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Abstract—Even though updating reference data is required 

for stable personal authentication, updating previously collected 

biometric data is very difficult. In this paper, we proposed a 

biometric authentication system based on heart sounds that is 

compatible with healthcare systems. Our system prevents heart 

disease by detecting abnormal heart sounds while collecting 

biometric data. The same features, which are used in personal 

authentication and healthcare, are computed from the temporal 

changes of sound power calculated from time-frequency 

analysis. The Mahalanobis-Taguchi method discriminates the 

differences between referenced and measured heart sounds. We 

experimentally evaluated our system’s performance and 

achieved an authentication rate of 90-100% on ten research 

participants and 100% recognition rate for 19 disease cases of 

heart murmurs. 

 
Index Terms—Mahalanobis-Taguchi method, heart sound, 

Mahalanobis distance, biometric authentication 

 

I. INTRODUCTION 

ECENT personal authentication research, based on 

biometric signals, has made personal authentication 

more secure than inputting passwords. In biometric 

authentication, image data or biomedical signals are used as 

biological information that indicate personal characteristics. 

Authentication with such image data as fingerprints, palm 

prints, blood vessel shapes, irises, or faces has already been 

applied in many fields [1-2]. However, such systems 

sometimes misidentify counterfeiters that are imitating a part 

of the human body [2-5]. Such biological signals as pulse 

waves, ECGs, or heart sounds provide greater robustness than 

image data because disguises are impossible. Unfortunately, 

much biometric data are required to create reference data. 

Updating them is also necessary for stable personal 

authentication over a long period of time. Therefore, how to 

collect biometric data during acquisitions remains 

complicated. Some works applied ECGs or pulse waves 

collected by healthcare services to biometric authentication 

[6-8]. But for heart sounds, past works separately reported 

biometrics research and healthcare management applications. 

No biometric authentication system has been proposed for 

healthcare applications. However, heart sound data can be 

efficiently accumulated by applying diagnosis based on heart 

sounds to health care. A healthcare system is needed to 

prevent such lifestyle diseases as those caused by westernized 

eating habits, changes in working environments, and 

 

 
 

insufficient exercise. Lifestyle diseases increase heart disease, 

which is the world’s leading cause of death [9]. Since lifestyle 

diseases are rarely indicated until the outbreak of a serious 

symptom, heart disease might progress completely unnoticed. 

Therefore, we must observe a person’s health condition over 

a long period of time. If abnormal heart sounds are detected 

at an early stage, heart disease can be prevented. 

Discriminating heart disease from heart sounds is critical to 

select features in which a clear difference between normal 

and abnormal sounds appears. In many works, the power 

spectrum (PS), Mel Frequency Cepstral Coefficients (MFCC), 

wavelet coefficients, or frequency components are used as the 

features of heart sounds. Since these features do not refer 

directly to the time variation of auscultated signals which 

physicians easily understand, supporting re-auscultation is 

difficult. On the other hand, neural networks, support vector 

machines, nearest neighbor methods, and Gaussian mixture 

models have been proposed to discriminate among 

individuals and abnormal heart sounds [10-21]. These 

methods effectively judge individuals and classify heart 

sounds into disease cases. However, abnormal heart sounds 

have various degrees and types among individuals. Therefore, 

another problem is how to collect much abnormal data. 

Estimating the degree of abnormality is also difficult. 

In this paper, we proposed a user-friendly biometric system 

that works with healthcare systems based on the collection of 

heart sounds. Thus, reference data must be periodically 

updated for biometric authentication. We used identical 

features in the biometric authentication and detection of 

abnormal heart sounds and calculated them from temporal 

sound power, which was obtained by summing up the PS 

components calculated from the time-frequency analysis of 

heart sounds. The difference between the reference data and 

the measured heart sounds is evaluated as the Mahalanobis 

distance (MD) by the Mahalanobis-Taguchi (MT) method. 

Related papers have studied the relationship between MD 

values and medical condition changes or the severity of 

hepatitis, medical conditions, and treatment effects from the 

magnitude of MD values [22-23]. However, to the best of our 

knowledge, no reports have detected abnormal heart sounds 

with the MT method. 

