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The Hamiltonicity, Hamiltonian Connectivity, and
Longest(s, t)-path of L-shaped Supergrid Graphs

Fatemeh Keshavarz-Kohjetdand Ruo-Wei Hung*

Abstract—Supergrid (or called strong grid) graphs contain (Vv
grid graphs and triangular grid graphs as their subgraphs.
The Hamiltonian (s, t)-path of a graph is a Hamiltonian path o173
between any two distinct verticess and t in the graph, and
the longest 6, t)-path is a simple path with the maximum
number of vertices from s to t in the graph. A graph is called e
Hamiltonian if it contains a Hamiltonian cycle, and is said to be (a) (b) (©)
Hamiltonian connected if there exists a Hamiltonian §, t)-path
in it. These problems are known to be NP-complete for general Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) a supergrid
Supergrid graphs_ As far as we know, their Comp|exities are still graph, where circles represent the vertices and solid lines indicate the edges
unknown for solid supergrid graphs which are supergrid graphs in the graphs.
without any hole. In this paper, we will study these problems
on L-shaped supergrid graphs which form a subclass of solid
supergrid graphs. First, we provelL-shaped supergrid graphs to
be Hamiltonian except one trivial condition. We then verify the
Hamiltonian connectivity of L-shaped supergrid graphs except
few conditions. The Hamiltonicity and Hamiltonian connectivity
of L-shaped supergrid graphs can be applied to compute the
minimum trace of _compu_terlz_ed e_mbr0|d¢ry machine and 3D Fig. 2. (a) A set of lattices, (b) the neighbors of one latticeaimrid
printer when a L-like object is printed. Finally, we present a granh and (c) the neighbors of one lattice in a supergrid graph, where each

linear-time algorithm to compute the longest 6, t)-paths of L- |attice is denoted by a vertex in a graph and arrow lines indicate the adjacent
shaped supergrid graphs. This study can be regarded as the neighbors of one lattice.

first attempt for solving the Hamiltonian and longest (s, t)-path
problems on solid supergrid graphs.

(a) (b) (©

Index Terms—Hamiltonicity, Hamiltonian connectivity, int r nd nd reor nt th nd rdinat
longest 6, t)-path, solid supergrid graphs, L-shaped supergrid egers, antw, andwv, represe & andy coo ates

graphs, computer embroidery machines, 3D printers. of nodew, respectively. Two vertices andv are adjacent
if and only if |uy, —v,| < 1 and |u, — vy| < 1. Thus,
the possible adjacent vertices of a vertex= (vg,vy)
l. INTRODUCTION in a supergrid graph contaifw,,v, — 1), (v, — 1,v,),
he studied graphs, namesupergrid (or calledstrong (vz +1,vy), (vz,vy +1), (vz — 1,0y — 1), (Vs + 1, vy + 1),
grid) graphs derive from our industry-university coop- (vz+1,v,—1), and(v, —1,v,+1). Supergrid graphs contain
erative research project. They can be applied to computeriZ#ifl [19] and triangular grid [32] graphs as their subgraphs.
sewing machines. The process flow of a computerized sewin@r instance, Figs. 1(a)—(c) depict a grid, a triangular grid,
machine is as follows: The computerized sewing softwared\d a supergrid graph, respectively. Notice that grid and
given by a colour image. First, it uses the image processiifgngular grid graphs are not subclasses of supergrid graphs,
technique to produce some blocks of different colors. The@nd the converse is also true: these classes of graphs have
the software computes the stitching trace for each block @mmon elements (nodes) but in general they are distinct
colors. Finally, the software transmits its computed stitchirgfnce the edge sets of these graphs are different. Obviously,
trace to computerized sewing machine, and the machine tifhgrid graphs are bipartite [19] but triangular grid graphs
performs the sewing action along the received stitching tra@d supergrid graphs are not bipartite.
Since each stitch position of a sewing machine can be moved\nother intuitive motivation of proposing supergrid graphs
to its eight neighbor positions (left, right, up, down, up-lefiis given below. Consider a set of lattices, shown in Fig. 2(a),
up-right, down-left, and down-right), we defireupergrid Where each lattice is denoted as a vertex in a graph. For a
graphsin [13] as follows: Each lattice of a block of color will grid graph, the neighbors of a lattice include its up, down,
be represented by a vertex and each veutéx coordinated left, and right lattices, see Fig. 2(b). However, in the real
as (v, v,), denoted byv = (v,,v,), wherev, andv, are word and other applications, the neighbors of a lattice may
also contain its up-left, up-right, down-left, and down-right

Manuscript received December 01, 2019; revised April 16, 2020.  adjacent lattices. Thus, supergrid graphs can be used in these
This work was supported in part by the Ministry of Science a”‘épplications.

Technology, Taiwan under grant no. MOST 108-2221-E-324-012-MY2. . . . . .
LFatemeh Keshavarz-Kohjerdi is with the Department of Mathematics & A Hamiltonian path(resp.,cyclé in a graph is a spanning

Computer Science, Shahed University, Tehran, Iran. path (resp., cycle) of the graph. Theéamiltonian path
2Ruo-Wei Hung is with the Department of Computer Science a”(’resp.,cycle) probleminvolves determining whether a graph

Information Engineering, Chaoyang University of Technology, Wufen . . . .
Taichung 413319'0’ Taiwgn_ yang Y o gContz_ilns a I—_|a_m|lton|§n path (r(_esp.,_ cycle). A grgph is called
*Corresponding author e-mail: rwhung@cyut.edu.tw. Hamiltonianif it contains a Hamiltonian cycle. A simple path

Volume 47, Issue 3: September 2020



TAENG International Journal of Computer Science, 47:3, IJCS 47 3 06

from vertexs to ¢t is denoted by(s, ¢t)-path. A graphG is
said to beHamiltonian connected it contains a Hamiltonian
(s,t)-path for any two vertices andt¢ of G. The longest
(s,t)-path of a graph is a simple path with the maximun [
number of vertices froms to ¢ in the graph. The longest B
(s, t)-path problem is to compute the longéstt)-path of a (a)
graph given any two distinct verticesandt. It is well known

that the Hamiltonian and longest, ¢)-path problems are NP- RO
complete for general graphs [7], [20]. The same holds true
for bipartite graphs [28], split graphs [8], circle graphs [6],

*

undirected path graphs [1], grid graphs [19], triangular grid
graphs [9], supergrid graphs [13], and so on. In the literature,
there are many studies for the Hamiltonian connectivity of
interconnection networks, see [3], [5], [10]-{12], [30], [31]Fig. 3. (a) The structure of-shaped supergrid graph(m,n; k,1), (b)

In [13], we proved the Hamiltonian problems on generdl(10,11;6,8), (c) L(10,11;7,9), (d) L(7,10;3,7), and (e) a minimum

. . ” wing trace for the sets of lattices in (b)—(d), where each lattice is
supergrid graphs to be NP-complete. A solid supergrid grafgﬁresented by a node, solid arrow lines indicate the computed trace and

is a supergrid graph without any hole. For example, the grapéshed arrow lines indicate the jump lines connecting two continuous letters.
in Fig. 1(c) is a supergrid graph but it is not a solid supergrid
graph. The Hamiltonian problems on solid supergrid graphs
are still open. In this paper, we will solve the Hamilto-
nian and longests, ¢)-path problems ori.-shaped supergrid positions, one set of neighboring lattices formd<.&haped
graphs, which form a subclass of solid supergrid graphs, $#Pergrid graph. In this case, each lattice will be represented
linear time. LetR(m,n) be a supergrid graph such that itPy & vertex of a supergrid graph. The desired sewing trace
vertex setV (R(m,n)) = {v = (vy,v,)|1 < v, < m and of the set o_f adjacent lattices is the Hamllt_oman pa_th of -the
1 < v, < n}. A rectangular supergrid graplis a supergrid correspondingd.-shaped supergrid graph. Given a string with
graph which is isomorphic t&(m, n). Let L(m, n; k,1) be a varied-sized.. letters. By the Hamiltonian connectivity @f
supergrid graph obtained from a rectangular supergrid grap/h@Ped supergrid graphs, we can compute the end nodes of
R(m,n) by removing its subgrapt&(k, 1) from the upper- Hamiltonian paths in the correspondiigshaped supergrid
right corner. A L-shaped supergrid graph is isomorphic t@raphs so that the total length of jump lines connecting two
L(m,n; k,1). In this paper, we only considet(m, n; k,1). L-shaped supergrid grqphs is mir_1imu_m. For instan_ce, gi_ven
Note that the number of vertices ib(m,n; k,1) equals to threeL-shaped supergrid graphs in Figs. 3(b)—(d), in which
mn — kl. In the figures, we will assume thatl,1) are €achL-shaped supergrid graph represents a set of lattices,
coordinates of the vertex located at the upper-left corner of - 3(€) shows such a minimum sewing trace for the sets of
supergrid graph. For example, Fig. 3(a) indicates the structl@éices.
of L(m,n;k, 1), and Figs. 3(b)—(d) indicat&(10,11;6,8), Another possible application of Hamiltonian connectivity
L(10,11;7,9), and L(7,10;3,7), respectively. The width of L-shaped supergrid graphs is to compute the minimum
and height of L-shaped supergrid graph(m,n;k,l) can printing trace of 3D printers. Consider a 3D printer with a
be adjusted according to the parametets n, k, and (. L-type object being printed. The software produces a series
The main idea of our strategy is presented as follows. af thin layers, designs a path for each layer, combines these
first separates the input graph into many parts. Then, waths of produced layers, and transmits the above paths
verify whether there exists a Hamiltonids, t)-path in the to 3D printer. Because 3D printing is performed layer by
input graph by checking these separated parts. When thiger (see Fig. 4(a)), each layer can be considered as a
exists no Hamiltoniaris, ¢)-path in the input graph, we thenL-shaped supergrid graph. Suppose that therekaegyers
combine the longest paths of these separated parts to gemnder the above 3D printing. If the Hamiltonian connectivity
longest(s, t)-path of the input graph. Although this idea doesf L-shaped supergrid graphs holds, then we can find a
seem to be simple, there are still many issues to be solvétiimiltonian(s;, t;)-path of anL-shaped supergrid graph,
That is, the precise partitions is important. If the separatiovhere L;, 1 < ¢ < k, represents a layer under 3D printing.
is done in a wrong way then the result may be wrong. In thighus, we can design an optimal trace for the above 3D
paper, we will verify our partition can separate the graph iprinting, wheret; is adjacent tos;;; for 1 <i < k — 1.
a correct way. In this application, we restrict the 3D printer nozzle to be
The possible application of the Hamiltonian connectivit}ocated at integer coordinates. For example, Fig. 4(a) shows
of L-shaped supergrid graphs is given below. Consider4dayersL;—L4 of a 3D printing for al-type object, Fig. 4(b)
computerized embroidery machine for sewing a varied-sizé@picts the Hamiltoniarts;, ¢;)-paths of Z; for 1 < i < 4,
letter L into the object, e.g. clothes. First, we produce a set 8nd the result of this 3D printing is shown in Fig. 4(c).
lattices to represent the letter. Then, a path is computed tdPrevious related works on supergrid graphs are summa-
visit the lattices of the set such that each lattice is visitatzed as follows. The supergrid graphs were first introduced
exactly once. Finally, the software transmits the stitchinig [13], in which we proved that the Hamiltonian cycle and
trace of the computed path to the computerized embroidgygth problems on supergrid graphs are NP-complete, and
machine, and the machine then performs the sewing wakery rectangular supergrid graph is Hamiltonian. Since the
along the trace on the object. Since each stitch position of Elamiltonian problems on general supergrid graphs are NP-
embroidery machine can be moved to its eight neighborimgmplete, an important investgated direction is to discover

