
 

 

Abstract—This study uses derived importance based on the 

multiple determination coefficient to replace self-stated 

importance for importance-performance analysis. The 

traditional importance-performance analysis assumes that 

there are no interactions among the survey items. Without 

considering the interactions among the survey items, some 

items might be either underestimated or overestimated in terms 

of importance for quadrant classifications, which might result 

in misunderstanding the major strengths (weaknesses) to minor 

strength (weaknesses) and vice versa. Thus, the improvement 

efforts might be in vain. In this study, the proposed framework 

based on the multiple determination coefficient considers the 

items interactions to be under the other items influence. A case 

is illustrated to show how this framework differs from the 

traditional importance-performance analysis when interactions 

among the survey items are taken into consideration. 

 
Index Terms—multiple determination coefficient, 

importance performance analysis, fuzzy measure, Shapley 

value 

 

I. INTRODUCTION 

mportance-performance analysis (IPA) is a useful 

marketing research technique that can be easily and 

effectively applied in a wide variety of areas to suggest 

successful marketing strategies [1]-[5]. When applying the 

IPA method, we need both performance and importance data 

from the survey results with the underlying assumption that 

the importance of a particular item is not influenced by the 

other items. In practice, the importance among items is 

interdependent [6]. 

Traditional importance-performance analysis uses 

self-stated importance data directly from the survey results 

[7], [8]. However, there are two main disadvantages of using 

self-stated evaluations. First, respondents often find it 

difficult to differentiate the degree of importance and 

respondents’ answers may be influenced by social norms or 

political correctness [9]. Second, self-stated evaluations 

could be either overestimated or underestimated when there 

are significant interactions among self-stated items. 
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On other hand, the derived importance evaluation 

approach uses a less direct way of uncovering the evaluations 

that are most reliable to reflect the respondents’ views from 

the survey. In the literature, the decision-making trial and 

evaluation laboratory (DEMATEL) method determine the 

importance by considering the interactions among the items 

[10]. This method, however, lacks of any solid theoretical 

background and the number of questionnaires is limited for 

an effective study [11]. To overcome this problem, we 

propose a new framework of using the Shapley value based 

on a fuzzy measure to evaluate the derived importance of a 

particular item influenced by the other items.  

This paper is organized as follows: Section 2 briefly 

reviews multiple determination coefficient, fuzzy measure, 

Shapley value, and importance-performance analysis. The 

methodology is described in Section 3. The results are 

depicted in Section 4. Finally, conclusions are drawn in 

Section 5. 

II. LITERATURE REVIEW 

A. Multiple Determination Coefficient 

In a simple linear regression, the determination coefficient 

tells us which percentage of the variance of the response 

variable is explained by the fitted linear mapping of the 

explanatory variable. It is a measure of the goodness of fit of 

the relationship between the dependent and independent 

random variables in a regression analysis. It is also known as 

R-square (R2). The value of the determination coefficient 

must lie between 0 and 1. It is easy to generalize the multiple 

determination coefficient which is a measure of the goodness 

of fit of the relationship between the dependent and 

independent random variables (at least two independent 

random variables) in a multiple regression analysis. Let Y be 

a dependent random variable, X1, X2, …, and Xp be 

independent random variables, and iŷ  = f(x1, x2, …, xp) be 

the best multiple regression equation where iŷ  is predicted 

(by the multiple regression model) values for the sample 

survey data. Let n be the number of sample and y  = 

(y1+y2+…+yn)/n. Then, the multiple determination 

coefficient is defined as follows [12]: 
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B. Fuzzy Measure 

In general, the interactions among the items should be 

considered while aggregating the items evaluations. For 

aggregating the items, the common methods which are based 

on the covariance structure principle and additive measure 

have been studied at length. Note that the linear assumption is 

needed for the above methods. However, the linear 

assumption happens to be often rather far from the reality, 

and models with low accuracy are produced. For this reason, 

non-additive measures or fuzzy measures are introduced to 

solve these problems.  

The central concept of fuzzy measure theory was 

introduced by Choquet in 1953 and independently defined by 

Sugeno in 1974 in the context of fuzzy integrals [13], [14]. 

Let X = {X1, X2, …, Xn} be a finite set and P(X) be class of 

subsets of universal set X. We have the following definition 

[15], [16]. A real-valued set function μ: P(X) → R, is a fuzzy 

measure if it satisfies 

(i) μ( ) = 0; 

(ii) If A, B   P(X) and BA  , then μ(A) ≦μ(B). 

It is easy to check that the multiple determination 

coefficient is fuzzy measure. Fuzzy measure can deal with 

multi-criteria decision problems under the group interactions 

without the other items influencing the decision-making 

process. To deal with the group interactions of other items 

influencing cases, the Shapley value is introduced. 

