cX : X ∈ G} denote the G-orbit of c. If
G = GV we write O(c) instead of OG(c). The (G-)orbit
of a clause can be regarded as a formula. The (G-)orbit of
a formula C naturally yields a subclass of CNF, namely
OG(C) := {CX : X ∈ G}. Of specific interest however is
a closely related class which is obtained from a formula
via collecting the G-orbits of its clauses in the following
sense.

Definition 3 Let c ∈ KH.

(1) The fibre formula OG(c) ⊂ WV (c) is called the G(-
orbit)-formula (of c).

(2) For a fixed H-based formula C, let CG(C) :=
{OG(c) : c ∈ C} denote the G(-orbit)-family (of C),
whereas OG(C) is refered to as the G(-orbit)-class
(of C).

Some useful fact are collected next regarding G-formulas
and their stabilizers on the fibre and the total levels.

Lemma 8 Let G ≤ GV , b ∈ B, H ≤ Gb, and c ∈ Wb

then one has:

(i) OG(c) ⊆ Wb and Wb = O(c). Specifically, Wb is
bijective to Gb, b ∈ B.

(ii) Gb(c) = E, GV (c) = 2V \b.

(iii) |OH(c)| = |H|, Gb(OH(c)) = H.

(iv) |OG(c)| = |Rb(G)|, GV (OG(c)) = Lb(Rb(G)).

Proof. As Wb = {c ∈ KH : V (c) = b} one has for given
c ∈ Wb and any X ∈ GV that V (cX) = V (cX∩b) = V (c)
hence O(c) ⊆Wb, and also OG(c) = ORb(G)(c) ⊆Wb. As
|O(c)| = |GV ∩ 2b| = |2b| = |Wb|, we have O(c) = Wb

and |Wb| = |Gb|. The first equation of (ii) is obvious, as
c 6= ∅. In view of Fact 1 one has GV (c) = Lb(E) yielding
the second equation. The first equation of (iii) is implied
by (ii) as E∩H = E. For the second one, obviously H ≤
Gb(OH(c)) is true as H operates transitive on its orbit.
Reversely, for a non-trivial member Y ∈ Gb(OH(c)) of
the stabilizer of the G-formula of c, one specifically has
Y ∈ Gb, b ∩ Y 6= ∅, and cY ∈ OH(c). Further observe
that if there was Z ∈ Gb with cY = cZ then c = cY⊕Z ,
hence Y ⊕ Z = ∅ meaning Y = Z, therefore Y ∈ H,
thus (iii). As stated in the proof of (i) one has OG(c) =
ORb(G)(c). So, identifying H := Rb(G) ≤ Gb the first
equation of (c) yields the first one of (iv). The second
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equation here finally is implied by the second one of (iii)
together with Fact 1. 2

On basis of the fibre-decomposition C =
⋃

b∈B Cb of a
formula, it is possible to characterize the stabilizer of a
G-familie with respect to its fibre-wise subfamilies as fol-
lows:

Proposition 2 Let G ≤ GV and C be H-based then:

(a) CG(C) =
⋃

b∈B Cb, with ∅ 6= Cb := {OG(c) : c ∈ Cb}.

(b) GV (CG(C)) =
⋂

b∈B GV (Cb).

Proof. Since C is H-based, Cb 6= ∅ is true for every
b ∈ B. Let G ≤ GV then CG(C) = {OG(c) : c ∈ C} =⋃

b∈B{OG(c) : c ∈ Cb} because the G-orbit of every c ∈ C
with V (c) = b is a fibre formula OG(c) ⊆ Wb. Now (a)
directly implies the subgroup relation

⋂
b∈B GV (Cb) ≤

GV (CG(C)). Reversely, let X ∈ GV (CG(C)) and D ∈ Cb,
for arbitrary b ∈ B. Then there is d ∈ Cb with D =
OG(d). Therefore DX = OG(d)X = OG(dX) ∈ CG(C).
Thus dX ∈ Cb as V (d) = b = V (dX) implying DX ∈ Cb
yielding X ∈ GV (Cb), for every b ∈ B, proving (b). 2

Definition 4 Given c, c′ ∈ Wb then due to Lemma 8
there exists, by transitivity, a unique transition member
Y (c, c′) := V (c⊕ c′) ∈ Gb with c′ = cY (c,c′) , where c⊕ c′

is regarded as a set of literals.

Proposition 3 Let C be H-based and G ≤ GV .

(a) |OG(C)| = |G/[G ∩GV (C)]| and |CG(C)| = |C|.

(b) G ≤ GV (OG(C)) and G ≤ GV (CG(C)).