II. CARDIAC DYNAMICS AND HEART SOUNDS 

In this section, we first explain the relationship between 

cardiac dynamics and heart sounds. Fig. 1 shows the heart 

valves [24]. Fig. 2 shows the relationship between heart 

sounds and cardiac dynamics [25]. The heart’s four cardiac 

valves (mitral, aortic, tricuspid, and pulmonary) open and 
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close to allow blood flow throughout the body. Heart sounds 

are caused by the reverberation of blood by the closing of 

cardiac valves or its turbulent flow into ventricles. The two 

predominate sounds in a normal heart are the first heart sound 

(S1) and the second heart sound (S2). Extra heart sounds are 

also present: the third heart sound (S3), the fourth heart sound 

(S4), the mitral valve opening sound, and a click sound. S1 

represents the normal closing of the mitral and tricuspid 

valves. S1 is heard most clearly at the heart’s apex. S2 is 

generated by the closure of the aortic and pulmonary valves. 

A cardiac cycle, which repeats the contraction and expansion 

and is divided into ventricular systole and ventricular diastole, 

is a cycle of a S1 pair. The interval between S1 and S2 is the 

systole; the interval between S2 and the next S1 is the diastole. 

Extra heart sounds are present during the diastole. When 

dysfunction or stenosis occurs at the aortic or mitral valves, 

blood turbulence occurs near the valves. Heart murmurs are 

generated as a result of the turbulent flow of blood. Since 

heart murmurs do not occur in a normal heart, they indicate 

cardiovascular disease. 

 
Fig. 1 Heart valve 

III. HEART SOUND ANALYSIS METHOD 

In this paper, we only used the heart sounds auscultated at 

the apex. The MT method is used for the authentication and 

detection of abnormal heart sounds. In the following, we first 

describe the selected features and their calculation procedures 

and then MT’s calculation procedure. Since we calculated the 

cardiac cycle under conditions where the amplitude of S1 

exceeds that of S2, we only used the heart sounds at the 

heart’s apex. 

A. Selection of features 

This subsection presents the features and their calculation 

procedures. In our system, the same kinds of features are used 

in biometric authentication, and the detection of abnormal 

heart sounds allows physicians to easily understand their 

changes. We calculated the following eight features: K1-K8. 

Six (K2-K7) detected abnormal heart sounds. Seven (K2-K8) 

are used for personal authentication. 

Figure 3 shows the procedure for calculating the features. 

Fig. 3(a) is an example of the abnormal heart sounds recorded 

in a training workbook’s CD recorded from actual patients for 

a medical staff [25]. The vertical axes show the amplitudes 

normalized by a maximum value. The heart murmurs caused 

by ventricular septal defects are observed during ventricular 

systole and ventricular diastole. Fig. 3(b) is the modified 

waveform in part 1 in Fig. 3(a). A signal is made by 

subtracting the baseline from the original waveform. Part 2 is 

a 100 ms area inside the two S1 time positions. K1 is an 

interval of S1, and K2 is the interval between S1 and S2. The 

S1 and S2 positions are calculated from the peak detection of 

a cubic spline curve generated by 100 data points. Although 

some peak points are calculated, they are scrutinized by the 

following procedures. The normal resting heart rate is 

between 50 and 120 beats per minute. Considering its 

variations, K1 is assumed to be between 0.5 s and 1.25 s. K2 

is empirically located between 125 ms and half of the interval 

of K1. Fig. 3(c) shows the temporal sound power w(t), which 

is calculated by summing up all the PS components within a 

window function on a signal. The vertical axis is normalized 

by the maximum value. PS is calculated by the short-time 

Fourier transform whose frequency content changes over 

time into the time-frequency domain by shifting a window on 

a signal. We used a rectangular window as a window function. 

Since the main component of the normal heart sound 

frequency is about 20-200 Hz and abnormal heart sounds are 

observed at about 20-400 Hz [26], the window function’s 

width is determined to be a frequency resolution of about 400 

Hz. L1 to L4 show the integral width for calculating the K3-

K6 features. Since the S1 and S2 duration is 40-150 ms [27], 

we selected time widths of L1 and L2 as ± 100 ms. Therefore, 

L3 and L4 are uniquely determined. L3 is from the 100 ms 

point after S1 to the 100 ms point before S2. L4 is from 100 

ms after S2 to 100 ms before the next S1. 

K3 is an integrated value of w(t) over L1, and K4 is an 

integrated value of w(t) over L2. K3 and K4 comprehensively 

evaluate the duration time and the amplitude fluctuation at S1 

and S2. The integration over L3 is K5, and K6 is the 

integrated values over L4. K5 and K6 evaluate heart murmurs, 

which are almost zero in normal heart sounds. K7, which is 

the amplitude at S2, can evaluate the relative change between 

S1 and S2. For example, K7 decreases as the amplitude of S1 

increases due to the rapid closing of the mitral valve. 

