
Effect of Architecture in Recurrent Neural
Network Applied on the Prediction of Stock Price

Zahra Berradi, Mohamed Lazaar, Hicham Omara, Oussama Mahboub

Abstract—The recurrent neural network is generally utilized
in an assortment of areas, such as pattern recognition, natural
language processing and computational learning. Time series
prediction is one of the most challenging topics for many years
due to its application in finance and decision making. This
article centers chiefly on the methods and techniques of fore-
casting future prices of two stocks: IAM.PA and ORA.PA. An
experimental investigation is grounded on two years of historical
information. Furthermore, the statistics of the stocks and the
predictions are made for 22 days in advance. The prediction
performance compares three approaches of the recurrent neural
network: Elman recurrent neural network in the first stage,
Long Short-Term Memory recurrent neural network for the
next phase, and Gated Recurrent Unit in the third phase. The
article aims to accommodate a comparative analysis among
these three models based on mean square error, time per step,
memory and the number of hidden nodes required for excellent
accuracy.

Index Terms—recurrent-neural-networks, forecasting-stock-
prices, long-short-term-memory, gated-recurrent-units

I. INTRODUCTION

FORECASTING stock price is a technique used to have a
clear vision about the future price based on the previous

statistics of the stock. The stock market is considered as a
non-linear dynamic system. Though, every investor desires
a model to guess the future stock values to help him make
appropriate decisions.

Numerous analysis methods have been developed to cal-
culate stock prices. Moreover, various statistical models for
forecasting stocks are available to decide the right time to sell
or hold. Many factors have influenced the forecasting of the
stock market. Among all, the most common technical factors
are opening value, high value, low value, closing value, and
volume.

In the journey to have a suitable prediction of time
series data, the researchers concentrate on two major phases
namely: the choice of features and the best models. Some
of them make efforts to add new features that affect the
stock prices such as using twitter data [1], [2], [3], or reduce
the number of technical features (if they are too many)
like the work of [4] who used 60 financial and monetary
features. Later on, further reducing them to 11. They opted
for three-dimensionality decrement methods. These included
methods of Principal Component Analysis (PCA), Fuzzy

Manuscript received July 28, 2019; revised February 9, 2020.
Z. Berradi is with the National School of Applied Sciences, Abdelmalek

Esaadi University, Tetouan, Morocco. e-mail: (berradi.zahra@gmail.com).
M. Lazaar is with the National School of Computer Science and Sys-

tems Analysis, Mohammed V University, Rabat, Morocco. e-mail: (mo-
hamed.lazaar@um5.ac.ma).

H. Omara is with the Faculty of Sciences of Tetouan, Abdelmalek Essaadi
University, Tetouan, Morocco. e-mail: (hichamomara@gmail.com).

O. Mahboub is with the National School of Applied Sciences, Ab-
delmalek Esaadi University, Tetouan, Morocco. e-mail: (mahboubous-
sama@gmail.com).

Robust Principal Component Analysis (FRPCA), and Kernel-
based Principal Component Analysis (KPCA).

The researchers used many linear and non linear models
for the prediction of time series data. Some linear models
include the Autoregressive (AR) model and the Autoregres-
sive Integrated Moving Average (ARIMA). Other non-linear
models such us Autoregressive Conditional Heteroscedastic-
ity (ARCH), Generalized Autoregressive Conditional Het-
eroscedasticity (GARCH), artificial neural networks, Support
Vector Machine (SVM), Random Forest (RF) as well as
Support Vector Regression (SVR).

Some researchers have tried to propose a suitable com-
bination of the existing models like [5] who offers an
approach which consists of the fusion of many models
involving Support Vector Regression (SVR) and Artificial
Neural Network (ANN), Random Forest (RF) and SVR
resulting into SVR-ANN, SVR-RF and SVR-SVR models.
On the other hand, [6] have proposed an integrated approach
based on Genetic Fuzzy Systems (GFS) and Artificial Neural
Networks (ANN).

