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Abstract—Introduction: A brain-computer interface (BCI) is
a rapidly growing cutting-edge technology in which a com-
munication pathway is built between the human brain and
computer. The BCI is also known as a direct neural interface
where user can control external devices with the help of the
brain signals. Neural signals are typically measured using
electroencephalography (EEG).
Objective: Feature extraction from EEG data performs a sig-
nificant role in the wearable BCI computing field. Since a large
amount of EEG data, the major challenge is the effective feature
extraction and reduce the computation burden. The objective
of this paper is to review such different feature extraction
techniques for the development of effective and robust BCI
systems.
Approach: We reviewed feature extraction techniques employed
in EEG based BCI studies. We synthesize these studies in order
to present the taxonomy and report their usage with pros and
cons.
Significance: This paper provides a comprehensive review of
feature extraction techniques for EEG based BCI with their
properties. Furthermore, open challenges are also discussed for
further advancement in BCI studies.

Index Terms—Brain-Computer Interface, Electroencephalog-
raphy (EEG), Feature Extraction, Brain-Machine Interface.

I. INTRODUCTION

Brain-Computer Interface (BCI) is a system which pro-
vides a direct communication pathway between the human
brain and computers/machines by translating brain activity
patterns into commands or messages for an interactive ap-
plication. In general, brain activity patterns are measured
using electroencephalography (EEG) which is noninvasive,
easy to use and low cost a method. For instance, with the
help of BCI it is possible to control computer without any
physical activity and thus fundamentally useful in various
applications e.g notably for motor impaired users to control
assistive technologies by imagining the motor movement
such as controlling wheelchairs [1], or controlling cursors
[2], games [3], rehabilitation devices for stroke patients [4].

Figure 1 shows BCIs are as Pattern Recognition system.
The system consists of two phases: 1) Training phase 2)
Testing phase. The system is calibrated in the training phase
while in the testing phase system recognize a neural pattern
and translate them into useful commands for a device. Ini-
tially, EEG patterns are captured using the signal acquisition
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system, which may also perform artefact processing and
noise removal. Then these EEG signals are preprocessed
using spectral and spatial features, followed by feature ex-
traction technique which is compact representation of a sig-
nal. Lastly, these features are classified and classified signals
translated into meaningful commands to control device.

The most difficult step in pattern recognition is still as
it was stated some 65 years ago by [5], ‘The extraction of
significant features from a background of irrelevant details’.
To date, very interesting BCI reviews are published including
classification algorithm as in [6], [7]. However, none has been
particularly dedicated to feature extraction techniques used
for BCI and their properties. This study aims at filling this
lack. Therefore one of the major objectives of this review
is to study various feature extraction techniques utilized in
BCI research and to analyse their critical properties. Another
objective is to discuss some challenges which are important
to solve considering future progress in BCI research.

The remainder of this review paper proceeds as follows.
Section II describes the taxonomy of feature extraction
methods used in EEG-based BCI. Section III reviews a wide
range of feature extraction techniques for EEG based BCI.
Section IV deals with discussion along with open challenges
which are important for advancement in the BCI system.
Finally, Section V concludes the paper.

II. TAXONOMY OF FEATURE EXTRACTION METHODS

EEG based BCI systems involve the extraction of useful
information from the highly complex EEG data. In general,
it is achieved by applying suitable feature extraction on EEG
signals which are acquired by subjects during performing a
specific mental activity. Subsequently, these features are fed
to classifier for the training, where it gets learning to identify
the pattern class. The EEG signals are highly nonstationary
and dynamically changes due to technical and biological ef-
fects such as subject attention, the sessions variability, mental
state, anatomical differences among subjects, amplifier and
ambient noise [8]. Moreover, from the cognitive neuroscience
perspective, the oscillatory (frequency) components of EEG
have non-stationary and distinct characteristics. Due to these
reasons, it is difficult to classify BCI patterns accurately.
Therefore to enhance the performance of EEG based BCI
systems, the selection of appropriate feature extraction tech-
nique is a very important issue.

The taxonomy of well established feature extraction meth-
ods that are applied to EEG is outlined in Figure 2. While
there are many ways the two most commonly used feature
extraction methods are time and frequency domain features.
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Fig. 1: BCI-Pattern Recognition System

Temporal features i.e time domain features represents em-
ploying the EEG signal values at distinct time windows or
at distinct time points. Frequency domain features are also
called spectral features which represent the signal power in
the specific frequency band. However, for the EEG signals
having nonstationary in nature, time-frequency methods are
useful, which can provide useful information by taking into
consideration the dynamic changes. Spatial features deal with
the spatial representation of the signal i.e the selection of
most appropriate channels selection for the specific task.

III. MATERIALS AND METHODS

This section details a review of different feature extraction
techniques applied for EEG based BCI in the past. In general,
these feature extraction techniques are with different domains
i.e time, frequency, time-frequency and spatial features. The
EEG signals are recorded of subjects with a specific men-
tal activity using the signal acquisition system of multiple
channels. Moreover, dimension reduction techniques are also
presented since the information provided by all the channels
may not be significant for the underlying phenomena of
interest.

A. Time Domain Features

The preprocessing such as low-pass filtering or bandpass
filtering and downsampling followed by the extraction of
time domain features. These features measure the temporal
variations within time-locked EEG signal amplitudes. Table
I listed the time domain features along with their properties.