PASELS.
]
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layer 1 (L)) layer2 (L,) layer 3 (L3) layer4 (Ly)

andw is called a neighbor of. The notationu ~ v (resp.,
|7 & | u ~ v) means that vertices andv are adjacent (resp., non-
Z L / L 1 %l adjacent). Two edges; = (u1,v1) andes = (ug,vs) are
j | ges 1,01 2 2,V2)
g said to beparallel if u; ~ v; andus ~ vy, denote this by
(a) e1 = ea. We useN¢ (v) to denote the set of neighbors of
s 4 s in G, and letN¢[v] = Ng(v)U{v}. The number of vertices
adjacent to vertex in G is called thedegreeof v in G and
is denoted byleg(v).
ApathP = vy — v — -+ — vp—1 — Yp| in
G is a sequencéuv;, vz, --- ,v|p|—1,v p|) Of vertices such
,3 = that (v;,v;41) € E(G) for 1 < ¢ < |P|, and all vertices
(b) exceptvy,vjp; are distinct. Ifv; = wvp; and [P| > 4,
then P is called a cycle ofG. The verticesv; and vp
are called thepath-start and path-endof P, denoted by
start(P) and end(P), respectively. We will usey; € P
to denote P visits vertexv;,” and use(v;,v;+1) € P to
denote ‘P visits edge(v;, v;1+1)". A path from vy to v is
denoted by(v1, vy )-path. For convenience, we will uge to
refer toV (P) if no ambiguity occurs. Le, and P, be two
() paths (or cycles) iri. If V(P) NV (P) =0, then they are
_— The four laverd. L. of 3D orint Sl while orini called vertex-disjoint When P, and P, are vertex-disjoint
e abject, (b) the compuring Hamitonin.1.)-path of each tayer., . &nd end(11) ~ start(P%), then they can be concatenated
in (a), and (c) the final result while performing the 4-layered 3D printingiNto a path, denoted by, = P.
Rectangular supergrid graphs first appeared in [13], in
which we solved the Hamiltonian cycle problem in linear
the complexities of special subclasses of supergrid grapH&!€: A rectangular supergrid grag(m, n) is a supergrid
In [14], we proved that linear-convex supergrid graphs araph withV (R(m, n)) = {v = (v, vy)|1 < v, < m and

ways contain Hamiltonian cycles. In [15], we proved that S Vv < n}, and it is calledn-rectangle. In this paper,

rectangular supergrid graphs (with one trivial exception) apythout loss of ge”efa"ty we will assume that 2 n. Let
= (vg,vy) be a vertex inR(m, n). The vertexv is called

always Hamiltonian connected. Recently, we verified tHé ) ,
Hamiltonicity and Hamiltonian connectivity of some shapel'€ UPPer-left(resp..upper-right down-left down-righj cor-
supergrid graphs, including triangular, parallelogram, arftf" Of R(m,n) if for any vertexw = (ws, wy) € R(m,n),
trapezoid [16]. Very recently, we verified the Hamiltonicitys = Ve andw, > vy (resp.,w, < v andw, > vy,
and Hamiltonian connectivity of alphabet supergrid grapfgr = V= andwy < vy, wy < v andw, < vy). Notice
[18]. A preliminary version of this paper has appeared ihat in the figures we will assume thdt 1) are coordlr_1a_tes
[17]. For the related works about grid and triangular gridl the upper-left corner of(m,n), except we explicitly
graphs, we refer the readers to [4], [9], [19], [21]-[27], [29]change thl_s; as;umptlon. The edgev) is calIedhon;ontql
[32]-[34]. (resp.,vertlcal)_lf_uy = vy (resp.,um_ = v,), and is sa_ud
The rest of the paper is organized as follows. In Section [P Pe crossedif it is neither a horizontal nor a vertical -
some notations and observations are given. Previous resGge. There are four boundaries in a _rectangular supergrid
are also introduced. In Section IlI, we prove two HamiltoniaAraPh£(m, n) with m,n > 2. The edge in the boundary of
connected properties of rectangular supergrid graphs. Thég(é"’”) IS gal_ledlb_oundary edge. A path is caIIet[bundary_
two properties will be used in proving the Hamiltoniar?® £2(7,n) if it visits all vertices of the same boundary in
connectivity of Z-shaped supergrid graphs. Section IV show&("7:72) and its length equals to the number of vertices in
that L-shaped supergrid graphs are Hamiltonian and Hami€ Visited boundary. For example, Fig. 5 shows a rectangular
tonian connected except one or three conditions. In Sectiﬁlﬁoer_g”d graphi?(10,8) which is called 8-recta_mgle and
V, we propose a linear-time algorithm to solve the Iongegpr,‘t"’“ns2 x (9 +7) = 32 boundary edges. Fig. 5 also
(s,t)-path problem onL-shaped supergrid graphs. Finallyndicates the types of edges and corners. _
we make some concluding remarks in Section VI. A L-shaped supergrid grapldenoted byl.(m, n; k, 1), is a
supergrid graph obtained from a rectangular supergrid graph

R(m,n) by removing its subgrapl®(k,!) from the upper-
right corner, wheren,n > 1 andk,l > 1. Thenm —k > 1,

In this section, we will introduce some notations and pre; _; > 1, and |V (L(m,n; k,1))| = mn — kl. The structure
viously established results. For graph-theoretic terminology L(m,n;k,1) is depicted in Fig. 3(a).
not defined here, the reader is referred to [2].

Let G be a graph. We denote by (G) and E(G) the
vertex set and edge set 6f, respectively. LetS C V(G)
and letu,v € V(G). The subgraph of7 inducedby S is
represented a8[S], andG—S is used to denot&[V — S| for Definition 1. Let G be a L-shaped supergrid graph
convenience. In general, we wrif@¢— v instead ofG — {v}. L(m,n;k,l) or a rectangular supergrid gragR(m,n). A
We denote byu, v) an edge i, whereu is adjacentto v, separation operationof G is a partition of G into two

II. NOTATIONS AND PREVIOUS RESULTS

In proving our results, we need to partition a rectangular
or L-shaped supergrid graph into two disjoint parts. The
partition is defined as follows:

Volume 47, Issue 3: September 2020



TAENG International Journal of Computer Science, 47:3, IJCS 47 3 06

m=10 concave face

- ¢ M , boundary Y
2 x(1 1) H edges /ﬂi ] I 1 v
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& tical ed flat face: P>
@ vertical edge '\
E A ¢ J o 15
_E horizontal edge h
é k‘—o<4c~—o<40¢—0<—0< — OO
crossed edge (a) (b)
n= .
down-right
corner bwas
| o L L i/i_jﬁ I«—« >
vertical separation boundary path i T
Fig. 5. A rectangular supergrid gragh(m, n), wherem = 10, n = 8, L_o‘_.ﬁy_«—s —3 I 0
and bold dashed lines indicate vertical and horizontal separations. (c) (d) (e)

Fig. 6. A canonical Hamiltonian cycle containing three flatefa@and one
concave face for (aR(8, 6) and (b)—(e)R(7,5), where solid arrow lines
_dicioi i i _indicate the edges in the cycles aRd7, 5) includes four distinct canonical
vertex-disjoint supergrid subgrapi§ andGs, I'e"V(G> . Hamiltonian cycles in (b)—(e) such that their concave faces are located on
V(G1) UV(G2) andV(G1) N V(G2) = 0. A separation is ifrerent boundaries.
calledvertical if it consists of a set of horizontal edges, and
is calledhorizontalif it contains a set of vertical edges. For s 1
instance, the bold dashed vertical (resp., horizontal) line in
Fig. 5 indicates a vertical (resp., horizontal) separation of
R(10,8) which is partitioned inta?(3, 8) and R(7, 8) (resp.,
R(10,3) and R(10, 5)). Fig. 7. Rectangular supergrid graphs in which Hamiltor(iant)-path does
. . not exist for (a) 1-rectangld?(m, 1), and (b) 2-rectangle?(m, 2), where
Let R(m,n) with m > n be a rectangular supergrid graphsolid lines indicate the longess, t)-path.

In [13], we provedR(m, n) to be Hamiltonian except = 1.
Let C be a cycle ofR(m,n), and letB be a boundary of

R(m,n). The restriction ofC to B is denoted byCip. If 505 exist ifm,n > 2 and(s, t) is an edge in the constructed

Ci5| =1, i.e.,Cip is a boundary path o, thenCip is o mjjronian cycle of R(m,n). In addition, we will use
calledflat faceon B. If |C|z| > 1 and()z contains at least

. L(G,s,t) to denote the length of longedt,t)-path in
one boundary edge d8, thenC, is calledconcave fac@n (G.s,t). Note that we denote the length of a path by the
B. A Hamiltonian cycleHC of R(m,n) with m >n > 2is .