Proof. The first equation is a direct consequence of the
orbit rule of group theory as G ∩ GV (C) ≤ G. The sec-
ond equation of (a) is obvious, as C is assumed to be
non-empty. For (b), recall Def. 1, and let Y ∈ G. For
arbitrary D ∈ OG(C), there is X ∈ G with D = CX ,
thus DY = CY⊕X ∈ OG(C), so Y ∈ GV (OG(C)). Next
let D ∈ CG(C), so there is c ∈ C, V (c) = b such
that D = OG(c), hence DY = OG(c) ∈ CG(C) because
G ≤ Lb(Rb(G)) = GV (OG(c)) due to Lemmata 7 and 8,
so one concludes Y ∈ GV (CG(C). 2

Note that in general G 6= GV (OG(C)) which can be seen
already in the case of one fibre only, i.e., V = b: Let
b := {u, x, y, z} and consider the clause c := {u, x, ȳ, z̄} ∈
Wb. Let Gn(H) := {{u, x}, {y, z}}, and consider the H-
formula OH(c) = {c, d, e, f} =: C ⊆Wb then d := c{u,x},
e := c{y,z}, f := c{u,x,y,z}. Setting G := {∅, {y}} yields
OG(C) = {C,C{y}}. But one verifies that c{y} = e{z},
f{y} = d{z} implying C{z} = C{y}, and also C{y,z} = C.
Thus {z} ∈ GV (OG(C)) > G. A similar argument shows

that generally GV (CG(C)) ≥ G. However for the case
G = GV one has GV (O(C)) = GV , and GV (CGV

(C)) =
GV , by corresponding transitivity arguments.

Lemma 9 For a H-based formula C, and G ≤ GV one
has:

(i)
⋃
OG(C) =

⋃
CG(C).

(ii) G ≤ GV (
⋃
OG(C)), G ≤ GV (

⋃
CG(C)).

Proof. The membership of a c ∈
⋃
OG(C) is equivalent

with the existence of an X ∈ G such that c ∈ CX . Which
is the same as that there is d ∈ C with c = dX equivalent
with c ∈ OG(d) which is the same as c ∈

⋃
CG(C) yield-

ing (i). Next, for fixed Y ∈ G, one has by transitivity
OG(C) = OG(CY ) thus [

⋃
OG(C)]Y =

⋃
X∈G CX⊕Y =⋃

OG(CY ) =
⋃
OG(C). So, G ≤ GV (

⋃
OG(C)), and the

part (ii) of the Lemma follows from its first assertion. 2

Specializing on a quite restricted type of H-based formu-
las, the fibre-transversals the following further connec-
tions between orbit classes and families are valid:

Proposition 4 Let F ∈ F(KH) and G ≤ GV .

(a) All members from CG(F ) are mutually disjoint fibre
formulas, not necessarily of equal size. The members
of OG(F ) all are distinct fibre-transversals, of equal
size but in general not mutually disjoint.

(b) Every member of OG(F ) is a transversal of CG(F ),
and vice versa. Meaning that each member of OG(F )
is constituted of exactly one clause from every mem-
ber of CG(F ), and vice versa.

Proof. Assume that there are distinct clauses F (b) =: c,
F (b′) =: c′ of F with d ∈ OG(c) ∩ OG(c′). Then
b = V (d) = b′ because OG(c) ⊆ Wb, OG(c′) ⊆ Wb′ ac-
cording to Lemma 8 (i). So, a contradiction to b 6= b′ is
obtained as F is a fibre transversal. Hence CG(F ) consists
of mutually disjoint members. According to Lemma 8
(iv) the size of a G-formula OG(c) depends on V (c) ∈ B,
hence may vary over B. Next according to Theorem 5
(i), in [17], one has FX ∈ F(KH), for every X ∈ GV ,
and due to (ii) of the same result one has FX 6= F , for
any non-trivial X ∈ GV , hence FX 6= FY , for distinct
X, Y ∈ GV . Both statements imply that OG(F ) con-
sists of distinct fibre-transversals. The total number of
clauses in OG(F ) in the sense of the sum of the sizes
of its members is |F | · |G| according to Prop. 3. From
(a) together with Lemma 9 and Lemma 8 (iv) it follows
that |F | · |G| ≥ |F | · (minb∈B |Rb(G)|) ≥

∑
c∈F |OG(c)| =

|
⋃
CG(F )| = |

⋃
OG(F )|. So, if there is b ∈ B with

|Rb(G)| < |G| then |F | · |G| > |
⋃
OG(F )|, and in this

case the members of OG(F ) cannot be mutually dis-
joint, finishing the proof of (a). Finally, let C ∈ OG(F ),
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C ′ ∈ CG(F ) be chosen arbitrarily. Then there are unique
X ∈ G and c ∈ F such that C = FX and C ′ = OG(c).
Therefore one obtains C∩C ′ = FX∩OG(c) = {cX}. Thus
|C ∩ C ′| = 1 for every pair (C,C ′) ∈ OG(F ) × CG(F ),
hence (b). 2

For the stabilizers of G-orbit classes resp. G-orbit families
of fibre-transversals one obtains:

Theorem 3 Let G ≤ GV be an abitrary subgroup, and
F ∈ F(KH).