1) Hjorth Parameters: Hjorth parameters provide a fast
way of computing three important characteristics of a time-
varying signal, namely, Activity, Mobility, and Complexity.
Activity parameter of the signal z(t) is computed as in
equation 1, which is the variance of the time function,
which designates the power spectra surface in the frequency
domain.

Activity = var (z(t)) (1)

Mobility parameter represents standard deviation proportion
or mean frequency of power spectrum. Mobility is computed
as in equation 2, where z

′
(t) represents the first derivative

of the signal z(t).

Mobility =

√
var (z′ (t))

var (z (t))
(2)

Complexity parameter computed as in equation 3, which
indicates the signal shape similarity to a pure sine wave,
where value converges to 1 as the similarity index is high.

Complexity =
Mobility

(
z

′
(t)
)

Mobility (z (t))
(3)

Activity, Mobility, and Complexity are also called as ‘mean
power’, ‘the root mean square frequency’, and the ‘root mean
square frequency spread’ respectively.

2) Statistical Features: Various statistical measures char-
acterize the EEG time series. The following six features are
widely used in BCI studies and computed by considering N
i.e the number of data samples and the signal x(i).

1) Energy: The energy of signal is calculated as in equa-
tion 4.

N∑
i=1

x2i (4)

2) Entropy: Entropy computes randomness in the signal
and computed as in equation 5.

−
N∑
i=1

xilog2 (xi) (5)

3) Mean: The mean (µ) which is average of the signal
calculated as shown in equation 6.

1

N

N∑
i=1

xi (6)
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Fig. 2: Taxonomy of Feature Extraction Methods for EEG based BCI

4) Std Deviation: The standard deviation measures how
the data {x1, x2, ..., xN} are spread out. The standard
deviation is computed as in equation 7.

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)
2 (7)

5) Skewness: The asymmetry of the data samples around
mean is calculated with skewness as shown in equation
8.

skewness =
µ3

σ3
(8)

where µ3 is the 3rd order moment which is calculated
as shown in equation 9.

µ3 =
N∑
i=1

(xi − µ)3 (9)

6) Kurtosis: Kurtosis measure the ‘tailedness’ and ‘out-
lier’ characteristic of the distribution of data. Kurtosis
is computed as shown in equation 10.

kurtosis =
µ4

σ4
(10)

where µ4 is the 4th order moment which is calculated
as hown in euation 11.

µ4 =
N∑
i=1

(xi − µ)4 (11)

3) Fractal Dimension: The Fractal Dimension (FD) is a
statistical index which represents the self-similarity measure
of signal over some space or time interval. EEG has a fractal
nature, hence fractal pieces can be used to obtain features.
Since the complexity and limited predictability of EEG
signals, Fractal dimension measure provides a ‘complexity’
of the time-varying brain signal. Several classical methods
have been proposed to compute the FD value such as
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TABLE I: Time Domain Features

Method Properties

Hjorth Features

•Low computational complexity
•Suitable for Stationary signal
•Fast to compute
•Easy to apply

Statistical Features
•Easy to apply
•Suitable for Stationary signal
•Can apply to non-stationary signal in conjunction with freuency features

Fractal Dimension (FD)
•Measures the self similarity of signal
•Provides complexity index
•Evaluation is time consuming

Kalman Filter •Suitable foe EEG resource localization problem
•Best known of Bays filter which measures the uncertainty of a signal

Particle Filter
•Particle Filter scales well
•Computationally expensive
•Non-deterministic

apparent entropy, Kolmogorov-Sinai entropy and Correlation
dimension. However, the evaluation of these methods is time-
consuming.

4) Kalman Filter: Uncertainty representation is important
in BCI because potentially disastrous actions based on poor
estimates can be avoided if the amount of uncertainty associ-
ated with an estimate is taken into account before committing
to a decision. Bayesian filtering techniques provide a statis-
tically sound methodology for estimating signal properties
and their uncertainty. The Kalman filter is perhaps the best
known of Bayesian filtering algorithms. The time-varying
coefficients can be updated online using a recursive least-
square optimization procedure such as Kalman filtering. The
coefficients capture the local statistical structure of the signal
as it evolves over time and can be used as features in further
processing e.g classification in a BCI. Kalman filters assume
that the dynamics and measurement process are linear and
Gaussian. This simplifying hypothesis may not dominance
true in many real-world examples.

5) Particle Filter: EEG neural signals acquired from
human scalp are nonlinear in nature. However, the various
linear regression model are unable to reflect the nonlinear
component of EEG. To overcome this drawback nonlinear
decoding model i.e particle filter can be used. A particle
filter is a method of estimating a posterior distribution over
the hidden state for non-linear non-Gaussian processes. It
is achieved by applying Monte Carlo simulations based
recursive Bayesian filter. The particle filtering is easy to
implement and scales very well i.e embarrassingly parallel.
Nevertheless, the shortcoming of particle filtering is compu-
tationally expensive since a good particle filter requires a lot
of particles. If the distribution is unimodal, it is good practice
to use a Kalman filter. Particle filters are nondeterministic i.e
they can produce different outputs for the same input, which
make them difficult to predict and debug.