Although not shown in Fig. 1, K8 is an integrated value of 

w(t) over time between two S1s. K8 is only used for biometric 

authentication. Since K1 changes depending on the 

fluctuation of the heart rate, the physical condition, and the 

L1 

 
 

Fig. 2 Cardiac cycle and generation of heart sounds 
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measurement environment, it is not used as a feature. The 

other features are normalized by the length of K1. A 

physician determines abnormal heart sounds based on the 

rhythm of the auscultation sound. First, S1 and S2 sounds are 

identified from the auscultation sound, and the abnormal 

sounds in the systole and diastole are estimated by using them. 

Therefore, the features used in this paper directly correspond 

to the temporal change of heart sounds and will be helpful to 

physicians at re-examinations. 

B. Classification method 

The MT method, which is used for classification, is a 

diagnosis approach for various multivariate data. MD is 

used as a measurement scale. A set of features is 

standardized and a unit space (normal group) is created and 

used as a frame of reference for the MT method’s 

measurement scale. We calculated the square MD value (D2) 

from the inverse matrix of correlation matrix (R) by Eq. (1). 

[27]: 

                     𝐷𝑖
2 =

1

𝑘
𝑈𝑖𝑅−1𝑈𝑖

𝑇 ,                                 (1) 

 

where i is the amount of data, k is the kind of feature, Ui = 

(ui1, ⋯ uik), and uik is the i-th data standardized by average 

value 𝑥̅𝑗 and standard deviation 𝜎𝑗 of k-th feature as follows: 

 

                          𝑢𝑖𝑘 =
𝑥𝑖𝑘−𝑥̅𝑘

𝜎𝑘
 .                                         (2) 

 

The average MD for the normal group is unity. The MT 

method assumes that the feature distributions are normally 

distributed. The discrimination accuracy decreases when the 

distribution deviates from a normal distribution [28-29]. 

Since K5 and K6 are almost zero in normal heart sounds, the 

values of their features are replaced by data that are randomly 

created based on the average and standard deviations used in 

the standardized process. This data reconstruction process is 

repeated until the MD average calculated for the unit space is 

almost unity. In abnormal heart sound analysis, the main 

features, which increase the MD values, are decided by a two-

level L12 mixed-type orthogonal array. The main features are 

selected by ANOVA under a condition where p-value < 5%. 

MD values are recalculated using the selected features 

obtained from the above procedure. Table I is the calculation 

result of the abnormal heart sound shown in Fig. 3. In the 

calculation, there are six features, so columns 7 to 11 are not 

allocated. “1” or “2” in Table 1 indicates whether a feature 

was used. η is the result calculated by the combination of 

features shown in experiments 1 to 12. Here η is estimated by 

Eq. (3), where M is the average of the MD values. When the 

MD value increases, η’s value grows and is closer to the 

group of abnormalities: 

 

                       𝜂 = −10log10
1

𝑀
 .                                        (3) 

 

A factorial effect diagram created from Table I is shown in 

Fig. 4. The interaction among the factors is ignored. The 

horizontal axis is the features. For example, 1 and 2 indicate 

whether a feature was used to calculate MD. Fig. 4 shows that 

the main effect is the K5 and K6 features. This result agrees 

with the signal characteristics shown in Fig. 3(a). Identifying 

the key features helps physicians perform re-auscultation. On 

the other hand, for biometric authentication, we calculated the 

maximum MD value with a round robin of feature 

combinations because the key features that satisfy p-value < 

5% are not found by ANOVA analysis in some cases.  

  

 

 

 

 

 

Fig. 3 Procedure to calculate features 
 (a) Example of abnormal heart sounds 

Table I 

η calculated by orthogonal arrays 

 
 

Exp. Calc.