(a) G is the stabilizer of OG(F ),
⋃
OG(F ),

⋃
CG(F ).

(b) GV (CG(F )) =
⋂

b∈B Lb(Rb(G)).

(c) If there is U ⊆ V with G = 2U then

GV (CG(F )) = G

.

Proof. Due to Prop. 3 one has G ≤ GV (OG(F )).
Moreover, G ≤ GV (

⋃
OG(F )) = GV (

⋃
CG(F )) accord-

ing to Lemma 9. For considering the reverse inclusions
of (a), first fix an arbitrary non-trivial member Y ∈
GV (OG(F )). Then one specifically has FY ∈ OG(F ).
Suppose that Y /∈ G then there is X ∈ G such that
FX = FY thus F = FX⊕Y , hence X ⊕ Y = ∅. The last
implication is valid here because X⊕Y cannot yield a per-
mutation of the clauses in F as they belong to mutually
distinct fibres. So, it follows that Y = X yielding a con-
tradiction, therefore Y ∈ G, meaning GV (OG(F )) = G.
Now, let C :=

⋃
OG(F ), and Y ∈ GV (C) then Y ∈ GV .

Let D ∈ OG(F ) be arbitrary then there is X ∈ G
with D = FX therefore DY = FX⊕Y yielding a fibre-
transversal. On the other hand cY ∈ C, for every c ∈ D,
thus DY ⊂ C. It is claimed that now one obtains
DY ∈ OG(F ) implying Y ∈ GV (OG(F )) = G, as shown
above, yielding G = GV (

⋃
OG(F )). To verify the claim,

suppose that there are di ∈ D, with bi := V (di), such that
dY

i ∈ FZi , Zi ∈ G, i = 1, 2. As D = FX , there are ci ∈ F
such that di = cX

i . Thus one has cX⊕Y
i ∈ FZi , meaning

cX⊕Y
i = cZi , as only ci is a clause here over bi, implying

X ⊕ Y = Zi, i = 1, 2. So, Z1 = Z2 verifying the claim.
Finally, G = GV (

⋃
CG(F )) is implied by Lemma 9, so (a)

is verified. Regarding (b) observe that Cb = {OG(F (b))}
is exactly the collection of all members in CG(F ) over the
base point b, for every b ∈ B, and CG(F ) =

⋃
b∈B Cb.

Clearly GV (Cb) = GV ({OG(F (b))}) = GV (OG(F (b))) =
Lb(Rb(G)) where the last equality is implied by Lemma 8
(iv) because OG(F (b)) is a G-formula. Therefore in view
of Prop. 2 it is GV (CG(C)) =

⋂
b∈B GV (Cb) = Lb(Rb(G))

yielding assertion (b). Finally assertion (c) is implied by
(b) and Prop. 1. 2

As any linear formula is assumed to be free of comple-
mentary unit clauses, it specifically is a fibre-transversal
yielding the next result on basis of Theorem 3:

Corollary 3 If G ≤ GV and C ∈ LCNF with
H(C) = H, then G = GV (OG(C)) = GV (

⋃
OG(C)) =

GV (
⋃
CG(C)). Further GV (CG(C)) =

⋂
b∈B Lb(Rb(G)),

and if there is U ⊆ V with G = 2U then GV (CG(C)) = G.

5 Formula Stabilizers: The Fibre Case

The specific case of fibre formulas is studied next. We aim
at providing an algorithm for computing the stabilizer of
an arbitrary fibre formula generalizing Lemma 8 valid
for (G)-formulas only. So, throughout this section, let C
be a non-empty fibre formula meaning C ⊆ Wb where
b := V (C), and let E 6= H ≤ Gb be a proper subgroup of
the complementation group.

Lemma 10 (i) For two distinct H-orbits, O :=
OH(c),O′ := OH(c′), c, c′ ∈ Wb, there is exactly
one X ∈ Gb \ H which is composed of generators
in Gn(Gb) \ Gn(H) only, such that OX = O′. This
unique X is called the primitive (orbit) transition
element.

(ii) Let C =
⋃

i∈[s]Oi be the union of s ≥ 1 disjoint
H-orbits: Oi := OH(ci), where ci ∈ C ⊆ Wb. Then
every X ∈ Gb(C)\H provides a non-trivial 2-regular
permutation πX of [s] with OX

i = OπX(i), i ∈ [s].