6) State-of-the-art: Though the time domain features are
not dominant in EEG BCI, the aforementioned methods are
useful to identify the time series analysis of EEG signals.
In general the Horth parameters were widely used in motor
imagery EEG studies [9], [10]. Hu et al. [11] proposed
the investigation of the learners affect during the learning
process by applying the horth parameters in conjunction with
Autoregressive models (AR) and nonlinear features including
Singular-value Decomposition Entropy (SVDen), Approxi-

mate Entropy (ApEn), the correlation dimension (D2), the
largest Lyapunov exponent, the Kolmogorov entropy, the
spectral entropy and C0-complex. The statistical features
are widely used in conjunction with other feature extraction
techniques like dwt [12]–[14]. Several Fractal dimension
computation methods such as Fractal Brownian Motion
[15], Sevciks method [16], Higuchi algorithm [17] or Box-
counting [18] were employed. In [19] the fractal dimension
coupled with dwt is used for EEG signal classification. Frac-
tal dimensions are also employed in seizure detection [104]
and classifying depression patients [105]. Luke and Wouters
[20] presented Auditory steady-state responses (ASSR) using
Kalman filter analysis and illustrate several benefits over DFT
methods. Moreover, the Kalman filters were used in Epilepsy
patients EEG studies [21], [22]. However, the particle filters
were employed in P300-BCI paradigm [23], [24].

B. Frequency Domain Features

The frequency domain features are popular in EEG based
BCI which compute the amplitude/power changes from dif-
ferent frequency band. Table II details the frequency domain
features along with their properties.

1) Discrete Fourier Transform: The basic idea behind
Fourier analysis is the decomposition a signal into a weighted
sum of sinusoidal and cosine waves of distinct frequencies.
The Fourier decomposition of a signal into its amplitudes
represents the signal in terms of frequency content rather than
time. The Inverse Fourier Transform (IFT) is used to recover
the original signal. For BCI applications, the brain signals
are typically sampled at discrete time intervals. In Discrete
Fourier Transform (DFT) the Fourier series is modified and
apply on discretely sampled signals. The DFT takes as input a
time series and sampled at time points t = 0, 1, . . . , T−1 and
transforms it to corresponding complex Fourier coefficients
which can capture signal information such as amplitude and
phase.

2) Fast Fourier Transform: The Fast Fourier Transform
(FFT) computes the DFT efficiently. FFT reduced the no. of
computations and, thus made processing more affordable and
efficient. Many BCI systems rely on features extracted from
the power spectrum of a brain signal such as EEG or Electro-
corticography (ECoG) over a time interval. The widely used
method for power spectrum estimation is welch's method
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TABLE II: Frequency Domain Features

Method Properties

Fast Fourier Transform (FFT) •Efficiently compute Discrete Fourier Trnasform
•Suitable for Stationary signal

(based on FFT), and the power of a specific frequency
band is used as a spectral feature in further analysis such
as classification. For example, to determine subject-specific
frequency bands using motor imagery, the subjects perform
different movements, and frequency bands that exhibit robust
changes in power during movement are utilized. A more
primitive approach is to utilize a bank of spectral features
and allow machine learning algorithm to automatically select
features that enhance classification accuracy of test data.

The FFT is widely used in emotion recognition EEG
studies [25]–[27]. Polat and Gunes [28] proposed epileptic
seizure detection system based on FFT. However, Wen and
Zhang [29] proposed an EEG analysis of epilepsy patients
using frequency domain features in conjunction with non-
linear features. The Tinnitus EEG classification proposed by
Wang et al. [30] were FFT based power values are used
as features. Nevertheless, FFT is also used in BCI game
controlling [31]. The commonly used alternative to FFT
is the Welch method based power spectral density (PSD)
estimation which is applied by Reuderink et al. [33], Kroupi
et al. [32]. Nowadays connectivity features are dominantly
used in conjunction with frequency domain features. These
features compute the synchronization or correlation between
signals and/or sensors. Several features are available for
this measurement in particular spectral coherence or direct
transfer functions or phase locking values, among many
others as discussed in [34]–[37].

C. Time-Frequency Domain Features

In general Time-Frequency representations of the signal
are the most complete and widely used methods for non-
stationary EEG based BCI studies. Table III elaborates the
Time-Frequency domain features along with their properties.

1) Matched Filtering: The Matched Filtering (MF) is a
feature extraction technique which can detect the specified
pattern from the unknown EEG signals based on its match
with the templates, where templates are the known signals.
The Correlation between templates and unknown EEG sig-
nals represents user's intention. The better correlation intends
higher matching between intention of the user and template.
In general, as shown in equation 12 every matched filter
easily modelled as addition of sinusoidal components which
are the harmonically related.

MF (n) =
N∑

k=1

ak cos

(
2πkfF
fs

n+ φk

)
(12)

where n denotes the template sample number, N is the
total number of harmonics to model, the sampling frequency
fs and fundamental frequency of template fF . The FFT
spectrum is used to derive ak and φk which represents the
amplitude and phase of individual harmonics respectively.

2) Autoregressive Model: Autoregressive models (AR)
based on the fact that its natural tendency of the signals to be
likely correlated over time or even other dimensions such as

space. Thus it is possible to predict the future measurements
based on the past few values. The AR model prediction of
the current signal measurement xt based on past values as
in equation 13.

xt =

p∑
i=1

aixt−1 + ξ (13)

where ai is the set of coefficients, ξ is presumed as zero mean
white noise process that accounts for the differences between
the signal and its linear weighted sum approximation. The pa-
rameter p denotes the order of the AR model and determines
the window of past inputs used for predicting the current
input. The traditional AR model assumes the statistical
properties of the signal are stationary so that a single set of
coefficients ai can be used. However, brain signals tend to
be nonstationary, and one constantly requires a time-varying
set of coefficients ai,t. This leads to a multivariate adaptive
Autoregressive model (MVAAR) as shown in equation 14.

xt =

p∑
i=1

ai,txt−1 + ξt (14)

The time-varying coefficients ai,t can be updated using re-
cursive least square optimization algorithm, kalman filtering
etc. The coefficients ai,t capture the local statistic structure
of the signal as it evolves over time.

