
 
Abstract—Software-Defined Networking (SDN) is a new method 
that aims to virtualize networking by decoupling data plan from 
the control plan. As this technique impacted many actors in the 
networking community because of its suppleness, 
programmability, and central decision management. Many 
interrogations have been raised about problems that come with 
it. One of the biggest concerns related to SDN is security. This 
trait is crucial when determining to implement the SDN as a 
solution or not. Applications plane contains applications that 
can generate flow rules, those applications are allowed to access 
the data store present within the controller to store their rules, 
which introduces vulnerabilities in the network making the flow 
rules untrustworthy. Access to data store can only be trusted if 
the security problems inherent in software-defined networks 
are resolved. In this paper, we propose an enhanced SOLID-
FLOW to improve flow rules database integrity inside the SDN 
controller. First, we discuss security threats related to SDN 
mechanisms regarding the control layer. Secondly, we debate 
appropriate solutions that have been presented in the literature 
to address security-related issues. Then we present our 
enhanced mechanism. Finally, we discuss our implementation 
use case and its results. The last section will provide a conclusion 
and an overview of future works. 
 

Index Terms— Software-Defined Networking; SDN security; 
Control plan; Solid-Flow; OpenFlow. 
 

I. INTRODUCTION 
THE SDN - Software-Defined Networking - is the hot 
topic that shakes the world of the network in recent years. 
The SDN is recognized today as an architecture for 

opening the network to the applications and central 
management. This is far from the original rigid definition in 
which it was just about to separate the control plane and data. 
Therefore, OpenFlow [1] is a component of SDN that offers 
programming and infrastructure simplification. At this level, 
several models of SDN have been designed in parallel. The 
work generally focuses on the inherent programmability of 
equipment (new programmable devices...), the SDN 
controllers and orchestrators whose mission is to provide a 
network abstraction layer, network, and virtualization 
functions that aim to overcome the  
complexity of the underlying physical network making the  
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configuration more agile. The challenge for network 
managers is to follow-up on this new stage to take advantage 
of these new potentials.  
As enterprises choose to implement Software Defined 
Networking (SDN), one of the main concerns raised is SDN 
security problems. Enterprises are seeking if SDN products  
will guarantee that their applications, sensitive data, and 
infrastructure won't be exposed to any security risk related to 
SDN. With its introduction, new strategies for securing the 
SDN application layer, control layer, infrastructure layer are 
needed. In this paper, we review the attack vectors affecting 
the control plan in case of SDN implementations and share 
ways to secure it. After, we propose an enhancement to our 
approach called “Enhanced Solid-Flow,” which will rely on 
our previous work [2] to more secure the flow rules database 
leading to enhance trust in flow rules present in the 
controller. 
 In summary, we make the following contributions: 
§ We propose a new security mechanism based on hashing 

algorithms and authorization to handle flow rules 
insertion.  

§ We design and develop the mechanism that runs in three 
scenarios for best performance and efficiency and 
accuracy. 

§ We evaluate the performance of our solution in deferent 
scenarios regarding reactivity CPU usage and response 
time.  

 The remainder of this paper is organized as follows: 
Section II presents SDN architecture and principals. Section 
III security challenges facing the SDN controller. Section IV 
summary the proposed solutions to dress SDN security 
issues. Section IV outlines the enhanced Solid flow 
architecture and its scenarios, and Section V discusses our 
implementation and performance evaluation. Finally, Section 
VI concludes with a discussion of our future works. 

II. SDN ARCHITECTURE  
 The purpose of SDN technology is to offer some open 
interfaces that enable the development of software that can 
manage the connectivity supplied by a collection of network 
resources and the flow of network traffic through them, along 
with possible examination and adjustment of traffic that may 
transit in the network [3]. The ONF (Open Networking 
Foundation) defined three main principles of SDN [3]: 
§ Separating the controller and data planes: 
§ Decouple control plan from the data plan. However, 

control must be executed within the data plan system. 
§ A central control: This aspect will provide a high overview 

of the network and can enhance the deployment of 
decision making instead of local control, therefore 
changes latency are less significant.   

§ Exposure of abstract network resources and state to outer 
applications.  
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 These principals are clarified by the SDN architecture, 
which is built around three principal layers: Application 
plane layer, Controller plane layer and Data plane layer. 