Other researchers [7] have proposed a hybrid methodology,
which is a fusion of Empirical Mode Decomposition with the
exponential smoothing method. [8] has proposed a model
based on the chaotic mapping, firefly algorithm, and support
vector regression (SVR). Another approach was developed
by [9] for the multilayer perceptron; they used the Genetic
Algorithm (GA) to obtain the optimal architect of MLP.
Another technique was further worked on and improved by
[10], called Probabilistic Self-Organizing Map (PRSOM).
They proposed an architecture optimization model that is
combined integer nonlinear optimization model under linear
constraints, resolved by the genetic algorithm. The applica-
tion of ANN is also extending to medical field like the work
of [11], they proposed an artificial neural network to identify
the thermal neutrons flux to treat brain tumors. [12] focused
on the theoretical part of ANN, they studied the existent
and exponential stability of the periodic solution for fuzzy
cellular neural networks with time-varying delays. While [13]
adopted Hidden Markov Model (HMM) technique to forecast
stock price for some airline companies.

The time for the prediction depends on the need of
the forecaster: microseconds, seconds, hours, days, weeks,
months, or years (in rare cases). There are numerous recur-
rent neural networks used by the researchers to predict the
prices such us Elman recurrent neural network, long short-
term memory and gated recurrent unit. The simplest one
is Elman recurrent neural network, whereas the most used
ones to characterize long-term memory are the long short-
term memory neural network (LSTM) and gated recurrent
neural network (GRU). Other architectures, such us Deep
Belief Network (DBN), are used in the case of short-term
forecasting.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_11

Volume 47, Issue 3: September 2020

__

This work aims to compare the most used recurrent neural
networks for time series data problem and to select the best
ones for forecasting the stock prices. The comparison will be
made based on the accuracy of models using the same dataset
of IAM.PA stock and with the same number of epochs. The
primary purpose is to achieve as much efficiency as possible
by choosing the optimal parameters.

The paper is organized into different sections. The first sec-
tion is dedicated to introduction, while the second section is
about related works. In the third section, the models ERNN,
LSTM and GRU are explained with their architectures. In the
fourth section, the three methods of RNN are compared for
forecasting stock prices of IAM.PA then the same optimal
parameters are used to forecast the stocks IAM.PA and
ORA.PA for 22 days. In the last section, the conclusion is
drawn.

II. RELATED WORK

Predicting the stock price has been one of the most
overwhelming tasks that keep the research in continuous
improvement. Many efforts have been made to find the best
existing methods in the literature such as Fuzzy system, re-
current neural network, ARIMA, ARMA, Genetic Algorithm,
etc. Currently, Neural network is the most used one because
it has the ability to adapt to a dynamic system that change
continuously such us the stock market.

A considerable amount of literature has been published on
the predicting of the stock prices. [14] compared Probabilis-
tic Neural Networks (PNN) and Support Vector Machines
(SVM) to predict the stock market using economic and tech-
nical Information. The results show that PNN gives the best
accuracy with technical indicators while SVM gives the best
results using economic features. [15] explored the power of
using SVM, Multi-Layer Perceptron (MLP), and regression
to predict the price of S&P 500. They developed SVM
model with RBF kernel model yielded a good prediction
with respect to the regression and ANN models. [16] selected
25 papers satisfying certain criteria. His work assumed that
the use of ANN combined with other machine learning
techniques yields better results. [17] proved that ARIMA
model yields good results for forecasting Gold prices. On the
other hand, the prediction of the Silver price using ANN gave
better results. [18] compared two different models of neural
network; LSTM and DNN. The work proves that LSTM and
DNN both give good accuracy whereas LSTM outperform
DNN in term of weekly forecasting. [19] surveyed more
than 100 related published articles that focus on neural and
neuro-fuzzy techniques applied to forecast stock market,
they concluded that ANN yields better results with higher
accuracy. For short time forecasting, [20] compared five types
of recurrent neural networks; their works show that ERNN
and Echo State Network (ESN) are more suitable for short
time forecasting than LSTM and GRU. [21] suggested LSTM
model and emotional analysis model to predict the stock
price of Shanghai.

In this paper, we suggest techniques to choose the best
parameters used in the Architect of the recurrent neural
network. Then, we provide a comparison of three types of
recurrent neural network namely ERNN, LSTM, and GRU
based on MSE. Finally, we give the prediction of IAM.PA
and ORA.PA to forecast the closing price for 22 days.

Fig. 1. A recurrent neural network.