3) Short Time Fourier Transform: The Fourier transform
represents an original signal with basis functions namely,
sines and cosines of different frequencies. However, because
sines and cosines occupy an infinite temporal extent, the
Fourier transform does a poor job of representing signals
that are finite and non-periodic or having sharp peaks and
discontinuities. However, brain signals such as EEG are
typically non-stationary (i.e statistical properties vary over
time), breaking the assumption of a stationary signal in
Fourier analysis. One solution is to perform Fourier analysis
over short-time windows, a procedure known as short-term
Fourier transform (STFT). The STFT deals with the problem
of window size, where small windows providing good tempo-
ral resolution however poor frequency resolution, while large
windows providing better frequency resolution yet poor tem-
poral resolution. This realization leads to wavelet transform
which achieves the excellent trade-off among temporal and
frequency resolution.

4) Wavelet: The wavelet transform (WT) utilizes finite
basis functions called wavelets, such are translated and scaled
copies of a single finite length waveform known as mother
wavelet. By using basis functions at different scales, the
wavelet transform allows a signal to be analysed at multiple
resolutions which allow representing signals that are non-
periodic or have sharp discontinuities. The wavelets are
a most suitable and powerful tool for the transient EEG
signal analysis. The Continuous Wavelet Transform (CWT)
of signal x (t) with wavelet function as in equation 15.
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TABLE III: Time-Frequency Domain Features

Method Properties

Matched Filtering (MF)
•Detect specific waveform with temporal characteristics
•Suitable for specific pattern detection based on its matches
with known templates

Autoregressive Model (AR)

•Short time segments with High frequency resolution
•Adequate for stationary signals
•Spectrum model
•MVAAR: Adaptive version of AR

Short Time Fourier Transform (STFT)
•Adequate for nonstationary signal
•Provides frequency as well as temporal information
•deals with window size problem

Continuous Wavelet Transform (CWT) •Adequate for non-stationary signals
•Provides frequency as well as temporal information

Discrete Wavelet Transform (DWT)
•Reduces the complexity and redundancy of CWT
•Provides frequency as well as temporal information
•Adequate for non-stationary signals

W (S, T ) =

∫ ∞
−∞

x (t)ψ∗S,T (t) dt (15)

Where W (S, T ) is the wavelet coefficient of the signal hav-
ing frequency with scale S and time T of the wavelet function
ψ∗S,T (t). The symbol * denotes the complex conjugate. The
wavelet function ψ∗S,T (t) is a dilated and shifted version of
mother wavelet ψ (t).

ψS,T (t) =
1√
s
ψ

(
t− T
s

)
(16)

A mother wavelet has ability to make multiple shapes and
satisfies the condition in equation 17.

W (S, T ) =

∫ ∞
−∞

ψ (t) dt (17)

Moreover, The CWT is like template matching or matched
filter where the cross variance between the signals is calcu-
lated. Wavelet template is always preferable than classical
template matching due to its special properties. However,
CWT is more complex and redundant since it involves
the signal analysis with multiple dilations and shifting to
mother wavelet at a high number of frequencies. The Discrete
Wavelet Transform (DWT) translates and dilates mother
wavelet at discrete values and hence overcome the short-
coming of CWT. Though the DWT is more popular in BCI
studies, CWT is still applied in EEG based BCI research.
One of the reason may be CWT provides subtle information
where dwt inadequate to extract such information.

Wavelet analysis is done by corresponding coefficients.
Recent signal-processing packages include the wavelet trans-
form as one of the available options and provide a variety
of choices for mother wavelet. Mother wavelet selection
depends on the BCI application and the sort of features
required to extract from the signal.

5) State-of-the-art: Liang et al. [38] proposed an auto-
matic sleep scoring method combining autoregressive (AR)
models and multiscale entropy (MSE) for single-channel
EEG. Zhang et al. [39] proposed EEG signals Classification
based on wavelet packet decomposition and autoregressive
model. Hatamikia et al. [40] proposed EEG based emotion
recognition system using the autoregressive model and se-
quential forward feature selection. Moreover, the AR has also
applied in event-related paradigm [41], [42]. Gomez-Herrero

et al. [43] proposed the study on measuring directional cou-
pling between EEG sources using MVAR. STFT is applied
in Epilipsy patients EEG studies [44]–[46]. Behnam et al.
[47] investigated in their study regarding the EEG activity
in Autism spectrum disorder using FFT and STFT. Had-
jidimitriou and Hadjileontiadis [48] employed three methods,
namely STFT based spectrogram (SPG) the Zhao-Atlas-
Marks (ZAM) distribution, and the Hilbert-HuangSpectrum
(HHT) in the study regarding the recognition of EEG based
music like preference. Faust et al. [49] explored the review
of CWT and DWT regarding epilepsy diagnosis and seizure
detection. The DWT is widely used in EEG studies rather
than CWT. Though it is not possible to list all the dwt
based research, we attempt to list dwt based EEG studied for
different applications [12]–[14], [106]–[109]. Matched filter
is employed for new-born sizure detection [110] and event
related brainwave extraction from EEG signals [111].