S number of vertices in the path.
called canonicalif _ Recently, the Hamiltonian connectivity of rectangular su-
(1) n - 3, HC contains three flat faces on two ShortefJergrid graphs except one condition has been verified in [15].
boundaries and one longer boundary, 88d contains one ¢ torhidden condition fotH P(R(m,n), s,t) is satisfied
concave face on the other boundary; or only for 1-rectangle or 2-rectangle. To describe the exception

(2) n = 2 orn =4, HC gontalns three flat faces on threet:ondition, we define theut vertexandvertex cutof a graph
boundaries, an@/C contains one concave face on the otheé{S follows:

°
o
~ §--O »

£

(a) (b)

boundary.
The following lemma shows the Hamiltonicity of rectangulaPefinition 2. Let G be a connected graph and et C
supergrid graphs and appears in [13]. V(G). The setV; is a vertex cutof G if G — V; is

disconnected. A vertex of G is acut vertexof G if {v} is
Lemma 1. (See [13].) LetR(m,n) be a rectangular sU- g vertex cut ofG. For instance, in Fig. 7(a) or ¢ is a cut
pergrid graph withm > n > 2. Then, R(m,n) cONMains yertex and in Fig. 7(bYs, ¢} is a vertex cut.
a canonical Hamiltonian cycle. MoreoveR(m, n) contains
four canonical Hamiltonian cycles with concave faces being Then, the following condition implies? P(R(m, 1), s, )
located on different boundaries when 3. and H P(R(m, 2),s,t) do not exist.

Fig. 6 shows canonical Hamiltonian cycles for rectangular (F1)
supergrid graphs found in Lemma 1. Each Hamiltonian cycle
found by this lemma contains all the boundary edges on

ny thr i f the r ngular rgrid graph. Thi
ghgwts ter?atS%?sagy treectaic;[l?lagrusip::]gpr?dgggaﬁg(vi?n) SThe foIIO\_/ving lemma can be easily verified by the same
with m > n > 4, we can always construct four canonicaf"guments in [24].
Hamiltonian cycles such that their concave faces are pladesimma 2. Let R(m,n) be a rectangular supergrid graph,
on different boundaries. For an example, the four distinghd lets andt be its two vertices. IfR(m,n), s, t) satisfies
canonical Hamiltonian cycles d@t(7, 5) are depicted in Figs. condition (F1), then H P(R(m,n), s,t) does not exist.
6(b)—(e).

Let (G,s,t) denote the supergrid grap’ with two
distinct verticess and ¢. We will assume, without loss of
generality, thats,, < t, except we explicitly change thisLemma 3. (See [15].) Let R(m,n) be a rectangular
assumption. A Hamiltonian path betweenandt in G is supergrid graph, and lets and ¢ be its two vertices.
denoted byH P(G, s,t). From Lemma 1H P(R(m,n),s,t) If (R(m,n),s,t) does not satisfy conditior(F1), then

s or t is a cut vertex ofR(m,1), or {s,t} is a
vertex cut of R(m, 2) (see Figs. 7(a)—(b)).

In [15], we obtained the following lemma to show the
Hamiltonian connectivity of rectangular supergrid graphs.
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By Theorem 4, rectangular supergrid gragt(m,n)
@ ® © @ contains a Hamiltonian (s,¢)-path if and only if
Fig. 8. A schematic diagram for (a) Statement (1), (b) Stater@®n, () ([2(m,7),s,t) does not satisfy condition (F1). The
Statement (3), and (d) Statement (4) of Proposition 5, whemepresents Hamiltonian (s, t)-path of R(m,n) constructed in [15]
the destruction of an edge while constructing a merged cycle or path. contains at least one boundary edge of each boundary.
In this section, we will prove two additional Hamiltonian
connected properties of rectangular supergrid graphs under
. some conditions. These two properties will be used to
HP(R(m,n),s,t) does exist. prove the Hamiltonian connectivity of-shaped supergrid
Combining with the above two lemmas, we have th@@phs. Leti(m,n) be a rectangular supergrid graph with
following theorem. m > 3 andn > 2, and letw = (1,1), z = (2,1), and
f = (3,1) be three vertices iiR(m,n). We will prove the
Theorem 4. Let R(m,n) be a rectangular supergrid graph, following two Hamiltonian connected properties&{m, n):
and lets andt be its two vertices. Thed/ P(R(m,n), s,t)
does exist if and only if/2(m,n),s,t) does not satisfy  (p1) |fs = w = (1,1) andt = z = (2,1), then there
condition(F1) exists a Hamiltoniaris, ¢)-path P of R(m,n) such
that edge(z, f) € P.
(P2) If m = 2 and {s,t} & {{w,z},{(1,1),(2,2)},
{(2,1),(1,2)}}) of (0 > 3 and {s,1} # {w,2)),

The Hamiltonian (s, t)-path of R(m,n) constructed in
[15] is to contain at least one boundary edge of each

n i Il i
boundary, an.d s ca edanomcfall ) then there exists a Hamiltoniafs,t)-path @
We next give some propositions on the relations among of R(m,n) such that edggw,z) € Q, where
cycle, path, and vertex. These observations will be used in (R(m n’) s,1) does not satisfy’condition’ (F1)

proving our results and are given in [13], [14], [15].

Proposition 5. (See [13], [14], [15].) LetG be a connected  First, we verify the first property (P1) as follows:
graph, C; and C; be two vertex-disjoint cycles af, C;
and P, be a cycle and a path, respectively, Gfsuch that
V(C1)NV(P) =0, and letz be a vertex inG — V(Cy) or
G — V(P1). Then, the following statements hold:
(1) If there exist two edges, € C and ez € Cs such that
e1 = ey, then(C; and Cy can be merged into a cycle ¢f Proof: Depending on whethern = 3, we consider the
(see Fig. 8(a)). following two cases:
(2) If there exist two edges; € Cy andes € P; such that  Casel: m = 3. In this case, we claim that
e1 = ez, thenC; and P, can be merged into a path @f there exists a Hamiltoniafs, ¢)-path P of R(m,n) such that
(see Fig. 8(b)). (z, f) € P and a boundary path connecting down-left corner
(3) If vertex z adjoins one edgé¢u,,v1) of C; (resp.,P1), and down-right corner is a subpath Bf
thenc andC; (resp.,P;) can be combined into a cycle (resp., We will prove the above claim by induction en Initially,
path) of G (see Fig. 8(c)). let n = 2. The desired Hamiltoniafs, ¢t)-path P of R(3,2)
(4) If there exists one edgéu;,v;) € Cp; such that can be easily constructed and is depicted in Fig. 9(a). Assume
up ~ start(Py) and vy ~ end(P1), thenC; and Py can that the claim holds true whem = k > 2. Letu; = (1, k),
be combined into a cycl€ of G (see Fig. 8(d)). us = (2,k), andus = (3,k). By induction hypothesis,
. there exists a Hamiltoniags, ¢)-path P, of R(m,k) such
In [15], Hunget al.gave the follpwmg formula to compute v, o+ (z,f) € P, and P, contains the boundary path’ =
the length of a longedts, t)-path in R(m,n): w1 — us — uz as a subpath. LeP, = P, = P’ = P;.
Considern = k+ 1. Letv; = (1,k+ 1), vo = (2,k + 1),

v3 = (3,k+1), and letP = vy — va — v3. Then,

Lemma 7. Let R(m,n) be a rectangular supergrid graph
with m > 3 andn > 2, and lets = w = (1,1), t =
z=(2,1), and f = (3,1). Then, there exists a Hamiltonian
(s,t)-path P of R(m,n) such that edgéz, f) € P.

le — 8+ 1 Jifn=1; P = uy = P = uy — uz = P, is the desired Hamiltonian
L(R(m,n), s,) = max{2s;, . (s,t)-path of R(3, k+1). The constructed Hamiltonig, ¢)-
R 2(m—s; +1)}or2m ,if n=2; path of R(3,k + 1) is shown in Fig. 9(b). By induction, the
mn ,ifn > 3. claim holds and hence, the lemma holds true in the case of
m = 3.

Theorem 6. (See [15].) Given a rectangular supergrid graph  ©@S€2: m > 3. In this case, we first make a vertical sepa-
R(m,n) with mn > 2, and two distinct vertices and ¢ in ration onR(m,n) to partition it into two disjoint rectangular
R(m,n), a longest(s, t)-path can be computed i@(mn)- SuPergrid subgraphg, = R(2,n) and Rz = R(m —2,n),
linear time. as depicted in Fig. 9(c). We can easily construct a Hamilto-
nian (s, t)-path P, of R, such thatP, contains a boundary
In this paper, we will show that a longeét, t)-path of path placed to fac&g, as shown in Fig. 9(c). By Lemma 1,
(L(m,n;k,1),s,t) can be computed i (mn — kl)-linear Rz contains a canonical Hamiltonian cyelg. We can place
time. one flat face ofCs to face R,. Then, there exist two edges
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10(a). Assume that the claim holds true when= k£ > 2.
Let x; = (1,k), y1 = (2,k), andr; = (3,k). By
induction hypothesis, there exists Hamiltonianp)-pathQ,

of R(3, k) such that edgéw, z) € Q, and(x1,y1) € Qf, Or
(y1,71) € Qr depending on whether or npt= r;. Consider
thatn = k + 1. We first make a horizontal separation on
R(3,k + 1) to obtain two disjoint parts?; = R(3, k) and
Ry = R(3,1), as shown in Fig. 10(b). Lety = (1,k + 1),

. - . y2 = (2,k+ 1), andry = (3,k + 1) be the three vertices
Eé%tzinilgeeﬂggit,o}]ﬂfﬁ?repf tozecztar(]?ﬂa;,r i”‘fri”igzgﬁ"fl ’JQL of Ry. We will construct a Hamiltoniarfs, ¢)-path Q1 of
f=31),for@m=3andn =2, ())m=3andn =k+1>3, R(3,k+ 1) such that(w, z) € Qxt1, and(z2,y2) € Qr+1
and (c)m > 4 andn > 2, where solid lines indicate the Hamiltonian or (y2,7“2) c Qk-i-l as follows. Depending on the location of

path betweens and ¢ and ® represents the destruction of an edge while . .
constructing such a Hamiltonian path. t, there are the following two cases:

Casel:t € Ry. Let P, = a9 — Y2 — Ta. By
induction hypothesis, there exists Hamilton{ant)-pathQy,
of R(m, k) such that edgéw, z) € Q, and (z1,y1) € Qx

e1 € P, andey € Cg such thatt(= z) is a vertex ofe;, fis | _ : .
a vertex ofey, ande; = e,. By Statement (2) of Proposition if ¢ :drl' and (y1,m) € Ok r:)thher\lee. Tl?us, there exljStS
5, P, andCj can be combined into a Hamiltoniga t)-path 8" © 9e(ur,vk) In Qi such thatstart(Pp) ~ u; an

P of R(m,n) such that edgéz, f) € P. The constructed ¢d(F2) ~ vk, where (uy, vx) = (x1,1) OF (y1,71). By
Hamiltonian (s, )-path of R(m, n) is depicted in Fig. 9(c). Statement (4) of Proposition &), and P, can be combined

Thus, the lemma holds true whem > 4. into a Hamiltonian(s, t)-path@Qy.+1 of R(3,k+ 1) such that

It immediately follows from the above cases that th§49€S(w; ), (22,42), (y2,72) € Q1. The construction of
lemma holds true. m such a Hamiltonian path is depicted in Fig. 10(b).