III. NEURAL NETWORK MODELS

In this section, three architectures of deep learning namely
Elman recurrent neural network (ERNN), long short-term
memory recurrent neural network (LSTM) and gated recur-
rent unit (GRU) are described.

A. Elman recurrent neural network

The simple recurrent neural network also knows as Vanilla
recurrent neural network or Elman recurrent neural network,
[22], considered to be the most basic type of the recurrent
neural network. It contains an input layer, hidden layer, and
output layer. In each layer, there is at least one node, and
each node is connected to the previous nodes with edges
called weights. Training recurrent neural network consists of
two parts: going forward and going backward.
Going forward: on time t; the network processes the input
vector, updates its hidden state via an activation function and
uses it to predict its output. On time t+ 1, the hidden layer
receives the inputs vector and the outputs of the hidden layer
from the last time step, as shown in figure 1.

More formally, given a sequences xt of N dimension and
t = (1, ..., T). The RNN updates its recurrent hidden state
by the equation

ht = f(Wxt + Uht−1 + b) (1)

Where f is a nonlinear function such as logistic sigmoid or
a hyperbolic tangent. b is bias.W and U are the matrices
which represent input and hidden weights respectively. The
output Ot is calculated using this equation

Ot = g(V ht + c) (2)

Where g is usually linear transformation, c is bias, and V
is the matrix of output weight. In the process of going
forward, the model initializes the weights to an identity
matrix. After that, it calculates the value of the hidden unit
and then calculates the error function (or the loss function)
that depends on the error between the estimated output and
the target. The loss function that we used in this work is
Mean Square Error (MSE) and Mean Absolute Error(MAE):

EMSE =
1

T
ΣT

i=1|Ot − Tt|2 (3)

EMAE =
1

T
ΣT

i=1|Ot − Tt| (4)

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_11

Volume 47, Issue 3: September 2020

__

Where Ot and Tt are the estimated output and the actual
output respectively.
Going backward: to compute the loss function over the
entire training set to perform a single update of the network
parameters is very expensive regarding time and memory. A
famous approach to solve this problem is by computing the
gradient over mini-batches of the training data. This method
called Stochastic Gradient Descent (SGD). The update equa-
tion is:

Wk+1 = Wk + η∇L(Wk) (5)

Where η is the learning rate. And Wk is the update weights.
The convergence of SGD is slow. A good solution for this
issue has been addressed by several contributions proposed
in the literature for updating the network parameters. In
the following, three effective strategies are described in the
literature to accelerate the convergence of SGD.
Nestrov momentum: the update equation is

Wk+1 = Wk + µWk−1 − η∇(Wk + µWk−1) (6)

where Wk is the previous update of Wk+1, µ is a hyperpa-
rameter, a common choice is to setµ = 0.9 .
RMSprop: proposed by [23]. The update equation is:

W
(i)
k+1 = W

(i)
k − ηV

(i)
k

Such us

V
(i)
k =

{
(1− δ)W (i)

k−1 + δ∇L(W
(i)
k)2 if ∇L(W

(i)
k) > 0

(1− δ)W (i)
k−1 outherwise

The value of δ is in between [0, 1] andη = 0.01 .
Adam: This algorithm, for efficient stochastic optimization,
was proposed by [24]. The update equation of Adam is:

Wk+1 = Wk +
η√
v̂k + ε

m̂k

Such us:
m̂k =

mk

1− βk
1

v̂k =
vk

1− βk
2

Where mk update biased first-moment estimate such as:
mk = β1mk−1 + (1 − β1)∇L(W

(i)
k) and vk update biased

second raw moment estimate such as:vk = β2vk−1 +

(1 − β2)∇L(W
(i)
k)2 Where the default values of the hyper

parameters are β1 = 0.9, β2 = 0.999 and ε = 10−8. The
work of [25] mentioned that while training RNNs, the model
forgetting the information if the model trained for a long
time. To solve this problem, [26] propose an advanced hidden
unit that can preserve the memory for a long time.

B. LSTM recurrent neural network

LSTM can be interpreted as a variation or as an extension
of ERNN. The LSTM was invented to solve the problem
of overfitting of the simple RNN. An LSTM architecture
composed of the input layer, the hidden recurrent layer, and
the output layer. Each unit in hidden layer have three input
(previous hidden value Ht−1, previous cell memory value
Ct−1 and actual input variable xt). Inside the hidden unit
there is four gate (input gate It, forget gate Ft, new memory
gate Mt and output gate Ot). Their role is to control the
flow of the information, keep the important information and
forget the unnecessary information as shown in figure 2.