D. Common Spatial Pattern

Common Spatial Pattern (CSP) has been emerged as
a popular feature extraction method for EEG based BCI,
where the similarities between classes are minimized and
differences are emphasized. CSP finds spatial filters which
can transform the input data into resulting feature vectors
that enhance the discriminability between classes. Though
fundamentally CSP has been intended for the multichannel
data allied to two class problems, few extensions have been
also suggested for multiclass BCI data [50]. CSP is more
suitable for synchronous BCI which is restricted to time
frames. However, it is unable to provide the similar perfor-
mance in asynchronous BCIs. Also, the spatial resolution
affects the performance since the few electrode positions
provide more discriminating information for particular brain
activities compared to others. Considering these issues, the
methods have been suggested to enhance the performance of
CSP: Common Sparse Spectral-Spatial Pattern (CSSSP) [53],
Common Spatio-Spectral Pattern (CSSP) [52] and Wavelet
Common Spatial Pattern (WCSP) [51]. Table IV describes
the CSP properties.

Consider the data {Xi
c}ki=1, where i is the trial for the

class cε{1, 2}. Each Xi
c is a N ×T matrix, where N denotes

number of channels and the number of samples per channel
are denoted by T. The CSP aims at finding M spatial filters
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TABLE IV: Common Spatial Patterns

Method Properties

Common Spatial Patterns (CSP)

•Spatial filter designed for 2-class problems
Multiclass extensions are also exist

•WCSP, CSSP, CSSSP: Enhanced versions of CSP
•Spatial resolution affects the CSP performance

where a N ×M matrix W, which is linearly transforming
the input signal as in equation 18.

Xcsp(t) = WTX(t) (18)

where X(t) is the all channels input signals at time t. With
the intention of finding all filters the conditional covariance
matrices of two classes are calculated as in equation 19.

Ri =
1

K

k∑
i=1

Xt
c(X

i
c)

T (19)

The matrix W can be determined for cε{1, 2} as in equation
20 and 21.

WTR1W = Λ1 (20)

WTR2W = Λ2 (21)

where the Λi are diagonal metrices and Λ1+Λ2 = I , where
I is the identity matrix. It can be achieved by resolving
generalized eigenvalue problem as shown in equation 22.

R1W = λR2W (22)

where the generalized eigenvectors w = wj satisfy the equa-
tion 22 and computes the coloums of W which represents the
CSP spatial filters. λj1 = WT

j R1Wj and λj2 = WT
j R2Wjare

the generalized eigenvalues which form the diagonal ele-
ments of Λ1 and Λ2 respectively. Since λj1 + λj2 = 1, a
high value for λj1 represents that the filter output based on
filter wj generates a higher variance for input signals in class
1 and low variance for signals in class 2 or vice versa.

1) State-of-the-art: Till date lot of motor imagery based
BCI research has been done using CSP [56], [57]. In general,
the spatial filtering used in conjunction with time point
features or band power for EEG based BCIs. Several variants
have been proposed which are robust to nonstationarity or
noise, using robust data averaging, regularization approaches
and/or new divergence measures [55]. Nevertheless, various
extensions of this algorithm are proposed to optimize spatial
and spectral filters simultaneously as proposed in [54], [58].

E. Feature Selection

Appropriate selection of features from the set of extracted
features having potential benefits in EEG based BCI as:
1. Feature selection removes redundant and irrelevant fea-
tures of the targeted mental states.
2. Feature selection improving the performance of the learn-
ing process since fewer parameters need to be optimized by
the classifier.
3. The number of training samples is small in BCI studies;
hence feature selection overcome the overfitting problem by
reducing the number of features.
4. It reduces the data dimensionality which helps the faster
model building of classifier, reducing computational cost
and often producing more compact and easier to model

interpretability.
5. From the set of selected features, it can be easy to observe
more correlated features w.r.t. intended mental state.

In general, the feature selection methods divided into
the filter, wrapper and embedded models. The Filter model
selects the features independently of the classifiers to be
used where the bias of the classifiers and feature selection
algorithm are independent. It depends on the training data
characteristics such as correlation, dependency, information,
distance and consistency. Koprinska [59] has evaluated five
filter methods namely Correlation-Based Feature Selection
(CFS), 1R Ranking (1RR), information Gain Ranking (IG),
ReliefF and Consistency-Based Feature Selection on BCI
competition dataset. Ang et al. [4] proposed filtering method
based frequency band selection for motor imagery.

Wrapper method selects a subset of features and fed it
to the classifier during the learning phase. The resulting
performance has been observed and proposes a new subset
if the criteria are not satisfied or stop the search as per the
stopping criteria. The various wrapper methods are used in
EEG based BCI studies are linear regression for knowledge
extraction [60], support vector machine for channel selection
[61], P300 based feature selection [62], multiresolution anal-
ysis based evolutionary algorithms for feature selection [63]
and genetic algorithms for spectral feature selection [64]. The
shortcoming of wrapper methods is they are computationally
expensive for a large number of features.