Next, we will verify the second Hamiltonian connected Case2:t € Ry. In this casef € {x2,y2,72}. Then, there
property (P2) ofR(m, n), wherem > 3 andn > 2. We first are the following three subcases:
consider the following forbidden condition such that there Case2.1:t = x9. Letp =1, € Ry andqg = r3 € Rs.
exists no Hamiltoniar(s, t)-path @ of R(m,n) with edge Then,p ~ ¢. Let P» = ro(= ¢) — y2 — z2(= t). By
(w,2) € Q: induction hypothesis, there exists Hamilton{anp)-pathQy,

of R(m,k) such that edges$w, z), (x1,y1) € Q. Then,
(F2) n = 2 and {s,t} € {{w,2},{(1,1),(2,2)}, @r+1 = Qr = P, forms a Hamiltonian(s, ¢)-path of

{(2,1),(1,2)}}, orn >3 and {s, t} = {w, z}. R(m, k+1) with (w, 2), (22, y2), (y2,72) € Qr41. Fig. 10(c)
shows the construction of such a Hamiltonignt)-path.
The above condition states th&(m,n) has no Hamil- Case2.2:t = ry. Letp = 2y € Ry andq =

tonian (s, t)-path containing edgéw, z) if (R(m,n),s,t) %2 € R Let Po = ws(= q) — y2 — (= t). By
satisfies condition (F2). We will prove property (P2) bynduction hypothesis, there exists Hamiltonianp)-pathQ.
constructing a Hamiltoniarts, ¢)-path of R(m,n) visiting ©f R(m,k) such that edgesw, 2), (y1,71) € Q. Then,
edge(w, z) when(R(m,n), s, t) does not satisfy conditions @x+1 = Qr = P> forms a Hamiltonian(s, ¢)-path of
(F1) and (F2). To verify property (P2), we first consider th& (., k+1) with (w, 2), (x2, 2), (y2,72) € Qr41- Fig. 10(d)
special case, in Lemma 8, that = 3, n > 2, and either shows the construction of such a Hamiltoniant{-path.
s = z ort = z. This lemma can be proved by similar Case2.3:t = ys. Letp =7, € Ry. Let P, = ry —
arguments in proving Case 1 of Lemma 7. y2(= t). By induction hypothesis, there exists Hamiltonian
(s,p)-path@y, of R(m, k) such that edgegw, z), (z1,y1) €
Q. Then, Q). = Qr = P» is a Hamiltonian(s, t)-path of
" R(m, k+1) — a2 such that edge&w, z), (z1,y1), (y2,72) €
Q). Sincexy ~ x1, Ty ~ y1, and edgg(z1,y1) € Q}., by
. N Statement (3) of Proposition @, andx, can be combined
then there exists a Hamiltoniafs, ¢t)-path Q@ of R(m,n) into a Hamiltonian (s, ¢)-path Qkkﬂ of R(3,k + 1) such
such that edgéw, z) € Q. that edgesw, z), (y2,72) € Qs1. Fig. 10(e) depicts such a
Proof: Without loss of generality, assume that= ». construction of Hamiltoniarfs, ¢)-path.

Lemma 8. Let R(m,n) be a rectangular supergrid graph
with m = 3 andn > 2, s andt be its two distinct vertices
and letw = (1,1) andz = (2, 1). If (R(m,n), s,t) does not
satisfy conditiongF1) and (F2), and eithers = z or ¢t = z,

Then,t, < s, ort, > s,. That is,t may be to the left o6. It immediately follows from the above cases that the claim
Letx = (1,n), y = (2,n), andr = (3,n) be three vertices holds true whem = k + 1. By induction, the claim holds
of R(m,n). We claim that true and, hence, the lemma is true. [ |

there exists a Hamiltoniafs, ¢)-path@ of R(m,n) suchthat  \ye next verify property (P2) in the following lemma.
edge(w,z) € Q, and(z,y) € Q if t = r; and(y,r) € Q
otherwise. Lemma 9. Let R(m,n) be a rectangular supergrid graph
We will prove the above claim by induction om. Ini- with m > 3 andn > 2, s and t be its two distinct
tially, let n = 2. Since (R(m,n),s,t) does not satisfy vertices, and letv = (1,1) andz = (2,1). If (R(m,n), s,t)
conditions (F1) and (F2); ¢ {(1,1),(1,2),(2,2)}. Thus, does not satisfy condition&1) and (F2), then there exists
t € {(3,1),(3,2)}. Then, the desired Hamiltonidn, ¢)-path a Hamiltonian (s, t)-path @ of R(m,n) such that edge
Q of R(3,2) can be easily constructed and is depicted in Figw, z) € Q.
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Fig. 10. The Hamiltonian(s, t)-path of 3-rectangleR(3, n) containing
edge (w, z), wheres = z = (1,2) andw = (1,1), for (8) n = 2, (b)
n=k+1>3andt € Ri(= R(3,k)), and (c)-(e)n = k+ 1 > 3 and

t € Ra(= R(3,1)), where solid lines indicate the constructed Hamiltonian
(s,t)-path and® represents the destruction of an edge while constructing

such a Hamiltonian path.

Proof: We will provide a constructive method to prove

this lemma. By assumption of this lemmgs, t} # {w, z}
and, hence) < [{s,t} N {w, z}| < 1. Then, there are three
cases:

Casel: {s,t} N {w,z} = 0. In this cases,t & {w,z}.
By Lemma 3, R(m,n) contains a Hamiltoniaris, ¢)-path
Q. If edge (w,z) € Q, thenQ is the desired Hamiltonian
(s,t)-path of R(m,n). Suppose that edgev, z) ¢ Q. Let
x = (1,2) andy = (2,2). Then,N(w) — {z} = {z,y}.
Let Q = Q¥ = w = QY. SinceN(w) — {z} = {z,y},
{end(QY), start(Q¥)} = {z,y} and, henceend(QY) ~
start(QY). Then,Q' = Q¥ = QY is a Hamiltonian(s, t)-
path of R(m,n) — w, where edgéend(QY), start(QY))
(z,y) is visited by Q'. Let Q' = Q7 = z = Q3.
Depending on whethernd(Q%) ~ start(Q3), we consider
the following two subcases:

Case 1.1: end(Q%) ~ start(Q3). In this subcase,
Q* = QF = Q3 is a Hamiltonian(s, t)-path of R(m,n) —
{w, z}, where edgéz, y) is visited byQ~. Let P’ = w — z.
Then, there exist one edge, y) € Q* such thakstart(P’) ~
x andend(P’) ~ y. By Statement (4) of Proposition §)*
and P’ can be combined into a Hamiltonig®, ¢)-path @
of R(m,n) such that edgéw, z) € Q. The construction of
such a Hamiltoniar{s, t)-path is depicted in Fig. 11(a).

Casel.2:end(QF) = start(Q3). SinceN (z) —{w, z}
forms a cliqueyx € {end(Q7), start(Q3)}. Then,z — = —
y is a subpath ofQ’. Let Q' = Q¥ = z = Q%. Then,
{end(Q7), start(Q3)} = {y.2}. Thus,Q* = Qf = Q3 is
a Hamiltonian(s, t)-path of R(m,n) — {w, 2}, where edge
(y, z) is visited by Q*. Let P’ = w — x. Then, there
exist one edgdy, z) € Q* such thatstart(P’) ~ z and
end(P') ~ y. By Statement (4) of Proposition %)* and
P’ can be combined into a Hamiltonia(s, ¢)-path @ of
R(m,n) such that edgdw,z) € Q. The construction of
such a Hamiltoniaris, t)-path is shown in Fig. 11(b).

Case?2: s = w or t = w. Without loss of generality,
assume thats = w. First, consider that 2. Then,

R>

7
(h)

Fig. 11. The construction of Hamiltoniafs, t)-path @ in R(m, n) with
edge(w, z) € Q for (a)—-(b) s,t & {w, z}, (c) s = w andn = 2, (d)—(f)

s =wandn > 3, and (g)—()s = z, m > 4, andn > 3, where bold
dashed lines indicate the subpaths of the constructed Hamiltqgigh)-
path, solid (arrow) lines indicate the edges in the constructed Hamiltonian
path, and® represents the destruction of an edge while constructing such
a Hamiltonian path.

Rg, whereq # ¢t andg, = t,. Then,p ~ ¢ and we can easily
construct Hamiltoniar(s, p)-path @, and (¢, t)-path Qg of
R, and Rg, respectively, such that edge, z) € Q,. Thus,
Q = Qo = Qg is a Hamiltonian(s, t)-path of R(m, n) with
(w, z) € Q. The construction of such a Hamiltonids, ¢)-
path is depicted in Fig. 11(c). Next, consider that 3. Let
t = (ts,t,). Depending on the location of we consider the
following three subcases:

Case2.1:t, = 1 andt, = m. In this subcasei is
located at the up-right corner dR(m,n). We first make
a horizontal separation of(m,n) to obtain two disjoint
parts Ry = R(m,1) and R, = R(m,n — 1), as shown in
Fig. 11(d). Note thatn > 3 andn — 1 > 2. By visiting all
boundary edges oR; from s to ¢, we get a Hamiltonian
(s,t)-path @, of R; with edge(w,2) € @Q;. By Lemma
1, we can construct a canonical Hamiltonian cy€le of
Ry such that its one flat face is placed to faBe. Then,
there exist two edges:(= (z,f)) € Q1 andes € Cy
such thate; = eo, wherez = (2,1) and f = (3,1). By

R(m,n) is a 2-rectangle. By assumption of the lemmé&Statement (2) of Proposition &, and C> can be merged
(R(m,n), s,t) does not satisfy condition (F2), and, hencento a Hamiltonian(s, t)-path@ of R(m,n) such that edge
tZ{(2,1),(2,2)}. If t = (1,2), then a Hamiltoniar(s,t)- (w,z) € Q. The construction of such a Hamiltonias, t)-
pathQ of R(m,n) can be easily constructed by visiting eacipath is shown in Fig. 11(d).