Proof. Let c ∈ O, c′ ∈ O′, where the orbits are assumed
to be distinct. Then Y (c, c′) ∈ Gb \ H recalling Def.
4. By transitivity for every ci ∈ O there is a unique
Xi ∈ H such that cXi = ci yielding the unique member
c
Y (c,c′)
i = c′Xi ∈ O′. Thus Y (c, c′) provides a bijection

from O to O′ meaning OY (c,c′) = O′. As Y (c, c′) ⊆ b
and Gn(H) ⊆ 2b we have X := Y (c, c′) \

⋃
Gn(H) ⊆

b. Clearly, also X ∈ Gb \ H and so OX = O′ as above.
Moreover X is unique: Let c̃ ∈ O, c̃′ ∈ O′ be another pair
of clauses then there are unique Ỹ , Ỹ ′ ∈ H with c̃Ỹ = c,
c̃′Ỹ

′
= c′. It follows that Y (c̃, c̃′) = Ỹ ⊕ Y (c, c′) ⊕ Ỹ ′

implying Y (c̃, c̃′) \
⋃

Gn(H) = Y (c, c′) \
⋃

Gn(H) = X.
For proving (2), let G := Gb(C) be the isotropy group of
C on the fibre level, and X ∈ G \ H. According to (1),
the H-orbits OX

i , i ∈ [s], are pairwise different, and their
union must yield C as X ∈ G. Thus X induces a bijection
πX on [s] such that OX

i = OπX(i) ⊆ C, i ∈ [s]. As
< X > is cyclic of order 2, this permutation decomposes
into disjoint transpositions, i.e., 2-cycles, namely πX =
(i1, πX(i1)) · · · (ir, πX(ir)), for r = s/2, ij = min([s] \
{ik, π(ik) : k ∈ [j − 1]}), for all j ∈ [r], implying (2). 2

Observe that under the assumptions in Lemma 10 one
has H ≤ Gb(C), so the previous proof directly implies:

Corollary 4 Let C be the union of s ≥ 1 disjoint H-
orbits of clauses in Wb, for an integer s. If there is X ∈
Gb(C) \H, then s is even.
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Theorem 4 The isotropy group Gb(C) of a fibre formula
C ⊆ Wb can be computed in time O(|b|2 · |C|2 · log2 |C|)
as a direct product of cyclic subgroups.

Proof. Again let G := Gb(C). If C = ∅ we have
G = Gb. Otherwise compute G by iteratively enlarg-
ing the number of factors in the current direct product
of cyclic groups H, as long as there is a new genera-
tor X ∈ Gn(G) yielding the next factor < X >. Ini-
tially setting H := E, C can be regarded as the union
of s := |C| ≥ 1 pairwise disjoint H-orbits Oi := {ci},
i ∈ [s]. If s = 1 mod 2 the procedure stops with G := H
according to Corollary 4. Otherwise, one has to check in
the current iteration whether there is X ∈ G\H. To that
end, let ci be an arbitrary member of the orbit Oi, i ∈ [s].
Considering these clauses as the vertices of a complete
graph Ks, we label every edge ci−cj by its unique primi-
tive orbit transition member Xi,j := Y (ci, cj)\

⋃
Gn(H),

i, j ∈ [s], i < j, where Gn(H) is the generator set in the
current iteration. Then due to Lemma 10 our problem is
equivalent to identify a perfect matching in Ks such that
all its members carry an equal label X which therefore
belongs to G, as it provides a bijection of the current set
of orbits. One might implement a clever version of a min-
imum weight perfect matching algorithm, which however
for dense graphs is rather slow. On the other hand we
do not need a matching, only a suitable label which can
be determined faster as follows: By the lexicographic or-
der, based on a pre-ordering of the variables in b, sort all
primitive orbit transition elements Xi,j in a sequence T .
Now equal labels are grouped together. Finally linearly
pass through T in search for a first consecutive subse-
quence t = (Xi1,j1 , . . . , Xir,jr

) of T having the following
properties: (i) |t| = s/2 =: r, (ii) all its elements are
equal to an X, and (iii)

∑r
k=1(ik + jk) = s(s+1)/2. Ob-

serve that these conditions ensure that the corresponding
edges cik

− cjk
, k ∈ [r], form a perfect matching in Ks of

equal label X. The lexicographic sorting of O(s2) labels
can be executed in time O(|b|2 · s2 · log s) dominating the
time amount for computing the primitive transition ele-
ments relying on Lemma 1, as well as the time amount
for the subsequence search. If there is a subsequence as
required yielding label X, then set H ← H× < X >
and join each pair Oi, OπX(i) of the current orbits to
the new H-orbit Oi∪OπX(i) according to Lemma 10 (b).
Then s ← s/2 is the new number of orbits. Otherwise,
the procedure stops with G := H. The joining opera-
tion clearly is dominated by the sorting bound as stated
above. As every newly added cyclic group factor corre-
sponds to exactly one generator of the isotropy group we
have at most |b| such iterations due to Lemma 1. On
the other hand the number of iterations is bounded by
log |C| ≤ |b| because of the repeated joining process. So
the overall upper bound for the time complexity amounts
to O(|b|2 · |C|2 · log2 |C|). 2

Regarding classes of arbitrary fibre formulas over the
same fibre one has.

Proposition 5 Let Cb ⊆ 2Wb ⊂ CNF be a non-empty
class of fibre formulas over the same base point b, i.e.,
B(C) = {b}, for all C ∈ Cb. Then⋂

C∈Cb

Gb(C) ≤ Gb(Cb) ≤ Gb

(⋃
Cb

)
where in general equality does not hold true in either re-
lation.