 

C. Shapley Value 

The Shapley value measures a variation on a characteristic 

function g when item i enters a set (or coalition) of items. In 

game theory, the Shapley value or Shapley index is used to 

indicate the weight of a game. Shapley values based on a 

fuzzy measure can be calculated in order to give some 

indication of the importance of each singleton among items 

interactions under the other items influence [17]. In the case 

of additive measures (that is, all items are mutually 

independent), the Shapley value will be the same as the 

derived importance of each singleton for which there is no 

influence from the other items. For a given fuzzy measure g 

and ,nX   the Shapley value is defined for every Xi  as 

follows [17]: 
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Shapley values based on a fuzzy measure are needed 

when there are significant interactions among items. In this 

study, we used the Shapley value based on a fuzzy measure to 

evaluate the derived importance of each item, specifically 

taking into consideration the interaction of items under the 

influence of other items. 

D. Importance-Performance Analysis 

A commonly seen importance-performance analysis is a 

two-dimensional grid and can be constructed by plotting 

mean ratings of performance and importance to form four 

quadrants to identify the major strengths and weaknesses as 

shown in Fig. 1 [2], [3], [18]-[20]. Importance is labeled as 

the x-axis, whereas performance is labeled as the y-axis. 

These four quadrants include “keep up the good work” in 

Quadrant I, “possible overkill” in Quadrant II, “low priority” 

in Quadrant III, and “concentrate here” in Quadrant IV [4], 

[5]. 

  
Fig. 1.  Importance-performance analysis 

 

The meanings of these four quadrants are described 

below [4], [5], [21]. Items in Quadrant I with both high 

performance and high importance are viewed as major 

strengths for organizations to achieve or maintain a 

competitive advantage. Items in Quadrant II with high 

performance but low importance might imply that the 

resources committed to these items are excessive and should 

be deployed elsewhere. Items in Quadrant III with both low 

performance and low importance might indicate that they do 

not require additional efforts. Finally, items in Quadrant IV 

with low performance but high importance can be viewed as 

major weaknesses for an organization. Immediate attention 

for improvement is required since the inability to identify the 

items in Quadrant IV might result in low customer 

satisfaction. In fact, immediate improvement efforts should 

be placed in highest priority when major weaknesses are 

identified, while items regarded as major strengths should be 

maintained, leveraged, and heavily promoted [2], [4], [5]. 

III. METHODOLOGY 

In order to construct these four quadrants of 

importance-performance analysis, both performance and 

importance data are required from the survey results. In 

addition, the basic underlying assumption is that the 

importance of a particular item is not influenced by the others. 

However, if the assumption is violated, it results in either 

overestimating or underestimating the importance when there 
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are significant interactions among items. In practice, the 

importance among items is interdependent. In our study, we 

use the Shapley value based on a fuzzy measure to evaluate 

the derived importance of a particular item which is 

influenced by the other items. To compute the Shapley value, 

we need to have a fuzzy measure FM based on the multiple 

determination coefficient. Specifically, compute the fuzzy 

measures of all subsets of all questionnaire items except the 

item of overall satisfaction by Equation (1). Then, compute 

the Shapley value for each item by Equation (2). Finally, the 

derived importance data can be calculated and be used for 

IPA method. The details are as follows. 

Suppose that there are α items in the questionnaire and the 

number of valid questionnaire responses was β. Let xij be the 

performance value from 1 to 5 for j-th respondent in i-th item, 

where i = 1, 2, …, α and j = 1, 2, …, β. Let zj be the overall 

performance value from 1 to 5 for j-th respondent. The 

procedures of the proposed framework are summarized as 

follows: 

1. Calculate the fuzzy measure FM based on the multiple 

determination coefficient by Equation (1).  

2. Calculate the Shapely values with respect to the fuzzy 

measure FM for each item by Equation (2). 

3.  Set the derived importance of item i, denoted as 
iimpo , 

to be the Shapely value  i , i.e.,  iimpoi  . 

4.  Plot IPA diagram. The performance value for each item 

is computed by iperf  = 





1j

ijx , while the importance 

value for each item is  iimpoi  . Draw the vertical 

reference line L with the formula of y = 





1i

iperf  and the 

horizontal reference line M with the formula of x = 







1i

iimpo . Finally, plot i pairs of ( iimpo , iperf ). 

IV. RESULTS 

The questionnaire in this study was designed based on the 

SERVQUAL model proposed by Parasuraman, Zeithaml and 

Berry [22] with 21 items as shown in Table I. Each 

respondent was asked to fill out both the importance and 

performance for each item. The respondent can express 

feelings of very satisfactory (importance), satisfactory 

(importance), neutral, dissatisfactory (unimportance), and 

very dissatisfactory (unimportance) by numerical values of 5, 

4, 3, 2, and 1, respectively. The survey was taken among 113 

patients or their families at a geriatric long-term care center 

which is the ancillary organization of Show Chwan Memorial 

Hospital (located in Changhua City, Taiwan) and its related 

organizations from August 15, 2012 to August 24, 2012. A 

total of 102 valid questionnaires were received, and the valid 

return rate was 95.5%. 