(m, 1)

boundary edge oRR(m,n) except boundary edge, ¢), and,
hence,(w,z) € Q. Lett = (t,,t,) satisfy thatt, > 3.
We first make a vertical separation d?(m,n) to obtain
two disjoint partsR, and Rg, as depicted in Fig. 11(c). Let
p=(tz —1,2) € Ry andq = (t5,t, — 1) or (t5,t, + 1) in

Volume 47, Issue 3:

Case2.2:t, = 1 andt, < m. Letr
be the up-right corner oR(m,n). Then, z, < t, < 7y,
ie., 2 < t, < m, and, hencen > 4. We first make
a vertical separation of(m,n) to get two disjoint parts
R, = R(2,n) and Rz = R(m — 2,n), as depicted in Fig.
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11(e), wheren > 3 and m — 2 > 2. Let p = (2,n) be the
down-right corner ofR, and letqg = (3,n) be the down-left
corner of Rg. Then,p ~ ¢ and, (R,, s,p) and (Rga, ¢, t) do
not satisfy condition (F1). Sinc&, is a 2-rectangle, we can
easily construct a a Hamiltonigs, p)-path@,, of R, such
that edge(w, z) € Q., as shown in Fig. 11(e). By Lemma
3, there exists a Hamiltoniafy, t)-path Qs of Rg. Then,
Q = Qo = Qp forms a Hamiltoniar(s, t)-path of R(m,n)

horizontal separation

such that edgéw, z) € Q. Such a Hamiltoniarfs, t)-path is vertical separation :R(fn‘jk n)' fg{kﬂ)
depicted in Fig. 11(e). (@) (b)
Case2.3:t, > 1. In this subcase, we first make a m—k > 1

horizontal separation oR(m, n) to obtain two disjoint parts
Ry = R(m, 1) andRs = R(m,n—1), as shown in Fig. 11(f),
wherem >3 andn — 1 > 2. Letr = (m, 1), thenr € R;.

Let ¢ = (m,2) if t # (m,2); otherwiseq = (m — 1,2). A

simple check shows th&R,, ¢, t) does not satisfy condition e
(F1). By visiting every vertex of?; from s to r, we get a
Hamiltonian(s, t)-path@; of R; with edge(w, z) € Q1. By

Lemma 3, there exists a Hamiltonida, ¢)-path Q2 of Rs. P

Then,@ = Q1 = Q2 is a Hamiltonian(s, t)-path of R(m, n) (©

with (w, z) € Q. The constructed Hamiltoniafs, t)-path in

this subcase can be found in Fig. 11(f)_ Fig. 12. (a) Separations 0h(10,11;7,9), (b) a vertical separation on

L(m,n;k,l) to obtain Lo, = R(m — k,n) and Lg = R(k,1), (c) a
Case3: s = z or t = z. By symmetry, assume that= z. Hamiltonian cycle ofL(m,n;k,l) whenm —k = 1 andn — 1 > 2,
; _ and (d) a Hamiltonian cycle of.(m,n;k,l) whenm — k > 2, n — 1 >
Then,t.ma)_/ be 1o the left o8, i.e.. ¢, < Sa- Whenn =2, 2, andk > 2, where bold dashed vertical (resp., horizontal) line in (a)
a Hamiltonian(s, t)-path @ of R(m,n) with (w,2) € @ indicates a vertical (resp., horizontal) separation/dn0, 11;7,9), and®
can be constructed by similar arguments in Fig. 11(c). Bypresents the destruction of an edge while constructing a Hamiltonian cycle
Lemma 8, the desired Hamiltoniafs, ¢)-path of R(m,n) °f L(mnik, D).
can be constructed when = 3. In the following, suppose
thatm > 4 andn > 3. We then make a horizontal separation
on R(m,n) to obtain two disjoint parts?; = R(m, 1) and We have considered any case to construct a Hamiltonian
Ry = R(m,n — 1), as shown in Fig. 11(g), where > 4 (s,t)-path @ of R(m,n) with edge (w,z) € Q. This
andn—1 > 2. Then,s € R;. Depending on whetheérc R,, completes the proof of the lemma. [
we consider the following two subcases:

Case3.1: t € R;. A Hamiltonian (s,t)-path @ of
R(m,n) with (w,z) € @ can be constructed by similar ) ) _ ) S
arguments in proving Case 2.1 and Case 2.2. Figs. 11(g)-(h)" this section, we will verify the Hamiltonicity and
show such constructions of the desired Hamiltonjany)- Hamiltonian connectivity of.-shaped supergrid graphs. Let
paths of R(m, n). L(m,n; k,1) be aL-shaped supergrid graph. We will make

vertical or horizontal separation di{m, n; k, 1) to obtain
wo disjoint rectangular supergrid graphs. For an example,
the bold dashed vertical (resp., horizontal) line in Fig.
12(a) indicates a vertical (resp., horizontal) separation on
Lil(), 11;7,9) that is to partition it intoR (3, 11) and R(7, 2)
L{F sp.,R(3,9) and R(10, 2)). The following two subsections

angamllton:?[ni(rf,t)-rp:atrgQangf rRa 3UChtLhit(;U’zl) € gat will prove the Hamiltonicity and Hamiltonian connectivity
and ¢, contains one boundary edge, that is placed to of L(m,n;k,l) respectively.

face Rg, as depicted in Fig. 11(i). By Lemma 1, there exists
a canonical Hamiltonian cycl€'s of R such that its one - .

flat face is placed to fac&,. Then, there exist two edgesA' The .Hamlltoma.n property (?L-shaped supergrld.gra!ohs
ea € Qo andes € Cj such thate, ~ ez. By Statement [N this subsection, we will prove the Hamiltonicity
(2) of Proposition 5, and C;3 can be combined into a ©f L-shaped supergrid graphs. Obviously,(im,n; 1)
Hamiltonian(s, t)-pathQ of R(m,n) with edge(w, z) € Q. contains no Hamiltonian cycle if there exists a vertexn
The construction of such a Hamiltonidw, t)-path is shown L(m,7;k,1) such thatdeg(w) = 1. Thus, L(m,n; k,1) is
in Fig. 11(i). On the other hand, suppose that Rs. Let NOt Hamiltonian when the following condition is satisfied.
p € R, andg € R such thatp ~ ¢ and, (R,,s,p) and _ _

(Rg,q,t) do not satisfy condition (F1). By Lemma 3, there (F3) there exists a vertew in L(m,n;k,1) such that
exist Hamiltonian(s, p)-path@,, and Hamiltoniar(g, t)-path deg(w) = 1.

Qs of R, and Rg, respectively. Since?,, is a 2-rectangle,

we can easily construed,, to satisfy (w,z) € Q.. Then, When the above condition is satisfied, we get that-¢ =
Q = Q. = Qs is a Hamiltonian(s,t)-path of R(m,n) 1andl > 1)or (n—1=1andk > 1). We then show the
with edge(w, z) € Q. Hamiltonicity of L-shaped supergrid graphs as follows:

IV. THE HAMILTONIAN AND HAMILTONIAN CONNECTED
PROPERTIES OFL-SHAPED SUPERGRID GRAPHS

Case3.2:t € R». In this subcase, we make a vertic
separation onR(m,n) to obtain two disjoint partsk, =
R(2,n)andRg = R(m—2,n), wherem—2 > 2 andn > 3,
as shown in Fig. 11(i). Suppose thate R,. By similar
technique in Fig. 11(c) and Lemma 3, we can easily constr
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Theorem 10. Let L(m,n;k,l) be a L-shaped supergrid s
graph. Then,L(m,n;k,1) contains a Hamiltonian cycle if
and only if it does not satisfy conditidiF3).

Proof: Obviously,L(m, n; k, [) contains no Hamiltonian o_i Q_I
cycle if it satisfies condition (F3). In the following, we will (a) (b)
prove thatL(m,n; k,l) contains a Hamiltonian cycle if it w
does not satisfy condition (F3). Assume thiatm,n; k,1)
does not satisfy condition (F3). We prove it by constructing a =1
Hamiltonian cycle ofZ(m, n; k, ). First, we make a vertical
separation or.(m, n; k, ) to obtain two disjoint rectangular s
supergrid subgraphs, = R(m—k,n)andLg = R(k,n—1),
as depicted in Fig. 12(b). Depending on the sized. gfand !
Lg, there are the following two cases:

Fig. 13. L-shaped supergrid graph in which there exists no Hamiltonian
Casel: m —k = 1 orn—1 = 1. By symmetry, we (s, t)-path for (a)s is a cut vertex, (b)s, t} is a vertex cut, (c) there exists
: . S . a vertexw such thatdeg(w) = 1, w # s, andw # t, and (dym — k = 1,
assume thatn — k = 1. Since there exists no vertex in , _; —5 ;| '} > 2 s — (1,2), andt = (2,3).
L(m,n;k,1) such thatdeg(w) = 1, we get that = 1 (see
Fig. 12(c)). Consider that — [ = 1. Then,k = 1. Thus,
L(m,n;k,l) consists of only three vertices which forms I
cycle. On the other hand, consider that- I > 2. Let w be 6IES..dThe Hﬁmlltoman connected property bfshaped super-
a vertex of L, with deg(w) =2, L¥ = L, — {w}, and let grid grapns
L*=L:ULg. Then,L* = R(k+1,n—1) = R(m,n — 1), In this subsection, we will verify the Hamiltonian
wherek+1 > 2 andn —1 > 2. By Lemma 1,L* contains a connectivity of [L-shaped supergrid graphs. Besides
canonical Hamiltonian cycl& C*. We can place one flat facecondition (F1) (as depicted in Fig. 13(a) and Fig. 13(b)),
of HC* to facew. Thus, there exists an edge, v) in HC* Wwhenever one of the following conditions is satisfied then
such thatw ~ v andw ~ v. By Statement (3) of Proposition  P(L(m,n; k,1),s,t) does not exist.
5, w and HC* can be combined into a Hamiltonian cycle
of L(m,n;k,l). For example, Fig. 12(c) depicts a such (F4) there exists a vertew in L(m,n;k,l) such that

construction of Hamiltonian cycle of(m,n;k,l) when deg(w) =1, w # s, andw # t (see Fig. 13(c)).

m—k=1andn—1> 2. Thus,L(m,n; k,1) is Hamiltonian (F5) m—k =1,n—-1=21=1k > 2, and

ifm-k=1orn—-1I=1. {s,1} = {(1,2),(2,3)} or {(1,3),(2,2)} (see Fig.
13(d)).