Proof. Let X ∈
⋂

C∈Cb
Gb(C) and D ∈ Cb then X ∈

Gb(D) and DX ∈ Cb thus
⋂

C∈Cb
Gb(C) ≤ Gb(Cb). Let

c, c′ ∈ Wb and H < Gb be a proper subgroup such that
C := OH(c) 6= OH(c′) =: C ′ and set Cb := {C,C ′}. Ac-
cording to Corollary 4 one has Gb(C) = Gb(C ′) = H
thus

⋂
C∈Cb

Gb(C) = H. On basis of Lemma 10 (a) there
is the primitive orbit transition member X ∈ Gb \ H
such that CX = OH(c)X = OH(c′) = C ′ meaning
X ∈ Gb(Cb) > H, establishing the first proper sub-
group relation above. Next assume that X ∈ Gb(Cb) then
[
⋃
Cb]X =

⋃
C∈Cb

CX =
⋃
Cb hence Gb(Cb) ≤ Gb (

⋃
Cb).

Let c ∈ Wb and set Cb := {{c},Wb \ {c}} meaning
Gb(

⋃
Cb) = Gb(Wb) = Gb. Further Gb(Cb) = E because

either member has a trivial stabilizer which is implied by
the contraposition of Corollary 4 for H = E. Moreover
there is no X ∈ Gb which enables a permutation of both
formulas in Cb providing an extreme counterexample to
Gb(Cb) = Gb (

⋃
Cb). 2

Observe that under the settings as above in general one
cannot conclude that Gb(Cb) = E if there is a member
C ∈ Cb having this property. Take e.g. Cb = {{c} : c ∈
Wb}, then either member admits a trivial stabilizer but
Gb(Cb) = Gb. Instead one derives the following:

Corollary 5 Let b ∈ B and let Cb be a non-empty class
of mutually disjoint fibre formulas over the same base
point b. Let Cb(k) be the collection of all members in Cb
having equal size k. If there is an odd integer s, and an
odd size k such that |Cb(k)| = s then Gb(Cb) = E.

Proof. Let S := {|C| : C ∈ Cb} be the set of all
size values occuring in Cb. For odd k ∈ S and odd
s = |Cb(k)| defining C(k) :=

⋃
Cb(k) yields a fibre formula

of odd length s′ := s · k. Further C(k) =
⋃

c∈C(k)OE(c)
is the union of s′ disjoint E-orbits as the members of
Cb(k) are mutually disjoint. According to the contra-
position of Corollary 4 and in view of Prop. 5 one ob-
tains E = Gb(C(k)) ≥ Gb(Cb(k)) thus Gb(Cb(k)) = E.
Now suppose there is X ∈ Gb(Cb), and let C ∈ Cb with
j = |C| ∈ S, so C ∈ Cb(j). Since |CY | = |C|, for ev-
ery Y ∈ Gb, it follows that also CX ∈ Cb(j) meaning
Cb(j)X = Cb(j), or X ∈ Gb(Cb(j)), for every j ∈ S. Thus
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one obtains X ∈
⋂

j∈S Gb(Cb(j)) = E, as the intersection
joins also Gb(Cb(k)) = E yielding Gb(Cb) ≤ E finishing
the proof. 2

Theorem 5 Let b ∈Wb, s be a positive integer and Ci ⊆
2Wb , such that all its members have equal size ki, i ∈ [s].
For C :=

⋃
i∈[s] Ci one has Gb(C) =

⋂
i∈[s] Gb(Ci).

Proof. The subgroup relation
⋂

i∈[s] Gb(Ci) ≤ Gb(C) is
obvious and the reverse relation follows as in the previous
proof. 2

6 Total Stabilizers and Class Members

This section focuses on lifting the fibre stabilizers to the
total level. Specifically we investigate the stabilizers of
formulas in some concrete CNF classes. To that end,
again fix a base hypergraph H =: (V,B) and recall that
Gb(Cb) ≤ Gb denotes the isotropy group of Cb over b,
b ∈ B.

Lemma 11 For a subgroup G ≤ GV , and b ∈ B, let
C = Cb be the union of s > 0 G-orbits of clauses in Wb.
Then on basis of Def. 4, for fixed c′ ∈ C and ME :=⋃

c∈Cb
Y (c′, c), one has

GV (C) =

{
Lb(2ME ), if log s = |ME | − e(Rb(G)) ≥ 0
Lb(Rb(G)), if s is odd

Proof. Let e := e(Rb(G)) ≥ 0 hence |OG(c)| =
|ORb(G)(c)| = 2e, for every c ∈ Cb thus |C| = s ·2e. If s is
odd, by contraposing Corollary 4 one has Gb(C) = Rb(G)
directly implying GV (C) = Lb(Rb(G)). Next, assume
log s = |ME | − e ≥ 0 where ME :=