A. Data plane 
 The data plane includes the forwarding hardware i.e. 
switches/routers, and incorporates all software interfaces and 
hardware elements [4]. The forwarding operations are 
handled using a forwarding table called flow table, which 
contains rules that manage forwarding operations. Fig. 1. 
Shows the Flow Table Entry architecture. 

 
Fig. 1.  Open Flow –Table 

B. Control plane  
Network intelligence is installed in the software-based 

logically centralized SDN controller; this controller 
communicates through a standard southbound API 
(OpenFlow). The control layer regulates and manages the 
forwarding decisions of the hardware [4]. ONF designed the 
SDN architecture with only a single Controller but new 
scenarios use multiple distributed controllers [5][6] to 
enhance the availability and scalability of network resources. 

C. Application plane  
Applications and services explore possibilities offered by 

the control and infrastructure layer. The abstract application 
layer is located over the control plane layer and enables the 
unsophisticated development of network applications [3], 
such as network virtualization, traffic monitoring, etc.  Those 
applications interact with the control layer through the 
northbound API.  

Application can include SDN specific applications 
belonging to SDN providers itself, but it can  also have third-
party application developed to meet specific needs  such as 
applications related to network automation to better align 
with the needs of the applications running on it, network 
configuration and management to enable real time 
configuration and ease of administration , network 
monitoring, network troubleshooting, network policies and 
security. Those application often present high-risk rate, 
specifically third party applications, the threats generally 
target the control plan because of its high value, hence 
securing the access to control data provided by the SDN 
controller is mandatory. 

 
Fig. 2. shows the architecture of the typical SDN network 

as described by the Open networking foundation.  

	
Fig. 2.  SDN Architecture showing the tree layers (Application plan, 
Control plan, Data Plane) 

III. SDN SECURITY CHALLENGES 

Since the introduction of SDN, security issues have been 
raised because of the nature of its concept, which consists of 
separating the control plane from the data plane. The list of 
security issues will grow with the deployment of SDN 
technologies. 

In this section, we will debate some of the most significant 
security challenges menacing the control layer.  

A. Security challenges in Control Plane 
The SDN control plane is a central making decision entity 

because of its particularity. The controller is the most suitable 
target for hackers. It’s the brain of any network based on 
SDN technology. This entity is exposed to several risks, as 
we will present below. 

1) Unauthorized controller access 
Threats presented by the application layer affect the 

control layer; this threat exists because of the lack of any trust 
and reliable interaction between third party applications and 
the controller [7]. As the controller is responsible for 
authorizing applications to use network resources with 
proper access levels, these applications need to be separated. 
This separation should ensure that applications with low 
authorization levels could not handle high privilege. E.g: load 
balancing applications need to get packet statistics and IDS 
need header fields of the packet, and such custom access 
needs custom security policies. 

2) Availability: 
Denial of Service (DoS) attacks and Distributed Denial of 

Service (DDoS) flooding attacks are the main approaches to 
terminate the availability of a machine or network resource. 
DoS and DDoS attacks are one of the significant security 
challenges[8]. Since the SDN control plane is located in the 
controller within a physical machine, DDOs attack still a 
significant risk to SDN, which compromises the availability 
of the controller and consequently impacts the whole SDN 
network [8]. 

3) Scalability & availability 
Concentrating network intelligence in the controller 

exposes the network to scalability and availability if a DOS 
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/ DDOS attacks succeed to paralyze the regular running of 
the controller, so both application layer and data layer 
functionalities will hang. 

Another issue with the control plan is the adoption of 
Transport Layer Security (TLS) [9] mechanisms, which was 
proposed to secure the southbound communication with the 
transport layer. In the last version of open flow, this 
mechanism is optional and vendors rarely implement it 
because of its complexity of implementation, the lack of TLS 
mechanisms deployment in SDN network exposes it to many 
security threats such as DOS / DDOS and man-in-the-middle 
attacks.  

In this section, we presented the most relevant security 
issues that come up with the adoption of the SDN network 
solution at the control layer level.  

In Table I, we review a list of different threats related to the 
control layer. 

    TABLE I 
 SDN SECURITY THREATS 

SDN Layer Threat of 
nature 

Threat Description 

Control 
Layer 

Lack of 
authentication 
and  
authorization 

No suitable authentication & 
authorization mechanisms due to 
the diversity of third party 
applications. 