Case2: m —k > 2 andn — [ > 2. In this case,L, =
R(m — k,n) andLg = R(k,n — 1) satisfy thatm — k > 2
andn — [ > 2. Sincen — 1 > 2 andl > 1, we get that
n > 1+2 > 3. Thus, L, = R(m — k,n) satisfies that
m—Fk > 2 andn > 3. By Lemma 1,L,, contains a canonical Lemma 11. Let L(m, n; k,[) be aL-shaped supergrid graph
Hamiltonian cycle HC, whose one flat face is placed towith two verticess and t. If HP(L(m,n;k,1),s,t) does
face L. Consider thatc = 1. Then, Ly = R(k,n — 1) exist, then(L(m,n;k,l),s,t) does not satisfy conditions
is a 1-rectangle. LeV (Lg) = {v1,ve, -+ ,vn—1}, Where (F1) (F4), and(F5).

vit1, = Vi, +1forl <i<n—1—1. SinceHC, contains Proof: Assume that( L(m, n; k, 1), s, ) satisfies one of
a flat .face that is placed to fack,, there exists an edge ., jjiong (F1), F(4), and (F5). For condition (F1), the proof
(u,v) in HCq such thatu ~ vy andv ~ vy. By Statement ;0 same as that of Lemma 2. For condition (F4), it is
(3) of Proposition 5p; and HC,, can be combined into aeasy to see thal P(L(m, n: k, 1), s,t) does not exist (see

1
g)édr?] :r( giad ﬁlilotr:ﬁesi)r::?ei?l;(r)?;mj :;;n.il.t.(),nzglr;lc;gg Ot|f:ig. 13(c)). For (F5), we make a horizontal separation on it
. 0 obtain two disjoint rectangular supergrid subgraphs=
L(m,n;k,1). On the other hand, consider that> 2. Then, J 9 perg 9

R(m—FE,l)andRg = R(m,n—1), as depicted in Fig. 13(d).
Lg = R(k,n — 1) satisfies thatt > 2 andn — [ > 2. By (m—k, 1) andRy (m.n—1), as depicted in Fig. 13(d)

) . o Suppose thatn —k =1,n—1=2,1 =1, andk > 2. Then,
Lemma 1,15 contains a canonical Hamiltonian cyctéCs 5, "o o only one vertew. Let s = (1,2), ¢ = (2,3)
such that its one flat face is placed to fatg. Then, there ar?dz — (2,2). Then, there exists o Hamfltoﬁias t)-{)ath
exist two edges; = (u1,v1) € HC, andey = (ug,v3) € 1 ' ’

= of R, such that it contains edge, z). Thus,w can not be
HCy such thate, ~ e;. By Statement (1) of Proposition 5,0 hineq into the Hamiltoniats, ¢)-path of R, and hence

. . o 0
HC, andHC}3 can be comblned into a Hamiltonian cyclelonP(L(m’m k,1),,1) does not exist. m
L(m,n; k,1). For instance, Fig. 12(d) shows a Hamiltonian We then prove thall P(L(m, n: k, 1), s, t) does exist when
cycle of L(m, n; k, 1) Wh‘?”m‘k > .2’ n._l >2, a.”dk .2 2. (L(m,n; k1), s, t) does not satisfy conditions (F1), (F4), and
Thus, L(m, n; k, ) contains a Hamiltonian cycle in this case(FS) First we consider the case that-k — 1 of 1 —1 — 1

It immediately follows from the above cases thal’ the following lemma.

L(m,n;k,l) contains a Hamiltonian cycle if it does nottemma 12. Let L(m,n;k,l) be a L-shaped supergrid
satisfy condition (F3). Thus, the theorem holds true. B graph, and lets and ¢ be its two distinct vertices such

The following lemma shows the necessary condition for
that HP(L(m,n; k,1), s, t) does exist.
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Fig. 14. (a) The horizontal separation @r{m, n;k,l) to obtain R, =
R(m — k,l) and Rg = R(m,n — I) under thatm — k = 1, and (b)-
(e) a Hamiltonian(s, t)-path of L(m, n;k,l) for m —k = 1, s € Ra,

(@)

Fig. 15. (a) and (c) The Hamiltonia(s, t)-path of Rg containing edge
(w, z) under thatn—k = 1 ands, t € Rg, and (b) and (d) the Hamiltonian
(s, t)-path of L(m,n;k,l) for (a) and (c) respectively, where bold solid
lines indicate the constructed Hamiltonidwm, ¢t)-path and® represents
the destruction of an edge while constructing a Hamiltor{igt)-path of
L(m,n; k).

Lemma 9, wherer—[ > 2, there exists a Hamiltonias, t)-
path P of R such that(w, z) € Ps. By Statement (3) of

andt € Rg, where bold solid lines indicate the constructed Hamiltoniaf®roposition 5, vertex can be combined into patf; to form

(s, t)-path.

that (L(m,n;k,l),s,t) does not satisfy condition§~1),
(F4), and (F5). Assume thatn — k = 1 orn—1 = 1.
Then, L(m,n; k,1l) contains a Hamiltoniar(s, ¢)-path, i.e.,
HP(L(m,n;k,l),s,t) does existitn—k=1orn—1=1.

Proof: We prove this lemma by showing how to con

struct a Hamiltoniarn(s, t)-path of L(m,n;k,1) whenm —
k =1orn—1[= 1. By symmetry, we assume that—k = 1.
We make a horizontal separation @rim, n;k,[) to obtain
two disjoint rectangular supergrid grapRs, = R(m — k,[)

a Hamiltonian(s, t)-path of L(m,n; k,1). The construction
of a such Hamiltoniars, t)-path of L(m, n; k, 1) is depicted

in Fig. 15. Notice that, in this subcase, we have constructed

a Hamiltonian(s, t)-path P such that an edgér,w) € P.
[ |
Next, we consider the case that—k > 2 amdn -1 > 2.
Notice that in this caséL(m,n;k,1), s,t) does not satisfy
conditions (F4) and (F5).

Lemma 13. Let L(m, n; k, 1) be aL-shaped supergrid graph
withm —k >2andn —1[1 > 2, and lets and ¢ be its two

distinct vertices such thdt_(m,n; k, 1), s, t) does not satisfy
condition (F1). Then, L(m,n; k,l) contains a Hamiltonian

andRs = R(m,n—I1) (see Fig 14(a)). Consider the following(s t)-path, i.e., H P(L(m, n; k,1), s, t) does exist.

cases:
Casel: s, (resp., t,) <l andt,(resp., s,) > [. Without

loss of generality, assume thaf < [ andt, > [. Letp €
V(Ry) andg € V(Rg) such thatp ~ ¢, p = (1,1), and
qg= 1,14+ 1)if t # (1,1l + 1); otherwiseq = (2,1 + 1).

Notice that, in this case, [V (R, )| = 1, thenp = s. Clearly,
s =(1,1). If I > 1ands, > 1, then(L(m,n;k,1),s,t)
satisfies condition (F1), a contradiction. ConsidBt,, s, p).
Sinces = (1,1) andp = (1,1), (Ra, s, p) does not condition
(F1). Consider( Rz, ¢, t). Condition (F1) holds, if
() k>1,n—1=1, andt # (m,n). If this case holds,
then (L(m,n; k,1), s, t) satisfies (F1), a contradiction.
(i) n—1l=2andg, =t, >m —k(=1). Since(¢, =1
andt, > 1) or (¢, = 2 andt = (1,1 + 1)), clearly
qw#tw ort, =g, = 1.

Proof: We will provide a constructive method to prove
this lemma. That is, a Hamiltonigg, ¢)-path of L(m, n; k, )
will be constructed. Sincev—k > 2, n—1 > 2, andk,[ > 1,
we get thatm > 3 andn > 3. Note thatL(m,n;k,l) is
obtained fromR(m,n) by removingR(k,[) from its upper-
right corner. Based on the sizes bfand [, there are the
following two cases:

Casel: k = 1 andl = 1. Let z be the only vertex in
V(R(m,n) — L(m,n;k,1)). Then,z = (m, 1) is the upper-
right corner of R(m,n). By Lemma 3, there exists a Hamil-
tonian (s, t)-path P of R(m,n). Let P = P| = z = P,.
Since N(z) forms a clique,end(Py) ~ start(Ps). Thus,
P, = P, forms a Hamiltonian(s, t)-path of L(m,n; k,1).
The construction of a such Hamiltonigr, ¢t)-path is de-
picted in Fig. 16(a).

Therefore,(Rg, q,t) does not satisfy condition (F1). Since Case2: k > 2 or [ > 2. By symmetry, we can only
(Ra,s,p) and (Rg,q,t) do not satisfy condition (F1), by consider that: > 2. Depending on the locations efandt,

Lemma 3 there exist Hamiltonigs, p)-path P, and Hamil-
tonian (¢, t)-path Pz of R, and Rg, respectively. Then,
P, = Pz is a Hamiltonian(s, ¢t)-path of L(m,n; k,). The
construction of a such Hamiltonigp, ¢)-path is depicted in
Figs. 14(b)—(e).