No K2 K3 K4 K5 K6 K7 7 8 9 10 11 η

1 1 1 1 1 1 1 1 1 1 1 1 36.0

2 1 1 1 1 1 2 2 2 2 2 2 36.0

3 1 1 2 2 2 1 1 1 2 2 2 14.4

4 1 2 1 2 2 1 2 2 1 1 2 13.8

5 1 2 2 1 2 2 1 2 1 2 1 36.0

6 1 2 2 2 1 2 2 1 2 1 1 29.4

7 2 1 2 2 1 1 2 2 1 2 1 29.7

8 2 1 2 1 2 2 2 1 1 1 2 35.9

9 2 1 1 2 2 2 1 2 2 1 1 5.8

10 2 2 2 1 1 1 1 2 2 1 2 36.0

11 2 2 1 2 1 2 1 1 1 2 2 29.7

12 2 2 1 1 2 1 2 1 2 2 1 35.9

no allocationfeatures

 
 

 

Fig. 3 Procedure to calculate features 

Fig. 4 Factorial effect diagram of η  

 

 (c) Sound power w(t) 

 (b) Modified waveform between two S1s 

 (a) Example of abnormal heart sounds 
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IV. RESULT AND DISCUSSIONS 

First, we detected abnormal heart sounds with 

experimental data and then evaluated the biometrics 

authentication. The normal heart sounds of ten healthy 

participants (p1 to p10) were auscultated with a digital 

stethoscope (Littmann Model 3200) while they were sitting. 

The sampling rate was 4 kHz, and we measured 30 sec each 

time. The measurements were repeated 10 to 60 times. The 

average age of the participants was 22: four men and six 

women. First, we evaluated the detection performance of the 

heart murmurs by creating four kinds of unit spaces for each 

person: p1 to p4. 19 kinds of disease cases (including heart 

murmurs) were collected from the training workbook’s CDs 

[25, 30]. We precisely classified the heart murmurs based on 

such generation patterns as systolic heart murmurs, total 

systolic heart murmurs, and diastolic mid-term murmurs. But 

in this paper, we collectively refer to them as heart murmurs, 

which are caused by acute anterior wall infarction and mitral 

regurgitation , which are also included among heart murmurs. 

Next, in the personal authentications, we distinguished four 

people from the other nine.  

A. Abnormal heart sound detection  

Table II shows the median MD values for the 19 disease 

cases and healthy participants. The diagnosis described in the 

training workbook’s CD is explained as #1-#14. The personal 

MD column shows the value for the data of each participant. 

The first row of p1 is the result calculated with all the features 

and without data reconstruction. The second row shows the 

result calculated with all the features after data reconstruction. 

The third row shows the result calculated with the selected 

features based on L12 after the data reconstruction. The values 

in the second row are much larger than those in the first row.  

Therefore, the data reconstruction is effective. The values in 

the third row are 3 to 7 times larger than those in the second 

row. Hence, selecting the main features with an orthogonal 

array is effective for the MD calculations. The procedure in 

the third row of p1 is applied to the other calculations of p2 

to p4. The MD values of the four healthy participants are 

shown in the Personal MD column: 2.7, 4.1, 1.6, and 1.8. 

 Next, we investigated the threshold to identify abnormal 

heart sounds. Fig. 5 shows the relationship between the 

occurrence rate and the threshold of the MD values. FRNR is 

the false rejection rate of the normal heart sound detections, 

and FAAR is the false acceptance rate of the abnormal heart 

sounds. We calculated FRNR and FAAR as follows: 

 

        𝐹𝑅𝑁𝑅 =
 false rejected  numbers in normal heart sounds  

𝑎𝑙𝑙  𝑛𝑜𝑟𝑚𝑎𝑙  heart sound  detections
            (4) 

        𝐹𝐴𝐴𝑅 =
 false accepted numbers in abnormal heart sounds 

𝑎𝑙𝑙 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 ℎ𝑒𝑎𝑟𝑡 𝑠𝑜𝑢𝑛𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
.          (5) 

 

FRNR indicates the occurrence rate at which the MD value of 

a normal heart sounds exceeds the threshold and shows the 

error rate that identifies normal heart sounds as abnormal 

ones.  On the other hand, FAAR indicates the occurrence rate 

at which the MD value is smaller than the threshold and 

shows the error rate that identifies abnormal heart sounds as 

normal ones.  

The MD values and the equivalent error rate (ERR) in 

Table II and Fig.5 are summarized in Table III. The minimum 

value is 106, which occurs in case 10 in Table II. It is 66 

(=106/1.6) times larger than the Personal MD value of p3.  

When the threshold is a MD value at ERR, the recognition 

rate leads to 100% discrimination of heart murmurs. 