⋃
c∈Cb

Y (c′, c) ∈ Gb

and define G′ := {Y (c′, c) : c ∈ Cb} ⊂ Gb for any
fixed c′ ∈ Cb. Then obviously Cb = {c′X : X ∈ G′}.
Hence Cb equals exactly one G′-orbit, respectively, one
Lb(G′)-orbit iff G′ ≤ Gb ⇔ Lb(G′) ≤ GV , which is
claimed to be true. Therefore Lb(Rb(G′)) = Lb(G′) is
the isotropy group of C according to the result previously
proven. To establish the claim, observe that all Y (c′, c)
are pairwise distinct therefore |G′| = |Cb| = s2e implying
log |G′| = log s + e = |ME |. Hence |G′| = |2ME | and, as
every member in G′ is a subset of ME , it follows that
G′ = 2ME ≤ Gb. Here one has G′ = Rb(G) if log s = 0
which means an odd s, finishing the proof. 2

Corollary 6 Let U ⊆ V with G = 2U ≤ GV . For H-
based C such that Cb is the union of sb > 0 G-orbits of
clauses in Wb, and such that sb is odd, for every b ∈ B
it holds that GV (C) = G.

Proof. According to Lemma 11 GV (Cb) = Lb(Rb(G))
because sb is odd, for all b ∈ B. Therefore by Corollary 1

it follows that GV (C) =
⋂

b∈B Lb(Rb(G)). Hence, using
Prop. 1 one derives the assertion because of the assump-
tion that G = 2U for U ⊆ V . 2

Given X ∈ Gb(Cb) and setting τ(X) := {X ∪ U : U ∈
2V \b}, Πb :=

⋃
X∈Gb(Cb)

τ(X) one obtains:

Theorem 6 GV (C) =
⋂

b∈B Lb(Gb(Cb)), for a H-based
formula C. Moreover Lb(Gb(Cb)) = Πb ≤ GV , b ∈ B.

Proof. Clearly GV (Cb) = {X ∈ GV : CX
b = Cb} =

{X ∈ GV : X ∩ b ∈ Gb(Cb)} = Lb(Gb(Cb)) =: Lb ≤ GV ,
for every b ∈ B, according to Lemma 7 (i). Therefore
GV (C) =

⋂
b∈B Lb immediately follows on the total level

relying on Corollary 1. Further one has
⋂

b∈B Lb ≤ GV

and the first statement is settled. Addressing the last
assertion let Y ∈ Πb ⊆ 2V then there is a unique X ∈
Gb(Cb) such that Y ∈ τ(X). Hence there is U ∈ 2V \b :
Y = X ∪ U implying Y ∩ b = X ∩ b = X ∈ Gb(Cb) as
U ∩ b = ∅. So Y ∈ Lb. Reversely, let Y ∈ Lb then
there is X ∈ Gb(Cb) : Y ∩ b = X implying X ⊆ Y and
U := Y \X ∈ 2V \b. Thus Y = X ∪U ∈ τ(b) establishing
Lb = Πb, b ∈ B, also yielding Πb ≤ 2V . 2

Further one obtains the following sufficient condition for
the trivial isotropy group E.

Corollary 7 Let C ∈ CNF be H-based such that |Cb| is
odd, for all b ∈ B then GV (C) = E.

Proof. Relying on Lemma 11 the assumption implies
GV (Cb) = Lb(E) = 2V \b, for every b ∈ B, using the proof
of Theorem 6. Thus due to the same theorem GV (C) =⋂

b∈B 2V \b = 2V \
⋃

B = 2∅ = E. 2

Theorem 7 For every H-based C ∈ LCNF ∪ CNF+ ∪
CNF− one has GV (C) = E.

Proof. As by assumption members of LCNF are consid-
ered to be free of unit clauses it follows for any linear or
monotone formula C that |Cb| = 1 for every b ∈ B. Thus
the assertion is implied by Corollary 7. 2

In terms of the intersection graph one has for S±:

Lemma 12 For H-based C ∈ S±, let {I1, . . . , Ik} be
the set of connected components of the intersection graph
I(H) of H. Then one has Gn(GV (C)) = {Xi :=⋃

b∈V (Ii)
b : i ∈ [k]}.