Case2: sy, t, > l. In this case] = 1 and [V (R.)| = 1.
Otherwise, it satisfies condition (F4). Let € V(R,),
w = (1,1 + 1), andz = (2,1 + 1). Consider(Rg,s,t).
If (Rg,s,t) satisfies condition (F1), thefL(m,n;k,1),s,t)
satisfies (F1), a contradiction. Als@Rgs, s,t) does not sat-
isfy condition (F2). Otherwise(L(m,n;k,l), s, t) satisfies
(F1) or (F5), a contradiction. Sin€ég, s, t) does not satisfy
conditions (F1) and (F2), by Lemma 3, whete-[ =1, or

we consider the following three subcases:

Case2.1: s;,t, < m — k. Let R be the graph with
V(R) = {v € V(L(m,n; k,1))|v, < m —k}. Then,R =
R(m — k,n) ands,t € R. Depending on whethefs, ¢} is
a vertex cut ofR, there are the following two subcases:

Case2.1.1:(m —k > 3) or (m —k = 2 and
[(sy # ty), (sy = t, = 1), 0r (s, = t, = n)]). In this
subcase{s, t} is not a vertex cut of?. We make a vertical
separation or.(m, n; k, 1) to obtain two disjoint rectangular
supergrid graphst, = R(m — k,n) andRg = R(k,n —1).
Consider(R,, s, t). Condition (F1) holds only ifn — k = 2
and2 < s, =t, < n—1. Sincesy # t,, sy =t, =1,

or s, =t, = n, it is clear that(R,,s,t) does not satisfy
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(a) (b)

(@ (e)

Fig. 17. The construction of Hamiltonigs, t)-path of L(m, n; k, [) under

Fig. 16. The construction of Hamiltonig(s, )-path of L(m, n; k, 1) under thatm —k >2,n —1 > 2,k > 2, andsg,te > m — k for (a)~(b)
thatm —k > 2andn — 1 > 2 for (@) k = 1 andl = 1, (b)—(c) k > (>1)or(l=1andm —k =2)), and (c)l =1 andm — k > 2, where
2, sz,te < m — k and {s,t} is not a vertex cut ofR with vertex set bold lines indicate the constructed Hamiltonign t)-path and® represents
(v € V(L(m,n: k. 1))Jve < m — k}, and (d)—(€)k > 2, su,ts < m — k  the destruction of an edge while constructing a Hamiltor(iayt)-path of

and {s,t} is a vertex cut ofR, where bold lines indicate the constructed? (1 7 K, ).

Hamiltonian (s, t)-path and® represents the destruction of an edge while
constructing a Hamiltoniaits, ¢t)-path of L(m, n; k,1).

L(m,n; k,1) in this subcase.

Case2.2.2:l = 1andm—k > 2. Letr = (m—k, 1)
condition (F1). Letw = (m — k,n), z = (m —k,n—1), andw = (m — k,2) be two vertices inL(m,n;k,1). We
and f = (m — k,n — 2). Also, assumg1,1) is the down- make a vertical separation oh(m,n;k,[) to obtain two
right corner ofR,,. Since(R.,, s, t) does not satisfy condition disjoint supergrid subgraph®s; = R(m/,n) and L, =
(F1), by Lemma 3 (wherR,, s, t) satisfies condition (F2)), L(m—m/,n;k,1), wherem’ = m—k—1; as depicted in Fig.
Lemma 7, and Lemma 9, we can construct a Hamiltoniav(c). Clearly,m —m’ =1 and(L,, s,t) lies on Case 2 of
(s,t)-path P, of R, such that edgéw, z) or (z, f) isin P,. Lemma 12. By Lemma 12, we can construct a Hamiltonian
By Lemma 1, there exists a Hamiltonian cycle of Rs such (s, ¢)-path P, of L,, such that edgér, w) € P,. By Lemma
that its one flat face is placed to fa¢g,. Then, there exist 1, there exists a Hamiltonian cyctés of Rsz such that its
two edgese; € Cg and (w, z) (or (2, f)) € P, such that one flat face is placed to fack,. Then, there exist two
e1 =~ (w, z) or e; = (2, f). By Statement (2) of Propositionedgese; € Cs and (r,w) € P, such thate; =~ (r,w).
5, P, andCs can be combined into a Hamiltonigs, ¢t)-path By Statement (2) of Proposition 52, and Cjs can be
of L(m,n; k,1). The construction of a such Hamiltonian patitombined into a Hamiltoniats, t)-path of L(m, n; k, ). The

is shown in Figs. 16(b)—(c). construction of a such Hamiltonian path is shown in Fig.
Case2.1.22m—k =2and2 <s, =t, <n—1.In 17(c).
this subcase{s, ¢} is a vertex cut ofR. If s, = ¢, <, then Case?2.3:s, < m—k andt, > m — k. We make

(L(m,n;k,1),s,t) satisfies condition (F1), a contradictiona vertical separation oi(m,n;k,[) to obtain two disjoint
Thus,s, = t, > I. Letw = (1,1 + 1), 2 = (2,1 + 1), rectanglesR, = R(m’,n) and Rg = R(k,n — 1), where
and f = (3,1 + 1). We make a horizontal separation onn’ =m — k. Letp € V(R,), g € V(Rg), p ~ ¢, and
L(m,n;k,l) to obtain two disjoint rectangular supergrid
graphsRs = R(m — k,l) andR, = R(m,n —1[). A simple
check shows thatR,, s,t) does not satisfy condition (F1).
Since(R,, s,t) does not satisfy conditions (F1), by Lemma
7 and Lemma 9, we can construct a Hamilton{ary)-path
P, of R, such that edgéw, z) or (z, f) is in P, depending
on whethes,t} = {(1,1+1), (2,I+1)}. First, letl > 1. By
Lemma 1, there exists a Hamiltonian cydg of Rz such
that its one flat face is placed to faég,. Then, there exist
two edgese; € Cs and (w, z) (or (z, f)) € P, such that
e1 = (w,z) or e; = (z, f). By Statement (2) of Proposition
5, I, andC; can be combined into a Hamiltoniéh, 1)-path et k. s ) and (R, ¢.t). Condition (F1) holds, if
of L(m,n; k,1). The construction of a such Hamiltonian patrzm k=2ands, =p, =n—1)or (k=2 andg, =
is depicted in Fig. 16(d). Next, lét= 1. Then,|V(Rg)| = 2 b = n—1) Thisy is irr? ossible, because f, — v
and Ry consists of only two verticeg andq with p, < ¢,. ¥ ' P ! v = Iy
B y €8 andgq Pe < 4w ' 1 thens, = n andt, = n. Therefore,(R,, s, p) and
Since(p, q) = (w, z) or (p,q) = (z, f). By Statement (4) of ’ y = 1 by = N o, 5, P
Pro osi'Eion 5 eéi €p,q) i’n R ca{n be combined into path (F5,g,t) do not satisfy condition (F1). By Lemma 3, there
P » €09€D, 4) A Pah st Hamiltonian(s, p)-path P, and Hamiltoniar(g, t)-path
P, to form a Hamiltonian(s, ¢)-path of L(m,n; k,1). The Py of R, and Ry, respectively. ThenP, — P forms a
construction of a such Hamiltoniafs, t)-path is shown in HBamiItor(ﬁan(s t)/f[,)ath of L(m e k ) “ ’
Fig. 16(e). e ) .
'9- 16(e) 2 9 d he si We have considered any case to construct a Hamiltonian
_dCaS(; ¢ ﬁw’t? - m= k.bBase ' on the size G We ( 1)-path of L(m,n; k,1) whenm — k > 2, n—1 > 2, and
consider the following two subcases: (L(m,n;k,1),s,t) does not satisfy condition (F1). Thus, the
Case2.2.1l: (>1)or(l =1andm —k =2). A |emma holds true. =
Hamiltonian (s, ¢)-path of L(m,n; k, 1) can be constructed i jmmediately follows from Lemmas 11-13 that we get
by similar arguments in proving Case 2.1.2. Figs. 17(a)-()e following theorem.
depict the construction of a such Hamiltonién ¢)-path of

p = (m/,n) and
g=(m'+1,n), if s# (m/,n) and t # (m' + 1,n);
p=(m',n—1) and
g=(m'+1,n-1), if s=(m/;n)andt=(m+1,n);
p = (m/,n) and
g=m +1,n—1), if s# (m',n)and t = (m' +1,n);
p=(m';n—1) and

=

m' +1,n), if s=(m/,n) and t # (m' +1,n).
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Fig. 18. The longests, ¢)-path for (a) (UB1), (b) (UB2), (c) (UB3), and

(d)—(f) (UB4), where bold lines indicate the constructed longest)-path. F19: 19. The longests, t)-path for (a) (UBS), and (b)~(g) (UB6), where

bold lines indicate the constructed longést¢)-path.

Theorem 14. Let L(m,n;k,l) be a L-shaped supergrid
graph with verticess and ¢. Then, L(m,n; k,l) contains
a Hamiltonian (s, t)-path if and only if(L(m,n;k,1), s, t)
does not satisfy condition&1), (F4), and (F5).

if s,,t, > [; otherwisen’ = min{s,,t,} — 1 (see
Figs. 18(d)—(f)).
(UBS)Ifm—k=1,k>1(m>2),s=(1,14+1),
andt = (2,1 + 1), then the length of any path
betweens and ¢ cannot exceed.((, s, t), where

V. THE LONGEST(s, t)-PATH ALGORITHM G’ = R(m,n — 1) (see Fig. 19(a)).

It follows from Theorem 14 that if(L(m,n;k,1),s,t) (UBB)If (m—k=2,1>1,and2<s, =t, <n-—1),
satisfies one of conditions (F1), (F4), and (F5), then (m=2n—-1>2andl+1<s,=t, <n—1),
(L(m,n;k,1),s,t) contains no Hamiltoniargs, t)-path. So or (n—1=2k>1andm—k+1< s, =
in this section, first for these cases we give upper bounds t, < m—1), then the length of any path between
on the lengths of longest paths betweeandt. Then, we and¢ cannot exceethax{L(G1, s,t), L(Ga, s, 1)},

show that these upper bounds equal to the lengths of longest whereG; and G- are defined in Figs. 19(b)—(g).
paths betweers and¢. Recall thatL(G, s,t) denotes the

length of longest(s, t)-path in G, and the length of a path ~ Proof: For (UB4), letw = (1,1) if s,,t, > I; otherwise
is the number of vertices in the path. In the following, w& = min{s,¢,}. Sincew is a cut vertex, hence removing
will use U (G, s, 1) to indicate the upper bound on the lengtiv clearly disconnects.(m,n;k,l) into two components,
of longest (s, t)-paths inG, where G is a rectangular or @hd & simple path betweenand ¢ can only go through
L-shaped supergrid graph. Notice that the isomorphic cagescomponent that contains and ¢, let this component
are omitted. Depending on the sizesf— k andn — {, De G’. Therefore, its length cannot exceédG’, s, ). For
we provide the following two lemmas to compute the uppdk/B5). consider Fig. 19(a). Sincgs, ¢} is a vertex cut of
bounds when(L(m,n; k,1), s, t) satisfies either condition L(m,n; k1), the length of any path betweerandt cannot
(F1) or (F4). exceedmax{3, L(G',s,t)}. Sincen — [ > 1 andm > 2, it
follows that |[V(G’)| > 3. Moreover, sinceL(G’,s,t)| <
Lemma 15. Letm —k =n —1 =1andl > 1. Then, the |1/ (G| its length cannot exceed(G', s,t). For (UB6),
following implications (conditions) hold: removings andt clearly disconnectd.(m, n; k, 1) into two
(UB1)If s,,t, <, then the length of any path between components?; andGs. Thus, a simple path betweerand
andt cannot exceedt, — s,| + 1 (see Fig. 18(a)). ¢ can only go through one of these components. Therefore,
(UB2)If s, <1 andt, > 1, then the length of any pathits length cannot exceed the size of the largest component.
betweens and ¢ cannot exceed — s, + ¢, (see ™
Fig. 18(b)). We have computed the upper bounds of the longesb-
(UB3)If s, =t, = 1, max{sy,t,} =n, and[(k > 1) or paths when(L(m,n;k,1),s,t) satisfies condition (F1) or
(k =1 and min{s,,t,} > 1)], then the length of (F4). The following lemma shows the upper bound when
any path betweerand¢ cannot exceeft, — s, |42 (L(m,n;k,1),s,t) satisfies condition (F5).