 

 

 

  

Table II 

Median MD values for abnormal heart sounds and healthy participants 

 
#1: systolic heart murmur, #2: total systolic heart murmur, #3: diastolic middle murmur, #4: diastolic tapering murmur, #5: reflux murmur,  
#6: acute anterior myocardial infarction, #7: mitral regurgitation, #8: #1 due to aortic valve stenosis, 

#9 systolic mid-click murmur and contractile late murmur, # 10: early contract murmur, #11: #2 due to tricuspid regurgitation,  

#12: #2 due to aortic valve stenosis, # 13: #3 due to pulmonary valve stenosis, # 14: S2 overlap due to mitral valve stenosis.  

Personal

MD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.6 6 43 38 41 455 98 81 4 9 8 6 21 23 13 14 16 26 35 47

573 4212 3434 3479 8365 4022 2270 185 591 210 532 2043 2431 1064 1079 744 2447 3364 4598

3840 29150 24376 24459 24726 26600 6575 620 1976 1363 3567 14185 16424 3608 3695 2502 16544 22886 31231

p2 4.1 15403 54190 43922 45183 146103 49443 38352 2427 15395 5598 14325 55944 64692 28569 28981 18942 65160 89909 122337

p3 1.6 332 4887 2045 2051 4552 4459 1259 201 372 106 302 1217 1392 586 604 438 2760 1944 5245

p4 1.8 2007 15428 12893 12936 13012 8115 3645 329 2006 703 1862 7484 8672 3778 3833 2483 8735 12101 16541

Diagnosis #1 #1 #2 #3 ＃4 #5 #6 #7 #8 #1 #9 #10 #11 #12 #13 #8 #14 #1 #7

p1
2.7

Participant

ID

Abnormal  heart sound cases  including cardiac murmur

 
(a) Participant 1                                     (b) Participant 2                                   (c) Participant 3                                   (d) Participant 4 

 

Fig. 5 Relationship between occurrence rate and threshold of MD values 

Table III 

MD and ERR for abnormal heart sound cases  

ID MD Max. MD Min. MD Threthold MD ERR %

p1 2.7 31231 620 85 5.8

p2 4.1 146103 2427 273 5.2

p3 1.6 5245 106 75 4.9

p4 1.8 16541 329 70 2.1
  

Nomal sounds Abnormal   heart Sounds  ( 19 disease cases )
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Next, the degree of abnormality is estimated from the change 

of the MD values shown in Fig. 6 for case 5 in Table II. 

Features K5 and K6 that refer to heart murmurs are 

simultaneously and virtually changed against the original 

values. The vertical axis indicates the MD values, and the 

horizontal axis indicates the feature times. MD quadratically 

increases based on the magnification. Therefore, by 

temporally monitoring the changes of the MD values, 

abnormal heart sounds will be identified in advance. 

 

 

 

 

 

B. Personal authentications 

 We evaluated the performance of the personal 

authentications. Fig. 7 shows the relationship between the 

false rejection rate (FRR) and the false acceptance rate (FAR) 

of four participants. The MD values were calculated with a 

round robin of combinations of proposed features. The 

horizontal axis is the MD threshold, and the vertical axis is 
the occurrence rate. FRR is the proportion of genuine 

numbers falling below a threshold. FAR is the proportion of 

impostors that exceed it. FRR and FAR are calculated by the 

following equation: 

 

    𝐹𝑅𝑅 =
𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑎𝑙𝑙 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 
             (6) 

𝐹𝐴𝑅 =
𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟𝑠 𝑒𝑥𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑎𝑙𝑙 𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟𝑠
                             (7) 

Fig. 7(a) shows FRR and FAR between p1 and the other nine 

participants. ERR is 30% at a MD value of 24. The results in 

Fig. 7 are summarized in Table IV. The values for each 

person are underlined: 14, 17, 10, and 16. ERR is 16% to 35% 

for four persons. When the MD values at ERR are selected as 

a threshold, the correct recognition rate (CRR) is 90-100%. If 

the MD value is less than the threshold, the user will be 

judged as genuine, and the larger one will be judged as an 

impostor. CRR is calculated as follows: 

 

       𝐶𝑅𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 

𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠
 .             (8) 

 

Table V shows the result calculated with the inverse matrix 

of Eq. (1). The correct recognition rate is 80-100%. But the 

MD values are smaller than those calculated by a round robin, 

and the difference from the threshold is small. This shows that 

calculating the MD values with a round robin is better.  