Proof. Assume C ∈ S± then C = B ∪ Bγ =⋃
b∈B{b, bγ}, where B ∈ CNF+. Hence OGb(Cb)(b) = Cb

where Gb(Cb) = {∅, b} ≤ Gb meaning that GV (Cb) =
Lb(Gb(Cb)), for every b ∈ B, according to Lemma 11,
because Rb(Gb(Cb)) = Gb(Cb). Let M := {Xi :=
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⋃
b∈V (Ii)

b : i ∈ [k]}. To verify the assertion, we first
show by induction that for any integer n ≥ 1 and mem-
bers Xij

∈ M , j ∈ [n], one has
⊕n

j=1 Xij
∈ GV (C). So,

given Xi ∈M and any b ∈ B then either Xi∩b = ∅ iff b 6∈
V (Ii). Or Xi∩b = b iff b ∈ V (Ii) hence Xi ∈ Lb(Gb(Cb))
for every b ∈ B meaning M ⊆ GV (C) according to The-
orem 6. Next let Xij

∈ M , ij ∈ [k], j ∈ [n] and assume
the assertion holds true for up to n − 1 members of M ,
n ≥ 2. Hence, there either is l ∈ [n− 1] such that il = in
hence Xil

= Xin
then

⊕
j∈[n] Xij

=
⊕

j∈[n]\{l,n} Xij
∈

GV (C). Or all Xij
, j ∈ [n], have pairwise distinct in-

dices, hence are pairwise disjoint by construction mean-
ing

⊕
j∈[n] Xij

=
⋃

j∈[n] Xij
=

⋃
j∈[n]

⋃
b∈V (Iij

) b. Thus
given any b′ ∈ B it either follows

⊕
j∈[n] Xij

∩ b′ = b′

iff b′ ∈
⋃

j∈[n] V (Iij
), or this intersection is empty imply-

ing
⊕

j∈[n] Xij
∈ GV (C) according to Theorem 6. So,

everything that can be generated by members of M be-
longs to GV (C). Reversely, any X ∈ GV (C) induces
a bipartition B′(X) ∪ B(X) = B = V (I(H)) of the
vertex set of I(H) defined through X ∩ b = ∅, for all
b ∈ B′(X), and X ∩ b = b 6= ∅, for all b ∈ B(X).
Further this bipartition equals an empty cut in I(H),
indeed, otherwise there were b′ ∈ B′ and b ∈ B such
that ∅ 6= b′ ∩ b = (b′ ∩ X) ∩ b implying X ∩ b′ 6= ∅
hence a contradiction. Therefore given i ∈ [k] one either
has V (Ii) ⊆ B′(X), then set i ∈ [k]′(X). Or one has
V (Ii) ⊆ B(X), then set i ∈ [k](X), yielding a bipar-
tition of the index set [k] =: [k]′(X) ∪ [k](X) implying
X =

⊕
i∈[k](X) Xi. Hence every member of GV (C) can

be generated by elements in M finishing the proof. 2

The next result relating the stabilizers of the symmet-
ric and antisymmetric classes is stated in [18] here it is
proven:

Theorem 8 For H = (V,B) as above one has:

(a) There is an GV -equivariant bijection σ : A(H) →
S(H).

(b) Given C ∈ A(H) then Gn(GV (σ(C))) =
Gn(GV (C)) ∪ Gn(GV (B ∪ Bγ)). Moreover for in-
put Gn(GV (C)), Gn(GV (σ(C))) can be computed in
polynomial time.

Proof. Given C ∈ A(H) then set σ(C) := C ∪ Cγ ∈
S(H) which is uniquely determined by C. Conversely,
given S ∈ S(H) then there is the unique subformula
A(S) ∈ A(H) such that A(S) ∪ [A(S)]γ = S = σ(A(S))
hence A(S) = σ−1(S). Now let X ∈ GV , C ∈ A(H) then
[σ(C)]X = [C ∪ Cγ ]X = CX ∪ (CX)γ = σ(CX), and also
σ−1(SX) = [σ−1(S)]X hence σ, and σ−1 are equivariant
implying (a). Regarding (b) one has GV (C) = GV (Cγ)
because Cγ ∈ O(C) relying on Lemma 3. Moreover the
equivariance of σ directly implies GV (C) ≤ GV (σ(C)).
Hence, GV (σ(C)) \ GV (C) can only consist of such ele-
ments X ∈ GV bijectively mapping the clauses in C to

the clauses in Cγ . Since c ∈ C ⇔ cγ ∈ Cγ these elements
are provided by GV (B ∪ Bγ), where B ∪ Bγ ∈ S±(H).
Finally, the assertion regarding the computational com-
plexity therefore is implied by Lemma 12. 2

7 Satisfiability Properties of G-Orbit
Classes

Returning to the G-formulas and -classes, some satisfia-
bility aspects shall be addressed here, for which the fol-
lowing notion turns out to be useful.

Definition 5 For a base hypergraph H = (V,B), let G ≤
GV be called a fibre-wise proper subgroup if there is a
Y ∈ GV such that Y ∩ b /∈ Rb(G), for every b ∈ B.

Proposition 6 Let G ≤ GV be a fibre-wise subgroup.

(a) OG(c) ∈ SAT, for every c ∈ KH, and

(b) CG(C) ⊂ SAT, for every H-based formula C.