Since the Filter approaches are computationally inexpen-
sive but having the drawback of redundant feature selection
and wrapper methods avoid redundant feature selection but
they are computationally expensive, Embedded models are
proposed to bridge the gap between them. Initially, as per
filter models, it selects several features with a particular
cardinality and later on, it selects the subset of features
having the highest classification accuracy. Thus embedded
model archives comparable computational efficiency to filter
model and comparable accuracy compared to the wrapper
model. In short Embedded methods achieves the model
fitting and feature selection simultaneously. Krusienski et al.
[65] used embedded method based on the linear discriminant
analysis for P300-BCI research. Moreover, the metaheuristic
techniques such as tabu search, ant colony optimization,
simulated annealing are widely used for feature selection to
avoid curse-of-dimensionality [66], [67].

F. Dimension Reduction

This section contains a brief description of dimension re-
duction techniques such as PCA and LDA. Since dimension
reduction techniques remove the insignificant and redun-
dant information, computational costs are reduced. Table V
summarizes dimension reduction techniques along with their
properties.
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TABLE V: Dimension Reduction

Method Properties

Principal Component Analysis (PCA)

•Linear transformation
•Transforms the data from existing feature space

into low dimension feature space
•Optimal data representation with reference to

minimal mean-square-error
•Not always suitable for classification

Independent Component Analysis (ICA)
•Robust and powerful tool for artifact removal
•May corrupt the power spectrum
•Mixed signals are splitted into its sources

1) Principal Component Analysis: PCA is simple yet
popular and useful linear transformation technique which
converts the possibly correlated input data into a set of new
data points which are uncorrelated. PCA attempts to find the
dominant direction of statistical variability of the data. Once
these dominant directions corresponding to a low dimen-
sional subspace of the original subspace have been found,
new data points can be projected along with these principal
directions, where each projection is called the principal
component. In the EEG measurements from N electrodes
placed on the head, measurements from nearby electrodes
may be correlated or there may underlying rhythms that
appear across multiple electrodes. Such redundancies can be
exploited using PCA. PCA does not always guarantee the
discriminative features and thus not optimal for classification
purpose. However, with respect to EEG based BCI applica-
tions, PCA has been reasonably successful for reconstructing
signals without artefacts [68]. Moreover, PCA has been
applied for the feature space dimensionality reduction [69].

Consider the training data t = [t1, t2, ..., tn] where ti is
ith d-dimension training sample, and the number of samples
n. PCA projects the input training data into m-dimension
space of m-dimension vector computed from the covariance
matrix Cv as in equation 23.

Cv =
n∑

i=1

(pi −mv) (pi −m)
t (23)

where, mv is the mean vector of the training sample ti
computed as in Equation 24.

mv =
1

n

n∑
i=1

ti (24)

The covariance matrix Cv is symmetric and real matrix
l × l, where l are distinct eigenvectors and eigenvalues.
The eigenvectors having the highest eigenvalue represent the
principal components of the training dataset t. PCA decides
eigenvectors q, where q < l. These selected eigenvectors
provides a projection matrix P which can be useful to extract
features from the test set u. The Matrix P having the coloums
of sorted l eigenvectors with the maximal eigenvalue is stored
at the first coloum of P . Finally, PCA transforms the test data
u into new subspace by computing feature vector v from the
data in matrix P as in Equation 25.

v = P t (u−m) (25)

where, m is the mean computed as in Equation 24.

2) Independent Comonent Analysis: Independent Compo-
nent Analysis (ICA) is a method to compute independent
sources from the set of mixed signals, where it assumes
that underlying unknown sources are mutually statistically
independent. The EEG signal is the mixture of independent
sources signals including artefacts. Consider the EEG signal
x(t), where ICA attempts to find independent sources as per
equation 26.

x(t) = W (s (t)) + n (t) (26)

Where W is the mixing matrix, s(t) and n(t) are source
signals and noise vectors respectively. The dimension of x(t)
depends on number of channels. The number of sources
decide the dimension of s(t). Furthermore, by considering
the input data is noiseless, the s(t) and W are obtained by
considering Infomax [70] or modifying Infomax [71]. It is
noteworthy that Unlike PCA, where the dimensionality of
the output vector is always smaller than the dimensionality
of the input vector, the feature vector dimension of ICA can
be larger than, equal to or greater than the number of input
dimensions. Moreover, the resultant vectors which form the
matrix W are no longer are any longer constrained to be
orthogonal, ICA has proved useful in a variety of settings
of BCI applications such as ocular artefact removal and
classification [72]–[75].

G. Advanced Techniques
Recently BCI research has gain attraction towards using

advanced techniques such as Riemannian geometry, tensors
and Deep learning instead of using feature vectors of EEG
data.

1) Riemannian geometry: The Riemannian geometry in
BCI is emerging and increasing attention due to it's accu-
racy, simplicity, robustness and generalization capabilities.
Instead of extracting features using time domain or frequency
domain from EEG signal, Riemannian geometry maps the
data directly to space, where it is possible the manipulation
of data for various intends such as smoothing, averaging,
extrapolating and interpolating and classifying. In BCI, this
mapping deals with the covariance matrix. Riemannian ge-
ometry deals with smooth curved surfaces which can be
linearly and locally approximated. The curved space is called
as manifold and a linear approximation at every point is
called tangent space. Riemannian Classifiers either operate
directly on the manifold i.e Riemannian distance to mean
or the data projection to the tangent space. The Riemannian
geometry has been used in EEG based BCI for event related
potentials (ERPs) [81], [82], mental imagery [76]–[78] and
Steady state visually evoked potential (SSVEP) [79], [80].
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2) Tensors: EEG is a primary tool for brain imaging
modality. In general EEG signals are represented with a
vector or matrix to enable certain processing and analysis
of data with methods such as spectral analysis, time-series
analysis and matrix decompositions. Indeed, naturally EEG
signals are with two modes i.e time and space, they can
be represented by tensors (multi-way array). Though tensor
tools are emerging tools for EEG signal analysis such as
feature extraction, classification and clustering [83]–[87], till
yet it is not very well matured and explored. The BCI
applications are having problems such as overfitting due to
high dimensional data and information loss for the structured
data. One of the major reason behind these problems is small
sample size. Tensors for BCI data can help to mitigate these
problems as the tensors inherit the information regarding the
structure of data which can help for the reduction of the futile
features in the learning model. These tensor representations
have been used in EEG based BCI for P300 [88], [89], motor
imagery [90] and SSVEP [91]–[94].