Previous work used MFCC as a feature for biometric 

authentications [31-34]. We compared the performance of our 

proposed features and MFCC by MT. MFCC, which 

represents a short-period PS of sound waves, is based on 

human auditory characteristics. In the MFCC algorithm, first, 

an auscultated heart sound is segmented into a number of 

cardiac cycles. The PS is computed by a discrete Fourier 

transform for each frame and summed up on the mel-scale by 

passing through a mel-scaled triangle filter bank. We 

obtained eleven kinds of MFCCs by discrete cosine transform. 

Fig. 8 shows FRR and FAR calculated with MFCC by a round 
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(a) Participant 1                                (b) Participant 2                                   (c) Participant 3                                 (d) Participant 4 

 
Fig.7 Relationship between FRR and FAR calculated with proposed features 

 

 Table IV 

 Median MD values and correct recognition rates calculated by round robin  

 

 

Participant 1 2 3 4 5 6 7 8 9 10 ERR% Threshold CRR %

p1 14 36 94 17 124 182 115 333 236 163 30 24 90

p2 109 17 389 40 613 856 682 1726 933 734 30 76 90

p3 16 40 10 33 56 40 41 62 34 41 35 21 90

p4 133 81 628 16 243 971 250 1175 1176 1051 16 35 100

Table V 
 Median MD values and correct recognition rates calculated by inverse matrix 

 

 

Participant 1 2 3 4 5 6 7 8 9 10 ERR% Threshold CRR %

p1 2 3 9 2 32 19 21 45 21 44 32 3 80

p2 16 3 53 9 303 106 177 411 128 396 29 12 90

p3 2 3 1 2 8 5 6 13 4 10 38 2 80

p4 8 6 29 1 40 49 29 64 49 64 22 4 100

Fig. 6 Example of MD depending on features K5 and K6 

 

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_02

Volume 47, Issue 3: September 2020

 
______________________________________________________________________________________ 



 

robin. The calculated results are summarized in Table VI. The 

ERR is 12% to 32%, and the CRR is 90-100%. Therefore, our 

proposed feature produces a similar personal authentication 

performance. 

V. CONCLUSION 

We proposed a healthcare authentication system that 

collects heart sounds as reference data for personal 

authentication. The MT method detects abnormal heart 

sounds and achieves personal authentication. We 

experimentally confirmed the performance of our proposed 

system, which produced a 90-100% authentication rate for ten 

research participants and a 100% recognition rate for 19 

disease cases of heart murmurs. The heart sounds in this paper 

were ideal data that reduced noise to clearly auscultate 

abnormal heart sounds. Therefore, we will verify 

classification performance with many cases including noise. 

Future work will verify the biometric authentication 

performance by increasing the number of samples. 

REFERENCES 

[1] A. K. Jain, A. Ross, S. Prabhakar, “An introduction to biometric 

recognition,” IEEE Transactions on Circuits and Systems for Video 
Technology, vol. 14, Issue 1, pp. 4-30, 2004.  

[2] Debnath Bhattacharyya, Rahul Ranjan, Farkhod Alisherov A., and 

Minkyu Choi, “Biometric Authentication: A Review,” International 
Journal of u- and e-Service, Science and Technology, vol. 2, No. 3, pp. 

13-26, 2009. 

[3] Matsumoto T, Matsumoto H, Yamada K, and Hoshino S, “Impact of 
artificial gummy fingers on fingerprint systems,” International Society 

for Optics and Photonics, pp. 275-89, 2002. 

[4] Erdogmus N and Marcel S., “Spoofing face recognition with 3d masks,” 
IEEE Trans Inf Forensics Secure, 9 (7), pp. 1084-97, 2014. 

[5] B. Biggio, Z. Akhtar, G. Fumera, G. L. Marcialis, and F. Roli, "Security 

evaluation of biometric authentication systems under real spoofing 
attacks," IET Biometrics, vol. 1, no. 1, pp. 11-24, Mar. 2012.  

[6] Akihiro Inomata and Yoshinori Yaginuma, “Hassle-free Sensing 

Technologies to Monitor Daily Health Changes,” FUJITSU Sci. Tech, 
50(1), pp. 78-63, 2014.  

[7] T. Hashizume and K. Yatani, “Investigating a Photo Plethysmography-

enabled Fingerprint Authentication System,” IPSJ SIG Technical Report, 
pp. 1-8, 2017 (in Japanese). 

[8] Emna Kalai Zaghouani, Adel Benzina, and Rabah Attia, “ECG based 

authentication for e-healthcare systems: Towards a secured ECG 
features transmission,” 13th International Wireless Communications 

and Mobile Computing Conference (IWCMC), 2017. 