O H

M

F

I

C

Hidden
Unit

Hidden
Unit

Hidden
Unit

Input

Output Output Output

InputInput
x

y y y

xx

C

H

t-1

t-1

t-1
t

t t+1

t+1

C

Ht

t

t-1

Fig. 2. Long short term memory recurrent neural network.

Unlike the recurrent unit which simply computes a
weighted sum of the input signal and applies a nonlinear
function, each LSTM hidden unit calculates her hidden value
by using all the gates with a specific combination

Ht = Ottanh(Ct) (7)

Where Ot is an output gate that modulates the amount of
memory content on time t, and Ct is cell memory. The output
gate is computed by

Ot = σ(Woxt + UoHt−1) (8)

Where σ is a logistic sigmoid function that define by σ(x) =
1

1+exp(−x) . Wo and Uo is the weight matrix. The memory cell
Ct is updated by partially forgetting the existing memory and
adding a new memory content Mt

Ct = FtCt−1 + ItMt (9)

Where the new memory content is

Mt = tanh(Wmxt + UmHt−1) (10)

The extent to which the existing memory is forgotten is
modulated by a forget gateFt.

Ft = σ(Wfxt + UfHt−1) (11)

The degree to which the new memory content is added to
the memory cell is modulated by an input gate It:

It = σ(Wixt + UiHt−1) (12)

C. Gated recurrent neural network

A gated recurrent unit (GRU) was proposed by [27] and
there is another variation of GRU proposed by [28];[29];
[30]. The simple RNN calculates the next hidden layer
directly. Similarly to the LSTM unit, the GRU has gating
units that modulates the flow of information inside the unit
as shown in figure 3.

In the first step, each unit calculates the update gate zt
based on the current state and the previous hidden states:

zt = σ(Wzxt + Uzht−1) (13)

Where σ is a sigmoid function. In the second step, it
calculates the reset gate rt but with different weight

rt = σ(Wrxt + Urht−1) (14)

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_11

Volume 47, Issue 3: September 2020

__

Input

X
t-1

Output

Input

X

Output

Input

X

Output

t t+1

h h h
t+1tt-1

Z

r

m m m

r r

Z Z

Fig. 3. Gated recurrent unit.

In the third step, it calculate the new memory content mt

mt = tanh(Wxt + rt ◦ Uht−1)

And finally, it calculate the next hidden state ht

ht = zt ◦ ht−1 + (1− zt) ◦mt (15)

Where ◦ is an element wise multiplication.

IV. RESULTS AND DISCUSSION

The dataset was collected over two years, from 20th

February 2017 to 20th February 2019, in order to predict
the closing price of the following month: 21st February
2019 to 21st March 2019. The data used in this article
are taken from the website ”www.finance.yahoo.com”.
The different values as a result of the different features
can reduce the effectiveness of training procedures,
however, this problem was resolved by data normalization.
The data contained several missing values that required
preprocessing; subsequently, these missing values are
replaced by the average value. After the preprocessing, the
dataset of stock, IAM.PA, was used as a tool to choose
the best optimizer and the number of hidden nodes. Then,
these parameters were employed in the architect of the
neural network. After that, a comparison was made among
ERNN, LSTM and GRU, based on the MSE to forecast
the closing price of IAM.PA and ORA.PA for 22 days.
Table I demonstrates that the number of features used in
this experiment are 6, based on the work of [31]. 20% of
IAM.PA dataset was used as the testing sample and 80%
was used as the training sample, as shown in figure 4.