3) Deep Learning: Nowadays deep learning is very popu-
lar and has attracted attention in pattern recognition systems
due to its ability to detect features or latent structures from
data. The fundamental principle of deep learning is the
automatic extraction of features without human intervention.
In deep learning feature extraction and modelling is done
simultaneously where each layer train on a set of features
depending on the previous layer output. As we proceed with
the layers the complex features are trained which are the ag-
gregated output of the previous layers. Convolutional neural
nets (CNN) are very popular deep learning technique. It is a
multilayered feedforward neural network where the weights
are updated through the error backpropagation. CNN’s are
extensively used in several applications due to its ability to
learn the most significant features. However, the performance
of CNN’s depend on their learning hyperparameters and
architecture. Deep neural nets (DNNs) explored for EEG
based BCI systems such as SSVEP [95], P300 [96], [98]
and motor imagery [97], [99]–[101].

IV. DISCUSSION

Different feature extraction techniques for EEG based BCI
are surveyed in this paper. Table VI summarizes feature ex-
traction and feature selection techniques for several dominant
works in the BCI field. Time domain features consider the
EEG samples over all the channels. Time domain features
are easy and fast to compute and require selection of less
number of parameters. In general Time domains features are
used in conjunction with other feature extraction technique
like spatial features or AR to have a complete performance
analysis. Frequency domain features employ the mathemat-
ical technique to EEG data analysis. Frequency domain
features are widely used in mental and motor imagery BCI.
Nevertheless, it is also helpful in decoding emotions or for
SSVEP based BCI systems. Indeed the other feature extrac-
tion techniques have been explored and used. Time-frequency
feature extraction methods are most suitable for the EEG
signals analysis. However, Discrete Wavelet analysis with
statistical features is most adopted time-frequency feature
extraction technique where wavelets are derived from the
mother wavelet by dilation and translation process. CSPs
are suitable for motor imagery BCI where it detects the

EEG pattern by constructing spatial patterns and tuning the
variance among tasks. The CSP used the multiple electrodes
and performance can be affected by changing electrode
positions. Finally, It is recommended to use a combination of
features instead of single features extraction technique, such
as time domain with frequency domain or frequency domain
with connectivity features, which improves the classification
accuracy of the system.

It is noteworthy that instead of using feature vectors,
recent research has also explored the Riemannian geometry
and Tensor approaches. The idea of Riemannian geometry
evolves with the fundamental idea of directly mapping data
onto a geometrical space furnished with a suitable met-
ric. Riemannian geometry is a very popular and promising
approach for various BCI problems including P300, motor
imagery and SSVEP. Current research has also explored the
use of tensors or covariance matrices for EEG signal classi-
fication. These tensors or covariance matrices are the linear
combinations of various time points or data from various
sensors. Recently the tensor approaches are emerging and
promising. However, it requires more research to increase
its effectiveness. DNNs are having the potential to extract
features automatically and build the classification model.
DNN requires large training sets, but due to the unavailability
of large training sets in BCI, DNNs are the suboptimal
solution for it.

A. Open Challenges

This section presents the open challenges which are im-
portant for further progress in BCI.

1) Small Training sets: The EEG based BCI applications
require the training where a user has to concentrate on
specific mental activity and the signals are acquired using the
EEG equipment. The main challenge is the user acceptance
of this training process. Due to this usability issue, training
sets are small in EEG based BCI applications. Moreover,
the training process is a time-consuming activity. Hence the
single-trial is preferable over multi-trial which causes the
small training sets.

2) High Dimension Curse: In BCI systems the EEG sig-
nals are acquired through multiple channels to preserve high
spatial resolution, and thus deals with high dimensionality
curse. Due to small training sets its challenging to develop
BCI system without an overfitting problem. In general to
describe the data properly the number of training samples
needs to increase exponentially with the dimension of EEG
signals [102], [103]. However, EEG based BCI systems
lagging this solution due to the small training set and high
dimension curse.

3) Information Transfer Learning: The primary hypoth-
esis in machine learning is that same feature space and
probability distribution are considered for modelling the
train data and evaluation of test data. Unfortunately, this
hypothesis is not sustained in BCI due to data is acquired
from different sessions and across different subjects. To
make this hypothesis true solution is Information transfer
learning which is essential to develop a generalized system.
Information transfer learning is the improvement in learning
where the system can apply the previous tasks learned
knowledge to novel tasks. It is always relevant to transfer
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the knowledge between the same tasks (P300, P300) instead
of different tasks (P300, motor imagery).