[9] Emelia J. Benjamin et al., “Heart Disease and Stroke Statistics-2019 

Update: A Report From the American Heart Association,” Circulation, 

vol 139, Issue 10, 2019. 
[10] Spadaccini A. and Beritelli F., “Human identity verification based on 

heart sounds,” IET Biometrics, vol. 5 (4), pp. 284-296, 2016. 

[11]  Beritelli F and Serrano S., “Biometric identification based on frequency 
analysis of cardiac sounds,” IEEE Trans Inf Forensics Secure, 2 (3), pp. 

596-604, 2007. 

[12]  Phua K., Chen J., Dat T. H., and Shue L., “Heart sound as a biometric,” 
Journal Pattern Recognition, 41(3), pp. 906-919, 2008. 

[13]  Foteini Agrafioti and Dimitrios Hatzinakos, “ECG biometric analysis in 

cardiac irregularity conditions,” Springer, SIViP 3, pp. 329-343, 2009. 
[14]  M. Abo-Zahhad, Mohammed Farrag, Sherif N. Abbas, and Sabah M. 

Ahmed: “A comparative approach between cepstral features for human 

authentication using heart sounds,” Signal, Image and Video Processing, 
10(5), pp. 843-851, 2016. 

[15]  Andrea Spadaccini and Francesco Beritelli, “Performance Evaluation of 

Heart Sounds Biometric Systems on an Open Dataset,” 18th 
International Conference on Digital Signal Processing (DSP), 2013. 

[16]  Zhidong Zhao, Qinqin Shen, and Fangqin Ren, “Heart Sound Biometric 

System Based on Marginal Spectrum Analysis,” Sensors 2013, 13(2), 
pp. 2530-2551, 2013. 

[17]  Zhongwei Jiang and Samjin Choi “Development of Wireless Electronic 

Stethoscope System and Abnormal Cardiac Sound Analysis Method: 
Sound Characteristic Waveform Analysis,” Transactions of the Japan 

Society of Mechanical Engineers C, 71(711), pp. 3246-3253, 2005 (in 
Japanese). 

[18]  Rashmi C R, Meghashree Y, Meghashree K, Lakshmi Reddy, and Pooja 

S, “A New Method for Biometric Application Using PCG Signals,” 
International Journal of Emerging Research in Management & 

Technology. 4(5), pp. 26-31, 2015. 

[19]  A. Spadaccini and F. Beritelli, “Performance evaluation of heart sounds 
biometric systems on an open dataset,” IEEE 18th International 

Conference on Digital Signal Processing, 2013. 

[20]  U. Yadav, S.N. Abbas, and D. Hatzinakos, “Evaluation of PPG 
Biometrics for Authentication in different states,” 11th IAPR, 116(509), 

pp. 325-332, 2017. 

[21]  Xinghai Yang, Haili Huang, Jia Ding, Zhen Liu, and Wenjie Fu, 
“Designing of Heart Sound Diagnostic System Based on OMAP3530, 

“Procedia Environmental Sciences, vol. 8, pp. 307-312, 2011. 

[22] Yoshiko Hasegawa, “A Study on Improving Health Examination 
Diagnosis using Mahalanobis Distance,” Japanese Journal of MHTS, vol. 

27, Issue 1, pp. 11-23, 2000 (in Japanese). 

[23]  Hisato Nakajima, Koya Yano, Kei Takada, Ichiro Takagi, Sawako 
Komiya, Mitsuru Ohata, and Gotaro Toda., “Diseases State Evaluation 

and Diagnosis by the Change of the Mahalanobis Distance for the 

Various Types of Liver Diseases,” Journal of Quality Engineering 
Society, vol. 12,  Issue 3, pp. 51-58, 2004  (in Japanese). 

[24] Nadia Masood Khan, Muhammad Salman Khan, and Gul Muhammad 

Khan, “Automated Heart Sound Classification from Unsegmented 
Phonocardiogram Signals Using Time Frequency Features,” World 

Academy of Science, Engineering and Technology International Journal 

of Computer and Information Engineering, vol.12, no. 8, pp. 598-603, 
2018. 

 
(a) Participant p1                                (b) Participant p2                                   (c) Participant p3                                 (d) Participant p4 

 

Fig. 8.  Relationship between FRR and FAR calculated with MFCC 
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