 

 

 

 

 

TABLE I 

TWENTY-ONE ITEMS IN THE SURVEY 

Item Description 

1 Detailed description of hospitalization 

2 Well-equipped medical equipment 

3 Clear marked signs in the hospital 

4 Easy to make a family visit 

5 Quality of meals plan and dining 

6 Detailed physical condition and demand for each patient by 

nursing staff 

7 Cordial attitude of service staff 

8 Comfort and safe environments 

9 Recorded the patients’ physiological conditions precisely 

10 Reaction efficiency on patients’ complaints 

11 Responding ability for emergency 

12 Sufficient staff to quickly respond the patients’ needs 

13 Service staff with good communication skills 

14 Quality sanitary conditions and maintenance 

15 Medical staff with professional abilities  

16 Proper arrangement of rehabilitation and daily activities 

17 Reasonable charge for service and care 

18 Sense of security from the service provided by the 

institution 

19 Friendly attitude on staff 

20 Emphasis on patients’ feelings and personal needs 

21 Staff’s concern and assist when patients encounter 

difficulties 
 

 

The reliability of the survey measured by Cronbach’s α 

was well above 0.959, indicating that the scales of the formal 

questionnaire have considerable reliability [23]. The 

structures for performance questions in factor analysis went 

well with the structure of the questionnaire with the 

Kaiser-Meyer-Olkin statistic of 0.931. The construct validity 

was also supported by factor loadings. Therefore, the 

construct validity of the questionnaire was good [24]. 

The numerical values of these twenty-one questions in 

terms of importance and performance are summarized in 

Table II. The commonly seen importance-performance 

analysis plot is depicted in Fig. 2. In contrast, based on the 

proposed framework, the first step is to compute the fuzzy 

measure FM based on multiple determination coefficient. 

The number of fuzzy measures for all subset in power set of 

 2121 ,...,, XXX is 212  = 2097152 including the empty set. 

Note that the percentage of the variance of the response 

variable is explained by the fitted linear mapping of the 

empty set is zero. Therefore, the fuzzy measure of the empty 

set is zero. By Equation (1), the largest value of the fuzzy 

measure of  2121 ,...,, XXX  is 0.7377, while the smallest 

value is 0.2701 except for the empty set. These twenty-one 

fuzzy measure values are 0.2701, 0.3951, 0.3028, 0.2786, 

0.4015, 0.3483, 0.5130, 0.4643, 0.4482, 0.3745, 0.3966, 

0.3878, 0.3311, 0.4403, 0.2786, 0.4430, 0.4431, 0.4221, 

0.4998, 0.4713, and 0.5123, respectively. 
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TABLE II 

VALUES OF IMPORTANCE AND PERFORMANCE OF TWENTY-ONE 

QUESTIONS 

Question Item Importance Value      Performance Value 

1 4.1250   3.5490 

2 4.1518    3.4804 

3 4.0179     3.6373 

4 4.1441     3.5588 

5 4.3661     3.3725 

6 4.2321     3.5098 

7 4.2703     3.5000 

8 4.2883     3.6078 

9 4.2232     3.4804 

10 4.1081     3.3922 

11 4.3750     3.6471 

12 4.2232     3.3529 

13 4.2768     3.5098 

14 4.4196     3.6078 

15 4.3750     3.6961 

16 4.2500     3.5686 

17 4.1607     3.4706 

18 4.1441     3.4608 

19 4.1696     3.6078 

20 4.2232     3.6863 

21 4.2589     3.5882 

Grand Average 4.2287 3.5373 
 

 
Fig.  2.  Original importance-performance analysis plot 

 

 
TABLE III 

DERIVED IMPORTANCE AND PERFORMANCE OF TWENTY-ONE ITEMS 

No.  Derived Importance      Performance 

1          0.0182     3.5490 

2          0.0293     3.4804 

3          0.0217     3.6373 

4          0.0266     3.5588 

5          0.0372     3.3725 

6          0.0276     3.5098 

7          0.0482     3.5000 

8          0.0385     3.6078 

9          0.0650     3.4804 

10          0.0256     3.3922 

11          0.0303     3.6471 

12          0.0333     3.3529 

13          0.0232     3.5098 

14          0.0329     3.6078 

15          0.0179     3.6961 

16          0.0485     3.5686 

17          0.0384     3.4706 

18         0.0302     3.4608 

19         0.0494     3.6078 

20         0.0438     3.6863 

21         0.0519     3.5882 
 

 

In the second step, the Shapley value for each item can be 

calculated by Equation (2), and these twenty-one values are 

0.0182, 0.0293, 0.0217, 0.0266, 0.0372, 0.0276, 0.0482, 

0.0385, 0.0650, 0.0256, 0.0303, 0.0333, 0.0232, 0.0329, 

0.0179, 0.0485, 0.0384, 0.0302, 0.0494, 0.0438, and 0.0519, 

respectively. Please refer to Table III for the combinations of 

derived importance and performance. The larger the Shapley 

value is, the more likely the importance of the item. 