TABLE I
THE 6 FEATURES USED IN THE FORECASTING

Features The source
Opening price from the data

lowest price from the data

high price from the data

volume from the data

SMA20t SMA20 =
pt−1+...+pt−20

20

where pt is the closing price

EMA20t (pt−1 × 0.3) + EMA20t−1 × 0.7

Download dataset from yahoo website

Calculate SMA20 and EMA20

Features normalisation between [0;1]

Split the data to two part:
 train (80%)+test(20%)

Forecasting

Training Data Testing Data

Training process

Accuracy

Preprocessing

Fig. 4. Flowchart used in this work

The architect of all Recurrent Neural Network was formed
by six input nodes in the input layer, 18 hidden nodes in
the hidden layer, and one output node in the output layer.
The model ERNN uses the activation function tanh. The
number of epochs employed were 100. The output layer is
a fully connected layer with one node and one output via a
linear activation function. The models LSTM and GRU use
tanh as the activation function, and sigmoid as the hidden
activation function. To find the best parameters that can
be used in the previous architects, the training dataset of
IAM.PA is employed to select the most fitting optimizer and
the optimal number of nodes. The optimizers used in this
simulation are Adam, RMSprop, and Nestrov momentum.

TABLE II
MEAN SQUARE ERROR USING THREE DIFFERENT OPTIMIZERS FOR THE

MODELS ERNN ,LSTM AND GRU.

ERNN LSTM GRU

Nestrov momentum(Train data) 0.015699 0.036332 0.026128
Nestrov momentum(Test data) 0.009602 0.028055 0.035105

RMSprop (train data) 0.019797 0.020871 0.019162
RMSprop (Test data) 0.014243 0.016683 0.014584

Adam (train data) 0.013381 0.016036 0.014999
Adam (test data) 0.008851 0.015142 0.011339

Table II shows the Mean square Error (MSE) obtained

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_11

Volume 47, Issue 3: September 2020

__

TABLE III
TIME/STEP USING THREE DIFFERENT OPTIMIZERS FOR THE MODELS

ERNN, LSTM, AND GRU.

ERNN LSTM GRU

Nestrov momentum(Train) 236us/step 274us/step 256us/step
Nestrov momentum(Test) 291us/step 331us/step 425us/step

RMSprop (train data) 238us/step 297us/step 242us/step
RMSprop (Test data) 307us/step 286us/step 279us/step

Adam (train data) 208us/step 299us/step 243us/step
Adam (test data) 270us/step 290us/step 384us/step

by the three optimizers for the models ERNN, LSTM,
and GRU. There is a significant difference between the
MSE obtained by the training data using Adam optimizer
(0.013381 for ERNN, 0.016036 for LSTM and 0.014999
for GRU) and the MSE obtained by the other optimizers
(RMSprop and Nestrov momentum). Based on this result,
the chosen optimizer for RNN architect is Adam optimizer.

Table III shows the execution time for each step using
the three models. The execution time using the training data
of ERNN with the optimizer Adam is much better (208
us/step) compared to RMSprop (238 us/step) and Nestrov
momentum (236 us/step). For the LSTM, the execution
time is better using the Nestrov momentum optimizer (274
us/step) compared to RMSprop (297 us/step) and Adam(299
us/step). Finally, for the GRU, the optimizers RMSprop and
Adam almost have the same time execution (242 us/step
versus 243 us/step), while for Nestrov momentum, it’s (256
us/step). The major finding from table II and table III was
that the model ERNN with Adam optimizer has less MSE
with a suitable execution time compared to other models.

After selecting the best optimizer, it was necessary to know
the optimal number of hidden nodes in the hidden layer. The
number of nodes in the hidden layer was set in the previous
experiment to 18 nodes. So, to find the ideal number of
hidden nodes, the MSE error was calculated from using one
node to 100 nodes in the model ERNN with Adam optimizer.

As shown in table IV, the memory is increased by
increasing the number of hidden nodes, whereas the MSE
of the data shows fluctuations. These findings suggest that,
generally there are no specific number of nodes convenient
for all the models; only the experiment can help to choose
the right number of hidden nodes. As we can see from
table IV, the optimal number of hidden nodes are 20 because
it have the smallest MSE (0.00885), an average execution
time (270 us/step) with average memory. Returning to the
targets posed at the beginning of this paper, we are able to
say that the optimal architect of the RNN will be one input
layer with six nodes, one hidden layer with 20 nodes, one
output layer with one node, and with the Adam optimizer.
These parameters will be used in RNN architect to predict
the price IAM.PA and ORA.PA.

As shown in table V, the MSE of the stock ORA.PA is
quite the same for all the models. Whereas the MSE of

TABLE IV
MEAN SQUARE ERROR OF THE TEST DATA WITH DIFFERENT NUMBER OF

HIDDEN NODES FOR ERNN MODEL.