(see Fig. 18(c)). - .
. _ _ Lemma 17. If (L(m,n;k,1),s,t) satisfies conditior(F5),
Proof: Sincen—1 = m—Fk = 1, there is only one single then the length of any path betweerand ¢ cannot exceed

path betweers andt that has the specified. B g —kl—1.
Lemma 16. Let n — [ > 1. Then, the following implications Proof: Consider Fig. 20. We can easily check that
(conditions) hold: the length of any path betweem and ¢t cannot exceed
(UB4)If m —k=1,1>1,and|(s,,t, >l and {s,t} is L(G1,s,p)+ L(Ga,q,t) = mn — ki — 1. [
not a vertex cut (s, < ! andt, > 1[), or (¢, <! It is easy to show that anyL(m,n;k,1),s,t) must
and s, > )], then the length of any path betweersatisfy one of conditions (L0), (UB1), (UB2), (UB3),
s and ¢ cannot exceed.((,s,t); where G’ = (UB4), (UB5), (UB6), and (F5), where (LO) is defined as

Lim,n—n';k,l'yandl’ =1—n'/, andn’ =1 —1 follows:
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rel iz 4::1 sef Case 3: condition (UB5) holds. In this casdgs,t} is a

SIE yan ,Ii y "'i . vertex cut of L(m, n; k,1) (see Fig. 19(a)). By Lemma 16,
(a) (b) (©) U(L(m,n;k,l),s,t) = L(G', s,t), whereG' = R(m,n —1)

is a rectangular supergrid graph. Since l > 1, s = (1,1 +
1), andt = (2,1 + 1), (G’,s,t) does not satisfy condition
(F1). Thus, by Lemma 3(G’, s,t) contains a Hamiltonian
(s,t)-path.

Case 4: condition (UB6) holds. In this cases,t} is
a vertex cut ofL(m,n;k,1) (see Figs. 19(b)—(g)). Then,
(LO) (L(m,n;k,l),s,t) does not satisfy any of removings andt splits L(m,n;k,1) into two components

Fig. 20. The longests, t)-path when condition (F5) holds, where bold
lines indicate the longegts, ¢)-path.

conditions (F1), (F4), and (F5). G| andGY. Let G; = G U {s,t} andGy = G4 U {s,1}.
Thus,

If (_L(m,n;k,l), s, 1) satisfies (LO), ther/ (L(m,n; k, 1), o if m—k=2ands, =t,, thenG; = R(m—k, s,) and
s,t) is mn — kl. Otherwise, U(L(m,n;k,l),s,t) can Gy = L(m,n — s, + 1;k,1 — s, + 1) (see Figs. 19(b)
be computed by using Lemmas 15-17. So, we have the 4nq 19(c)).
following formula of upper bounds: o it m—k=1andm =2, thenG, = L(m, s,; k,1) and
. G2 = R(m,n — s, + 1) (see Figs. 19(d) and 19(e)).
U(L(man;kal)asat): ) o if n—l:2andsw :tw,thenGl :L<S$,7’L; sl«—(m—

|ty — sy +1, if (UB1) holds; k),l) andGy = R(m — s, + 1,n — 1) (see Figs. 19(f)

n— Sy + s, if (UB2) holds; and 19(q)).

[ty = sy| +2, if (UB3) holds; Then the path going through vertices of the larger sub-

L(G', s,t), if (UB4) or (UB5) holds; graph betweenG:; and G» has the length equal to

max{L(Gh,,1), L(Ga, 5,6)}, if (UB6) holds: U(L(m.n:k,1),s,1). The longest(s, t)-path in each sub-

. . . graph computed by Lemma 3, 12, 13, or Case 5; as depicted

mn — kl — 1, if (F5) holds; oo

) in Figs. 19(b)—(g).
mn — ki, if (LO) holds.

Caseb5: condition (F5) holds. In this casep — k = 1,
Now, we show how to obtain a longe§t, t)-path forL- n —1 = 2,1 =1, k > 2, and {s,t} = {(1,2),(2,3)} or
shaped supergrid graphs. Notice that(if(m,n;k,l),s,t) {(1,3),(2,2)} (see Fig. 13(d)). Consider Fig. 20. By Lemma

satisfies (LO), then by Theorem 14, it contains a Hamiltoniatv, U(L(m,n; kl),s,t) = ﬁ(Gl,s,p) + ﬁ(Gz,q,t), By

(s, t)-path. Theorem 6, there exist a longgst p)-path P; and longest
Lemma 18. If (L(m,n; k,1), s, t) satisfies one of the condi- (g,t)-path P, of Gy and Go, respectwely. Thenfy = P,
tions (UB1), (UB2), (UB3), (UB4), (UBS), (UB6), and (F5), forms a Hamiltonian(s, t)-path of L(m, n; k,1). |
thenﬁ(L(m,n; k1), 5,t) = U(L(m,n; k1), s,1). It follows from Theorem 14 and Lemmas 15-18 that the

following theorem concludes our result.
Proof: Consider the following cases: . )
Casel: conditions (UB1), (UB2), and (UB3) hold. Clearly Theorem 19. Given aL-shaped supergrid.(m, n; k, 1) and

the lemma holds for the single possible path betweand WO distinct vertices andt in L(m,n; k,1), a longests, ¢)-
t (see Figs. 18(a)—(c)). path can be computed i@(mn — ki)-linear time.

_Case2: condition (UB4) holds. Then, by Lemma 16, The linear-time algorithm is formally presented as Algo-
U(L(m,n;k,1),s,t) = L(G', s, t). In this caseG" is aL-  yithm 1.
shaped supergrid graph. There are two subcases:
Case?2.1: (sy(resp., t,) < I andt,(resp., s,) > 1)
or (sy,ty, > land[(n—1 > 2)or(n—-1 = 2and VI. CONCLUDING REMARKS
{s,t} #{(1,n—1),(2,n)} or {(1,n),(2,n— 1)})]). First,
let s, (resp., t,) < ! andty(resp., s,) > [. Without loss Based on the Hamiltonicity and Hamiltonian connectivity
of generality, assume that, < [ andt, > [. Consider of rectangular supergrid graphs, we first obtain two Hamil-
(G', s,t) and see Fig. 18(e). Thets’ = L(m,n —n'; k,1’), tonian connected properties of rectangular supergrid graphs.
wheren’ = s, —1 andl’ =1 —n’. Sinces, = 1 in G', Using the Hamiltonicity and Hamiltonian connectivity of
t, > 1, andn—n’ > 2, it is obvious thatG’, s, t) does not rectangular supergrid graphs, we praeshaped supergrid
satisfies conditions (F1), (F4), and (F5). Now, dgtt, > [. graphs to be Hamiltonian and Hamiltonian connected except
Then,G' = L(m,n —n’; k,l') satisfies that’ =1 — 1 and one or three conditions. Furthermore, we present a linear-
" = 1. Consider Fig. 18(d). Since —n’ — 1’ > 2,1’ =1, time algorithm to compute the longeét, t)-path of aL-
{s,t} is not a vertex cut, ands,t} # {(1,n —1),(2,n)} shaped supergrid graph. The Hamiltonian cycle problem on
or {(1,n),(2,n — 1)}, (G',s,t) does not satisfy conditions solid grid graphs was known to be polynomial solvable.
(F1), (F4), and (F5). Thus, by Theorem (@', s, t) contains However, it remains open for solid supergrid graphs in which
a Hamiltonian(s, t)-path. there exists no hole. This result can be regarded as the
Case2.2:s,,t, > 1, n—1=2,and{s,t} = {(1,n — first attempt for solving the Hamiltonian and longést)-
1),(2,n)} or {(1,n),(2,n — 1)}. In this subcase(G’,s,t) path problems on solid supergrid graphs, whérshaped
satisfies condition (F5). Hencé’, s, t) lies on Case 5 (see supergrid graphs form a subclass of solid supergrid graphs.
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Algorithm 1: The longest(s, ¢t)-path algorithm

[17]

Input: A L-shaped supergrid graph(m, n; k, 1) with

Output: The longest(s, t)-path.

mn > 2, and two distinct vertices andt in

L(m,n; k,1). [18]

Method:

1if (m—k=1orn—1=1)and (L(m,n;k,1),s,t)
does not satisfy conditions (F1), (F4), and (F&}@n

[19]

[20]

output HP(L(m,n;k,l),s,t)) constructed from

Lemma 12;

[21]

/I construct Hamiltoniar(s, t)-path whenm — k = 1 or

n—I1l=1 [22]

2. if (m—k>=2andn—1>2)and (L(m,n;k,1),s,t)

does not satisfy conditions (F1), (F4), and (F&}@n

(23]

output HP(L(m,n;k,l),s,t)) constructed from

Lemma 13;

[24]

/I construct Hamiltoniar(s, t)-path whenm — k£ > 2 and

n—1>2 [25]

3. if (L(m,n;k,1),s,t) satisfies one of conditions (F1),
(F4), and (F5)then output the longests, t)-path

based on Lemma 18.

[26]

/I construct the longedts, t)-path whenL(m, n; k,1) contains

no Hamiltonian(s, ¢)-path

(1]

(2]
(31

(4]

(5]

(6]
(7]

(8]
El

[10]

(11]

[12]

(13]
[14]

[15]

[16]

[27]

(28]
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