Moreover, since all Shapley values are greater than zero, it 

indicates that the importance of a particular item is influenced 

by the importance of the other items. 

The third step is to set the importance of each item to be the 

correspondent Shapley value for each item. The fourth step, 

the performance value for each item can be computed by 

iperf  = 


102

1

102

j

ijx  and these values are 3.5490, 3.4804, 

3.6373, 3.5588, 3.3725, 3.5098, 3.5000, 3.6078, 3.4804, 

3.3922, 3.6471, 3.3529, 3.5098, 3.6078, 3.6961, 3.5686, 

3.4706, 3.4608, 3.6078, 3.6863, and 3.5882, respectively. 

The vertical reference line L, based on the formula of y = 




21

1

21

i

iperf , is 3.5373, i.e., ((3.5490 + 3.4804 + 3.6373 + 

3.5588 + 3.3725 + 3.5098 + 3.5000 + 3.6078 + 3.4804 + 

3.3922 + 3.6471 + 3.3529 + 3.5098 + 3.6078 + 3.6961 + 

3.5686 + 3.4706 + 3.4608 + 3.6078 + 3.6863 + 3.5882)/21). 

The horizontal reference line M with the formula of x = 




21

1

21

i

iimpo  is 0.0351, i.e., ((0.0182 + 0.0293 + 0.0217 + 

0.0266 + 0.0372 + 0.0276 + 0.0482 + 0.0385 + 0.0650 + 

0.0256 + 0.0303 + 0.0333 + 0.0232 + 0.0329 + 0.0179 + 

0.0485 + 0.0384 + 0.0302 + 0.0494 + 0.0438 + 0.0519)/21). 

Finally, plot twenty-one pairs of ( iimpo , iperf ) as shown in 

Fig. 3. 

 
Fig. 3.  Importance-performance analysis plot by the multiple determination 

coefficient 

 

By comparing the original IPA plot and IPA plot with the 

Shapley value, the results are somewhat different. Please 

refer to Table IV for further information. Using different 

importance scales results in different located quadrants 

horizontally. That is, some items originally situated in 
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Quadrant I (III) will be shifted to Quadrant II (IV) and vice 

versa. This indicates that the importance for each item will be 

classified significantly different. For instance, a particular 

item originally viewed as the minor strength (Quadrant II) 

assuming the independence of importance will be viewed as 

the major strength when interdependence of importance is 

taken into consideration. This will lead to different marketing 

strategies and effectiveness of actions taken. From Table II 

and Table III, the importance of item 9 is ranked in the 

middle when the interactions are not taken into consideration 

but it becomes the most important item when the interactions 

among items are significant and taken into consideration. 

Therefore, the importance of item 9 is underestimated. By the 

same token, the importance of items 19 and 20 is 

underestimated when the interactions are not taken into 

consideration. On the contrary, items 11, 14, and 15 are 

overestimated. 

 
TABLE IV 

QUADRANTS DIFFERENCES BETWEEN PLOTS 

Quadrant I II III IV 

Original IPA 8, 11, 14, 

15, 16, 21 

1, 3, 4, 19, 

20 

2, 6, 9, 10, 

12, 17, 18 

5, 7, 13 

IPA with 

Shapley value 

8, 16, 19, 

20, 21 

1, 3, 4, 11, 

14, 15 

2, 6, 10, 

12, 13, 18 

5, 7, 9, 13 

 

 

V. CONCLUSIONS 

A framework of importance-performance analysis based 

on the multiple determination coefficient method is proposed 

without assuming that the importance of a particular item is 

independent of influence from the other items. Traditional 

importance-performance analysis needs the importance data, 

but the method we proposed do not need it and could deal 

with more general cases. The self-stated importance from the 

survey results is replaced by derived importance to form a 

two-dimensional grid with derived importance labeled as 

x-axis and performance labeled as y-axis. A case is illustrated 

to show how this proposed framework works and how this 

framework differs from the traditional 

importance-performance analysis. The results show that 

Items 9, 19, and 20 are underestimated when the interactions 

among items are not taken into consideration. By contrast, 

Items 11, 14, and 15 are overestimated when the interactions 

among items are not taken into consideration. Therefore, the 

proposed framework of IPA based on the multiple 

determination coefficient is very practical to use. In fact, the 

proposed framework can be viewed as a general framework 

no matter what the interactions among items are. 
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