Fake flow rules Malicious or compromised 
applications can generate false flow 
rules  

Lack of access 
control and 
accountability 

Challenging to implement access 
control and accountability on third-
party applications that consume 
network resources. 

Scalability and 
availability 

Centralizing intelligence in the 
control plan will expose the 
network to scalability and 
availability issues. 

Unauthorized 
controller 
access 

No suitable mechanisms for 
enhancing access control on 
applications. 

DoS attacks The centralized nature of 
intelligence in the SDN network is 
attractive to DDOS attacks 

TCP-Level 
attacks 

TLS is vulnerable to TCP-level 
threats  

Man-in-the-
middle attack 

Due to optional implementation  of 
TLS, if not used it's exposed the 
network to Man-in-the-middle 
attack 

VI. RELATED WORK 

A. Security Solutions in control Plane 
Securing the control plan from various types of threats, 

which can be resumed as scalability and availability, 
unauthorized controller access, fake flow rules and DoS 
attacks, these threats have been a challenge since the 
introduction of SDN. Many solutions were proposed to solve 
these issues [10]. 

The SDN controller performs an intermediate operation 
between the network hardware and applications by 
abstracting the network complexity from applications. Thus, 
the centralized control architecture enabled by SDN makes it 
easy to deploy new applications that would collect network 
information through the controller. Therefore, various 
network programming languages such as Frentic [11] 
Procera [12] and NetCore [13] were proposed to simplify the 
development of applications in SDN. Furthermore, FRESCO 

was introduced to enable the development of OpenFlow 
security applications, besides language programming. 
Different frameworks were suggested to solve the 
compliance between SDN application and network security 
policies.  

1) Lack of access control and accountability 
SDN applications need to follow these applications to claim 

the network specifications regarding the information. To dress 
this issue, one of the critical solutions is permOF [15], which 
is a well-grained permission system that evolves a set of 
OpenFlow permission and runtime isolation mechanism 
applying for permissions. The permission set is sorted into 
reading, notification, write, and system permissions. 

Table II shows these permissions and further sub-
categories. 

TABLE II 
 PERMOF PERMISSION SET 

Category Permission 

 
Read 

read topology 
read all flow 
read statistics 
read pkt in the payload 

 
 

Write 

flow mod route 
flow mod drop 
flow mod modify hdr 
modify all flows 
set device config 
set flow priority 

 
Notification 

pkt in event 
flow removed event 
error event 
topology event 

 
System 

network access 
file system access 
process runtime access 

The read permission defines what information application 
can retrieve from the network through the controller. The 
write explains whether an application can modify or not the 
state of the controller or switches, notification handle 
permission of notifying the application if a specific event 
acquires and the system category manages access to local 
resources of the operating system.  

2) Fake flow rules 
Fake flow rules remains the first and most critical issue to 
deal with, any flow rules residing within the controllers is 
legitimate and expose the controller to propagate false and 
misleading routing information, hence the importance given 
to solve this issue among the researcher community.  

Many types of research conducted to propose FLOVER, 
which is a model-checking system that verifies the flow 
policies against the security policies of a network and make 
decision which is transferred to the conroller. 

In the SDN architecture, FLOVER [16] is executed as an 
OpenFlow application, but logically it is located in parallel 
to the controller. The controller is modified to request 
FLOVER’s permission on every new flow rule generation or 
modification. Primarily, the controller communicates flow 
tables and security policies to FLOVER which contains 
critical security information to the network preconfigured by 
the network administrator, so FLOVER can evaluate 
requested changes accordingly and respond to them. 
FLOVER also uses the controller to access the current state 
and the network information’s and statistics, like flow rule 
tables on the switches. Fig. 3. shows the architecture of 
FLOVER alongside the communication between Open Flow 
controller, OV switches and the FLOVER application. 
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Fig. 3. FLOVER architecture 

Another flow rule conflict management system is 
FortNox. FortNox [17] employs a security enforcement 
kernel (SEK) to enforce flow controls for active defense 
against different threats. FortNox is an enhancement engine 
that is responsible for enforcing and avoiding rule conflicts 
from separate security authorizations. FortNox uses two 
protection mechanisms:  

§ Rule prioritization, which ensures that any new rule that 
contradicts the rules produced by FRESCO applications 
is simply overridden because of the highest priority. 

§ The conflict detection algorithm is applied to each new 
rule. 