MSE Time/step Memory

1 0.009803 266 us/step 39

2 0.00811 262us/step 40

3 0.014136 260us/step 40

4 0.014118 257us/step 40

5 0.008434 332us/step 40

6 0.011303 267us/step 41

7 0.008969 291us/step 41

8 0.011881 272us/step 41

9 0.012049 321us/step 42

10 0.0118 291us/step 42

20 0.008851 270us/step 42
30 0.009449 375us/step 43

40 0.008294 618us/step 43

50 0.009227 305us/step 43

60 0.009543 298us/step 44

70 0.012283 340us/step 44

80 0.008369 359us/step 44

90 0.006329 334us/step 44

100 0.00933 404us/step 45

TABLE V
MEAN SQUARE ERROR OF THE THREE MODELS FOR THE IAM.PA AND

ORA.PA STOCKS

ERNN LSTM GRU

IAM.PA (train) 0.011474 0.014561 0.017307
IAM.PA (test) 0.015737 0.017323 0.022942

ORA.PA (train) 0.015919 0.016838 0.012966
ORA.PA (test) 0.008535 0.008632 0.006723

IAM.PA is the same for ERNN and LSTM but less effecient
using GRU campared to other models. From data in figure 5
and figure 6, it is apparent that the prediction is significantly
good for ORA.PA and IAM.PA for 22 days using the RNN
models.

2017-01
2017-04

2017-07
2017-10

2018-01
2018-04

2018-07
2018-10

2019-01
2019-04

Days

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

Pr
ic

es
 in

 D
ol

la
r

Usual price
ERNN
LSTM
GRU

Fig. 5. The prediction of IAM.PA using the models ERNN, LSTM, and
GRU for 22 days.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_11

Volume 47, Issue 3: September 2020

__

2017-01
2017-04

2017-07
2017-10

2018-01
2018-04

2018-07
2018-10

2019-01
2019-04

Days

12

13

14

15

16

Pr
ic

es
 in

 D
ol

la
r

Usual price
ERNN
LSTM
GRU

Fig. 6. The prediction of ORA.PA using the models ERNN, LSTM, and
GRU for 22 days.

V. CONCLUSION

The aim of the paper is to predict the stock prices of
IAM.PA and ORA.PA from Paris stock exchange (Euronext).
The stock prices of IAM.PA were used to determine the
optimal parameters to select the best optimizer and optimal
number of hidden nodes.

Three models were compared: ERNN, LSTM and GRU.
The predictions of IAM.PA and ORA.PA are quite impressive
because the MSE is too small for all the models, especially
ERNN. The RNN method is one of the most practical ways
to forecast the stock price due to its high accuracy.

REFERENCES

[1] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock
market,” Journal of computational science, vol. 2, no. 1, pp. 1–8,
2011.

[2] N. Oliveira, P. Cortez, and N. Areal, “The impact of microblogging
data for stock market prediction: using twitter to predict returns,
volatility, trading volume and survey sentiment indices,” Expert Sys-
tems with Applications, vol. 73, pp. 125–144, 2017.

[3] M. Skuza and A. Romanowski, “Sentiment analysis of twitter data
within big data distributed environment for stock prediction,” pp.
1349–1354, 2015.

[4] X. Zhong and D. Enke, “Forecasting daily stock market return using
dimensionality reduction,” Expert Systems with Applications, vol. 67,
pp. 126–139, 2017.

[5] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, “Predicting stock market
index using fusion of machine learning techniques,” Expert Systems
with Applications, vol. 42, no. 4, pp. 2162–2172, 2015.

[6] E. Hadavandi, H. Shavandi, and A. Ghanbari, “Integration of genetic
fuzzy systems and artificial neural networks for stock price forecast-
ing,” Knowledge-Based Systems, vol. 23, no. 8, pp. 800–808, 2010.

[7] M. Ismail and A. M. Awajan, “A new hybrid approach emd-exp
for short-term forecasting of daily stock market time series data,”
Electronic Journal of Applied Statistical Analysis, vol. 10, no. 2, pp.
307–327, 2017.

[8] A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi, and O. K. Hussain,
“Support vector regression with chaos-based firefly algorithm for stock
market price forecasting,” Applied soft computing, vol. 13, no. 2, pp.
947–958, 2013.