Proof. For fixed c ∈ KH there is a unique b := V (c) ∈
B. As Rb(G) is a proper subgroup of Gb one has OG(c) ⊂
Wb as a proper subset. Hence the based complement
formula OG(c) 6= ∅ and due to Theorem 1 it follows that
OG(c) ∈ SAT, meaning (a). So, by definition CG(C) only
consists of satisfiable members yielding a satisfiable class
of CNF, hence assertion (b) is verified. 2

Even in case C ∈ UNSAT, the statement (b) above is
true. Also showing that in general one has OG(C) ⊂
UNSAT. Moreover, in general, there is no universal
model satisfying all members of an orbit-family or -class
simultaneously, which would be identical with a model
for the union of all member formulas. Thus the ques-
tion arises for which formulas C, respectively non-trivial
proper subgroups G, such a model could be expected for
the corresponding classes CG(C), OG(C). A first result
here is:

Theorem 9 Let F ∈ Fcomp(KH) then there is a uni-
versal model simultaneously satisfying all members of
OG(F ), respectively of CG(F ), for every fibre-wise proper
subgroup G < GV .

Proof. Let the union of all clauses in the G-orbit class
of F be C :=

⋃
OG(F ) ⊂ KH. As G is fibre-wise proper,

C̄ also is H-based. Every member of O(F ) is a compati-
ble fibre-transversal according to Theorem 5 (iii), shown
in [17], which are mutually distinct. As G is fibre-wise
proper, there is Y ∈ GV \G. Hence the fibre-transversal
F ′ := FY ∈ O(F ) also is compatible but F ′ 6∈ OG(F ).
According to Lemma 9 one also has C :=

⋃
CG(F ). Since

G is fibre-wise proper it is F ′(b) 6∈ OG(F (b)) because
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Y ∩ b /∈ Rb(G), for every b ∈ B, and as G acts transi-
tively on its G-formulas of clauses. Therefore F ′ contains
only clauses outside of Cb, for every b ∈ B, directly im-
plying F ′ ∈ Fcomp(C̄). Thus it is C ∈ SAT according to
Theorem 1. 2

Note that modifying the requirements for F would dis-
turb the assertion even for fibre-transversals which are
satisfiable but not compatible. Consider the non-Sperner
situation with a loop: V = {x, y, z} B = {b1, b2, b3}
where b1 = {x, y}, b2 = {y, z}, b3 = {z} and let F (b1) =
{x, y}, F (b2) = {y, z̄}, F (b3) = {z} obviously yielding
F ∈ F(KH) ∩ SAT being not compatible. For G =
{∅, {x, y}}, one has Rb1 = G, Rb2 = {∅, {y}}, Rb3 = E.
Taking Y := {{y, z}} ∈ GV one has Y ∩ bi /∈ Rbi

, i ∈ [3].
Then FY ∈ F(C̄)∩ SAT, but not compatible, and more-
over C ∈ UNSAT.

As a direct consequence of Lemma 9:

Corollary 8 Let G ≤ GV be fibre-wise proper, and C be
H-based. Then there is a universal model for CG(C) iff
there is one for OG(C).

8 Concluding Remarks and Open Prob-
lems

Theorem 9 states the existence of an universal model for
orbit families over a compatible fibre-transversal for fibre-
wise proper subgroups of the complementation operation.
Here further investigations are necessary to detect other
fibre-transversals or linear formulas admitting orbit fam-
ilies of that property. Also the dependence on the struc-
ture of the base hypergraph should be clarified in more
detail. The structural investigation of the stabilizers of
orbit classes and orbit families should be continued in or-
der to generalize the results of Theorem 3. However note
that specifically part (a) of this theorem does not hold
true in general if the fibre-transversal F is substituted by
an arbitrary CNF formula C, even a fibre formula. In-
deed assume that C = Cb is a fibre formula, only, and let
G ≤ GV . Suppose that C satisfies the conditions of the
first branch of Lemma 11. Then CG(C) = {OG(c) : c ∈
C} =: Cb is a G-family over the base point b. Moreover⋃
CG(C) =

⋃
Cb = C and by Lemma 11 it follows that

GV (C) = GV (
⋃
Cb) > Lb(rst(G)) > G. Observe that

given H = (V,B) and any F ∈ F(KH), then Lemma 4
together with Corollary 7 and Lemma 5 imply that the
isotropy group jumps from all to trivial, i.e., from GV (C)

to E if one switches from C := KH to C ′ := KH \ F ,
i.e., when exactly one arbitrary clause is removed from
Wb, for all b ∈ B. These properties of formulas shall be
studied more intensive. To decrease the upper bound for
the time complexity in Theorem 4 is a further research
task. More generally, Prop. 5 has to be sharpened and
moreover it has to be investigated whether the algorithm
for fibre formulas can be adapted for computing the sta-

bilizer of a class of fibre formulas over the same fibre,
also. Also the computation aspect for the liftings of the
stabilizers on the fibre level to the total space has to be
investigated further. It would be interesting to find more
structured classes of CNF for which an explicit stabilizer
can be given. Finally, the FPT-classes as considered in
Theorem 2 have to be identified more concretely.
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