4) Nonstationary: The non-stationary nature of EEG sig-
nals is the major obstacle in developing BCI systems. The
continuous variations are occurred over time either within
or between recording sessions. Moreover, concentration and
fatigue are also considered as intrinsic nonstationary as-
pects. The undesirables signals are also included due to
environmental noise, alterations in electrode placement and
environmental noise as well as various artefacts like Elec-
tromyography (EMG), Electrooculography (EOG) and ocular
artefacts.

5) Universality: The expertise and knowledge from vari-
ous disciplines are required for successful BCI development.
The electrical engineering, physics, medicine and biology
are required for the accurate EEG measurement, electrode
placement and the selection of proper input signals. The
computer science engineering and mathematics are required
to build models which include preprocessing and designing
of neural nets. As per the extended output requirement,
the other disciplines like telecommunications or mechanical
engineering might be required. Indeed for the efficient and
effective BCI development required the team of experts from
various disciplines.

B. BCI Applications

This section begins by clarifying the distinction between
BCIs as a vital preamble to address the potential practical
applications using BCI technology. Present BCIs classified
as exogenous or endogenous according to the nature of
the recorded signal. Exogenous BCI systems depend on
the neuronal activity evoked by an external stimulus such
as auditory or visual evoked potentials. Exogenous BCIs
may not require intensive training since it is easy to set
up their control signals (P300 and SSVEPs). In contrast,
the endogenous BCI system depends on brain rhythms and
other potentials instead of external stimuli. Endogenous BCIs
require extensive training in which a user learns the skill of
producing a specific pattern which is decoded by the system.

BCI tools have potential applications in the following
different areas:

1) Communication and control: Human beings commu-
nicate with each other by means of verbal and visual
expressions. However, paralysed patients having various
neurological diseases like brainstem infarcts, brain injury,
stroke and advanced amyotrophic lateral sclerosis (ALS),
their conditions prohibit normal communication, contrarily
affecting their life. Due to the security issue, in a few
situations, it would be fascinating to interact using brain
signals. In this context, the brain-computer interface (BCI) is
promising to use as a communication technology via a variety
of methods such as in spelling applications [112], semantic
categorization [113], or silent speech communication [114].

The hands-free applications like BCI aided mind control-
ling machines can bring comfort and ease to human beings.
These applications can accomplish a set of commands using
brain signals and thus don't require any muscle movement.
Disabled users can get support from BCI assistive robots
in professional and daily life and can build their life better
[115].

2) Neuroergonomics and smart environment: BCIs are
also exploited in building smart environments such as work-
places, houses or transportation with further offering such
as luxury, safety and physiological control to humans daily
life. However, they have expected the cooperation between
BCI technologies and the Internet Of Things (IoT) [116],
[117]. Initially, BCI applications were focused on the aim to
yield a communication channel for disabled users who have
speaking or mobility issues. But later on, BCI applications
have shown remarkable footprints in the world of healthy
people. It acts as a physiological measuring tool about a
users cognitive, affective or emotional state [118]–[120].

3) Neuromarketing and advertisement: The BCI re-
searchers have also shown interest in the marketing field. The
EEG evaluation benefits for the TV advertisements related to
political and commercial fields are explained in [121]. The
research has been also carried to measure the attention of
accompanying watching activity [122] and the estimation of
the memorization of TV advertisements [123].

4) Educational and self-regulation: Neurofeedback is an
encouraging approach for improvement in brain performance
by analyzing brain waves. The educational systems can
determine the degree of clearness of studied information via
utilizing brain electrical signals. The personalized interaction
took pace with each learner according to the response [124].
Self-regulation through learning using noninvasive BCI has
been also studied [125], [126].

5) Games and entertainment: BCIs are not only popular
in the medical field but also in the entertainment and gaming
applications. Researchers have shown interest in providing
multi-brain entertainment experience by combining the exist-
ing games features with brain controlling capabilities [127].
The players can join a competitive or collaborative football
game with two BCIs, whereby right or left-hand movements
players can score goals. On the other hand, few games
have been developed for neuroprosthetic rehabilitation and
emotional control. The brainball game is created with the
intent to reduce stress lever; where users can move the ball
with the relaxation [128].

6) Security and authentication: Electrophysiology or cog-
nitive biometrics are used as the detection of suspicious
objects and abnormal behavior [129], [130]. Electrophysi-
ology signals improve the resistance of biometric systems to
spoofing attacks since they are difficult to synthesize and can
not be casually acquired by external observers. Researchers
have also worked on the EEG signal based authentication
system as part of the smart driving system using driving
behavior or mental-task conditions [131], [132].

V. CONCLUSIONS

This paper has reviewed various feature extraction tech-
niques employed in EEG based BCI applications. As EEG
changes over time, the adoption of fast and reliable feature
extractors is very important in BCI research. We summarize
the time-domain, frequency-domain and time-frequency do-
main features with their properties. The findings suggest that
each technique has its specific benefits and flaws; hence the
optimum feature extraction method for any application might
be different. Currently rather than using feature extraction
techniques, recent research has been also explored around
tensors, Riemannian Geometry and deep learning. Tensors
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and Riemannian geometry are very helpful to improve BCI
reliability. Deep learning networks don't appear to be ef-
fective for BCI applications; one possible reason is limited
training data. Open challenges have been also discussed;
which we think are important for further development in
BCI. In the future, the work related to feature extraction
methods for EEG based BCI should focus on developing
more robust and efficient feature extraction techniques which
are theoretically motivated, biologically realistic and useful
for real-time BCI applications.
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