In [18] the authors propose PERM-GUARD a system for 
managing and authorizing flow rules. PERM-GUARD uses 
an authentication/authorization model to verify the validity 
of the controller's flow rules through identity-based 
signature, this solution effectively filters out unauthorized 
flow rules created by valid applications and traces their 
creator in a timely and accurate manner. 

3) Authentication and Authorization 
The lack of the implementation of any authentication and 

authorization mechanism by third-party applications 
compromises the normal network behavior. FRESCO [13] a 
security-specific application development framework for 
Open Flow networks was proposed, FRESCO is a security 
application development platform that facilitates the 
exportation of API scripts, which help security experts 

develop threat detection logic and security monitoring as 
programming libraries. Moreover, FRESCO programming 
framework was presented to help attain rapid design and 
modular composition of different security mitigation and 
detection modules using Open Flow. 

In [18], the authors proposed a modular SDN security-
control communication architecture, KISS, with innovative 
solutions in the context of key distribution and secure 
channel support. Besides, they suggest iDVV, the integrated 
verification value of the device, a code protocol for 
generating a secret code that is deterministic but 
indistinguishable from chance. This allows local but 
synchronized generation/verification of keys at both ends of 
the channel even by message. IDVV should make a 
significant contribution to both the robustness and simplicity 
of authentication and secure communication problems in 
SDN. 

4) Scalability & availability  
SDN controller is responsible for handling all network 

requests and events. As the size of the network keeps 
growing the controller can reach a state of a bottleneck. 
Benchmarking of the SDN NOX [19]  controller shows that 
it can support up to 30k demand this rate can be a serious 
issue to networks with high requests. 

To assuage this matter levelling parallelism in multicore 
systems was proposed by Tootoonchian et al. [20] their 
approach showed that minor alterations to the NOX 
controller increase its performance by an order of greatness 
on a single core. It means that a single controller can support 
a further larger network, given adequate controller channel 
bandwidth with acceptable latency. More improvement can 
be achieved by reducing the number of requests sent to the 
controller using DIFANE [19] unique switches, called 
authority switches. These switches are used to discharge the 
tasks of the controller and handle the packets in the data 
plane. Most micro-flows are handled in the data-plane to 
reduce the need to request the control-plane and increase the 
scalability. 

Another way to resolve the scalability issue is to distribute 
the control plane tasks to multiple controllers. ONIX [20] 
delivers a distributed control plane platform while preserving 
the reliable network-wide state (Fig. 4). 

 

 
 
Fig. 4. Two ONIX controller coordinating and their views of the underlying network state 
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Many other solutions to the scalability issue were presented 
in the literature such as HyperFlow [21], which consists of a 
physically distributed and logically centralized control 
platform. In recent works, Shin et al [22] proposed IRIS-
HiSA, a cluster architecture for distributed controller, it’s the 
main objective is to support uninterrupted load balancing and 
failover with horizontal scalability, as is done in existing 
work, but one of IRIS-HiSA's distinctive features is to 
provide transparency between the data plane and the 
switches. Thus, the switches do not need to know the internal 
details of the controller cluster, and they simply access the 
same way a single controller is accessible. 

5) Unauthorized controller access 
SDN Applications access the controller for a wide range of 

reasons, it’s primordial to ensure that these applications work 
within their respective perimeter with the legitimate 
functional requirement. For that, securing the controller from 
the malicious application must be ensured. 

SE-Floodlight [23] controller was proposed as an 
extended version of the Floodlight controller. SE-Floodlight 
introduced several security enhancement methods: 

§ Privilege separation by adding a secure 
programmable northbound API, this enables SE-
Floodlight to work as a truly independent mediator 
between the application layer and the data plane.  

§  
§ A runtime integrity validator of the modules that 

generate flow rules. The runtime copy of the local 
flow-rule producer is compared to the original image 
installed by the administrator.  

§ A Rule Reduction (ARR) algorithm that manages 
inline rule-conflict detection. 

§ Role-based conflict resolution by comparing the 
authoritative roles of the producers of the conflicting 
rule 

§ PACKET_OUT Control: packet control generated by 
OpenFlow apps can be blocked by the administrator. 