[9] M. Ettaouil, M. Lazaar, and Y. Ghanou, “Architecture optimization
model for the multilayer perceptron and clustering.” Journal of Theo-
retical & Applied Information Technology, vol. 47, no. 1, pp. 64–72,
2013.

[10] Z. En-Naimani, M. Lazaar, and M. Ettaouil, “Architecture optimization
model for the probabilistic self-organizing maps and speech com-
pression,” International Journal of Computational Intelligence and
Applications, vol. 15, no. 02, p. 1650007, 2016.

[11] J. E. Rivero, R. M. Valdovinos, E. Herrera, H. A. Montes-Venegas,
and R. Alejo, “Thermal neutron classification in the hohlraum using
artificial neural networks,” Engineering Letters, vol. 23, no. 2, pp.
87–91, 2015.

[12] J. Liu, Q. Zhang, and Z. Luo, “Dynamical analysis of fuzzy cellular
neural networks with periodic coefficients and time-varying delays,”
IAENG International Journal of Applied Mathematics, vol. 46, no. 3,
pp. 298–304, 2016.

[13] M. R. Hassan and B. Nath, “Stock market forecasting using hidden
markov model: a new approach,” pp. 192–196, 2005.

[14] S. Lahmiri, “A comparison of pnn and svm for stock market trend
prediction using economic and technical information,” International
Journal of Computer Applications, vol. 29, no. 3, pp. 24–30, 2011.

[15] A. F. Sheta, S. E. M. Ahmed, and H. Faris, “A comparison between
regression, artificial neural networks and support vector machines for
predicting stock market index,” Soft Computing, vol. 7, no. 8, pp. 55–
63, 2015.

[16] O. Ican, T. B. Celik et al., “Stock market prediction performance
of neural networks: A literature review,” International Journal of
Economics and Finance, vol. 9, no. 11, pp. 100–108, 2017.

[17] S. Kumar, “Prediction of gold and silver prices in an emerging econ-
omy: Comparative analysis of linear, nonlinear, hybrid, and ensemble
models,” The Journal of Prediction Markets, vol. 12, no. 3, pp. 63–78,
2019.

[18] D. Shah, W. Campbell, and F. H. Zulkernine, “A comparative study
of lstm and dnn for stock market forecasting,” pp. 4148–4155, 2018.

[19] G. S. Atsalakis and K. P. Valavanis, “Surveying stock market forecast-
ing techniques–part ii: Soft computing methods,” Expert Systems with
Applications, vol. 36, no. 3, pp. 5932–5941, 2009.

[20] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and
R. Jenssen, “An overview and comparative analysis of recurrent
neural networks for short term load forecasting,” arXiv preprint
arXiv:1705.04378, 2017.

[21] Q. Zhuge, L. Xu, and G. Zhang, “Lstm neural network with emotional
analysis for prediction of stock price.” Engineering Letters, vol. 25,
no. 2, pp. 167–175, 2017.

[22] J. L. Elman, “Language as a dynamical system,” Mind as motion:
Explorations in the dynamics of cognition, pp. 195–225, 1995.

[23] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[25] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 157–166, 1994.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[28] G. Chrupała, A. Kádár, and A. Alishahi, “Learning language through
pictures,” arXiv preprint arXiv:1506.03694, 2015.

[29] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv
preprint arXiv:1412.3555, 2014.

[30] W. Jozefowicz, R. Zaremba and I. Sutskever, “An empirical explo-
ration of recurrent network architectures,” International Conference
on Machine Learning, pp. 2342–2350, 2015.

[31] Z. Berradi and M. Lazaar, “Integration of principal component analysis
and recurrent neural network to forecast the stock price of casablanca
stock exchange,” Procedia computer science, vol. 148, pp. 55–61,
2019.

Z. Berradi was born in Ouazzane, Morocco, in 1985. She received Master
degree in Applied mathematics and computer science from Faculty of
sciences and techniques in Tangier, Morocco, in 2013. Now she is a PHD
student at the National school of applied sciences, Tetouan, Morocco. Her
current research interest is modelisation, recurrent neural network, deep
learnig and stock market movement.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_11

Volume 47, Issue 3: September 2020

__