§ Security Audit: is a subsystem that tracks all security 
events  

6) DoS attacks 
The centralized nature of SDN is revealed to be a single point 
of breakdown that can be exploited by one of the Internet’s 
most old, high risk and major security threat known as 
Distributed Denial of Service (DDoS) Attack. A DDoS attack 
is a dispersed and harmonised attack that begins from 
multiple network devices. Essentially, the strategy of this 
attack is to send a huge volume of spoofed IP packets from 
disparate points in order to make the network resources 
unattainable to legitimate users. Over recent years, the 
attackers have got smarter and have been constantly 
enhancing and using advanced DDoS attack methods to 
inflict more economical and financial costs. 

While it is a standard security issue, DDoS attack 
mitigation is still a severe threat to almost every technology , 
Braga et al presented in [24] a detection method that consists 
of self-organizing maps (SOMs) to identify 
abnormal/injected flows (Fig. 5). 
The proposed solution consists of three modules: 

§ A flow Collector module that is responsible for 
gathering flow from switches. 

§ A feature Extractor module that extracts relevant 
data distinguishing DDOS attacks. 

§ A classifier module analyzes extracted data then 
classifies them as normal or abnormal. 

 

 
Fig. 5. SOMs detection process 

In recent works, Dridi et al. [25] suggested SDN-Guard, a 
new system that can effectively protect SDN networks 
against DoS attacks dynamically by potential redirection of 
malicious traffic, flow timing adjustment and aggregation of 
flow rules. The solution relays on four module (Flow 
management module, Rule aggregation module, Monitoring 
module).  

De Assis et al. [26] proposed a stand-alone DoS / DDoS 
defensive approach for SDN called Game Theory (GT) Game 
Theory which is an analytical tool that can model negotiation 
situations and deal with many problems in different areas -
Holt-Winters for Digital Signature (HWDS), which combines 
detection and anomaly identification provided by an HWDS 
system with a decision-making model based on GT. 

Yunhe et al. introduced in [27] a system named Software-
Defined Anti-DDoS divided into four modules detection, a 
Trigger Module, Detection Module, Traceback Module, and 
Mitigation Module, respectively. These modules correspond 
to four states: 

 
§ Init State: It is the primary state of the SD-Anti-

DDoS system. A packet_in trigger is used to 
program attack detection in this state. If no abnormal 
event was found, it will remain in the Init State. Else, 
the system will run a Detection State. 

§ Detection State: This state is handling the 
detection of a DDoS attack. The attack detection will 
start to verify the existence of a DDoS attack in the 
network. 

§ Traceback State:  If the detection module detects a 
DDoS attack, the Traceback State will start and the 
system will try to trace the attack path and the attack 
origin switch. 

§ Mitigation State: The Mitigation module will try to 
stop the threat from its source and will clean the 
infected switch from malicious flow entries.  

Fig. 6. Illustrate the four state of the above Anti-DDoS 
attacks. 
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Fig. 6. SD-Anti-DDoS four state diagram 

7) Malicious flow rules 
Changing the flow rules within switches must be controlled. 

FortNox platform allows the NOX controller to check flow 
rules contradiction instantaneously, then decide the generated 
flow rules. Blocking flow rules insertion request is achieved 
using a conflict analysis algorithm when a security 
application adds a flow rule. FortNOX restricts other 
applications from inserting conflicting flow rules in the same 
OpenFlow network. 

 

V. OUR PROPOSED MODEL 

A. System Model 
 In previous sections, we presented the most relevant 
security threats facing the controller from many perspectives. 
Then we gave some of the solutions proposed in the literature 
to mitigate these threats. None of the previous solutions has 
treated the integrity of the controller config data-store. A 
malicious application or any mischievous person or system 
that gained access illegitimately can alter the data present 
within the config data-store. The main goal of the datastore is 
to hold the actual configuration of the SDN controller and its 
environment making it a suitable target, losing control over 
the storage section expose the SDN network-based 
implementation to several type of risks, from a simple traffic 
deviation to denial of services. 
 
    In this section, we will introduce a significant 
enhancement to our approach that aims to improve the 
controller security, especially the flow rules config datastore 
from false and illicit flow rules modification, insertion and 
deletion. The Enhanced Solid-Flow module will be 
implemented in one of the SDN controller and will be 
designed following this perspective such as the open-daylight 
[23] controller , Floodlight. Fig 7. shows SDN Floodlight 
controller architecture. Our module will target the storage 
section of the Floodlight Controller. 
The Enhanced Solid flow was designed using java-
programing language and was implemented in two scenarios: 

• As module running within the controller 
• As a module exposed via a secure rest-api. 

 
Fig. 7. Floodlight Architecture 

 
    As mentioned in the previous paragraph, flow rules are 
generally generated by two manners, either from SDN 
application operating on the application plan or by users with 
system administration rights. To ensure that these flow rules 
are generated by one of the above trusted methods, we present 
an enhancement of the “Solid-Flow” module, which will be 
implemented as a plugin, developed using OSGI framework 
Equinox. Our plugin will rely on several mechanisms such as 
SHA 256 or SHA 512 [28] cryptography hashing function to 
ensure the integrity of the control flow rules present within 
the controller data-store. 
Solid-flow is attached to the controller environment as shown 
in Fig. 9 ( next page ), and will run a periodic check after the 
initiation state on dynamic periodic check calculated on the 
fly depending on the number of attacks in the previous cycle. 
Our proposed model exposes its services through a secure rest 
API, and can run in standalone mode. 
Flow rules check will be also triggered in case of newly 
arrived legitimate flow from any source whether is an SDN 
application or users with administrative privilege. This event 
will be triggered to ensure that during the interval between 
periodic checks, no flow-rule was inserted illegitimately, 
resulting in more reliable config-data store. 
Each flow rule will trigger several process from hash 
calculation passing through checking the type of flow 
(periodic or check) then depending on the type the Solid-flow 
will compare hashes and determine the eligibility of the flow 
rule then decide what to do with it.  
 
Fig. 8 shows two types of flow rules (legitimate flow-rule and 
illegitimate flow-rule) sources insertion along the time line 
and the two types of check, a periodic Solid-flow-check and 
a check before the insertion in the data-store. 
-

 
Fig. 8. Attack timeline 

 Each periodic check will pull a new fresh hash of the flow 
rules data-store, a hash calculation will be calculated for each 
flow rules and for the global content of the data store, then it 
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Fig. 9. Enhanced Solid-Flow architecture 
 
 
will be compared with the previous hash’s stored from earlier 
calculations.  
 When the controller triggers the Solid-flow mechanism by 
notification, assuming that this change is legal and made by 
one of the trusted methods using one of the solutions 
proposed earlier such as permOF [15],  a new hash will be 
calculated before inserting the new flow rule in the config 
data-store. Afterward, solid-flow will confirm to the 
controller that no change has been made to the config data-
store. Subsequently, the new flow rule could be inserted 
securely, and unique hashes will be calculated and encrypted 
for the next comparison. 
 Hash comparison will result either in normal config data-
store state or in integrity violation. In the case of integrity 
violation, mitigation actions will be conducted depending on 
the check type ‘periodic, reactive periodic or notification’. 
 The system will determine with high precision where the 
illegitimate change has been made 

B. Solid-Flow design principals. 
 Classification hyperplane of training data may be divided 
by linear classification plane or not via mapping the training 
data vector to higher dimensional space with some function 
and transferring the problem to a linear classification problem 
in that space. After the mapping procedure, SVM finds out a 
linear separating hyperplane with the maximum margin in the 
space.  
    Our module will run during the controller initialization 
stage. After the initiation phase, the Solid-Flow mechanism 
will be prompted to run in three scenarios: 

Scenario 1: The periodic hash gathering. 
Event 1): Initializing runtime environment and 

checking controller state. 
Event 2): Gathering policies information from 

the controller flow rules data-store.  
Event 3):  New hash calculation. 
Event 4):  Hash comparison (between the latest 

and previous hash). 
Event 5): If integrity violation detected, take 

mitigation action. 
Event 5): Periodic check timer initiation.  

 
Scenario 2: Event initiated by the controller in case of new 

flow rule arrival. 
Event 1): Notification form the controller about 

new flow inserted by a trusted entity 
and wait for the Sloid-flow 
confirmation. 

Event 2): Gathering policies information from 
the controller flow rules data-store. 

Event 3)        New hash calculation. 
Event 4):       Hash comparison. 
Event 5):       If integrity violation detected, take  

        mitigation action. Otherwise, permit    
        to the controller to insert new flow- 
        rule. 

Event 4):   Hash storing (new hash stored for feature 
comparison). 

Scenario 3: Reactive periodic mode hash gathering. 
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Event 1): Initializing runtime environment and 
checking controller state. 

Event 2): Gathering policies information from 
the controller flow rules data-store.  

Event 3):  New hash calculation for each rule and 
the global config data store. 

Event 4):  Hash comparison (between the latest 
and previous hash). 

Event 5): If integrity violation detected, take 
mitigation action. 

Event 5): Periodic check timer initiation using 
the proposed formulate.  

    The above scenarios are translated into algorithms. We 
propose 3 algorithms related to each previously described 
scenario to improve flow rules database integrity inside the 
SDN controller. All the parameters used in different 
algorithms are presented in Table III. 

Table III 
PARAMETERS OF ALGORITHMS 

Parameters Meaning 

PT Periodic Timer 

DPT Default Periodic Timer  

RT Reactive Timer 

DHA Data Store Hash  

AHA Actual Hash 
CT(ER) Number of wrong hash counter 

CST Controller State 
CVF Controller Verification 

T_HRMAX Maximum Threshold ( time ) 
T_HRMIN Minimum Threshold ( time ) 

 
Among the parameters, PT, DPT, RT, represent the 

periodic timer, the default periodic timer, and the reactive 
timer respectively. DHA and AHA, describe the data store 
hash and the actual hash. CT(ER), CST and CVF represent 
the number of the wrong hash counter, the controller state, 
and the controller verification. T_HRMAX and T_HRMIN 
represent the maximum threshold and the minimum 
threshold, respectively. The value of some parameters is set 
according to the attack model or scenario setting. 
For the first scenario, as shown in algorithm 1, we initiate the 
Periodic Timer PT to a Default Periodic Timer. The Number 
of wrong hash counter CT(ER) is in state 0. If the Controller 
State CST is initialized, then the value stored AHA is the 
same as Data Store Hash DHA. At the beginning of time 
period DPT, if the stored value Actual Hash AHA is different 
from that of the Data Store Hash DHA, the Number of the 
wrong hash counter will be 1, and Take mitigation action. 

Algorithm 1: The periodic hash gathering 
1: Let PT = DPT; 
2: Let CT(ER) =0; 
3: if CST is initiated then 
4:          AHA = DHA; 
5: End if 
6: At the beginning of time period DPT : 
7:          If AHA == DHA then 
8:             AHA = DHA; 
9:         Else  if AHA != DHA 
10:             CT(ER) += 1; 
11:         Take mitigation action 
12:        End if 
13: end of time period DPT restart over 

For the second scenario, the event is initiated by the 
controller in case of a new flow rule arrival. In this case, the 
controller sends a verification about new flow inserted by a 
trusted entity and waits for the Sloid-flow confirmation. The 
newly calculated hash called in the algorithm. Actual Hash 
AHA is compared with the data stored hash DHA. If integrity 
violation detected, take mitigation action. Otherwise, permit 
the controller to insert a new flow-rule. 

The new hash is stored for feature comparison. 

Algorithm 2: Event initiated by the controller 
in case of new flow rule arrival 
1: Let PT = DPT; 
2: Let CT(ER) =0; 
3: Event:   event (“controller ask for 
verification”) 
4: Action:  (If AHA == DHA then 
5:                  AHA = DHA; 
6:             Else  if AHA != DHA 
7:                   CT(ER) += 1; 
8:            Take mitigation action 
9;           End if) 
10: if CST is initiated then 
11:    AHA = DHA; 
12: End if 
13: At the beginning of time period DPT :  
14: Wait-event(); 
15:       If AHA == DHA then 
16:          AHA = DHA; 
17:       Else  if AHA != DHA 
18:             CT(ER) += 1; 
19:          Take mitigation action 
20:       End if 
21. end of time period DPT restart over 
 

For the last scenario, relative to reactive periodic mode 
hash gathering. We were initializing the runtime environment 
and checking the controller state. The New hash calculation 
for each rule and the global config data are calculated and 
compared (the latest and previous hash). If integrity violation 
detected, take mitigation action. and the periodic check timer 
initiation using the proposed formula: 

DPT=  
 

Algorithm 3: Reactive periodic mode hash 
gathering 

1: Let PT = DPT; 
2: Let CT(ER) =0; 
3: Event:   event (“controller ask for 
verification”) 

4: Action:  (If AHA== DHA then 
5:          AHA=DHA; 
6:             Else  if AHA!=DHA  
7:           CT(ER)+= 1; 
8:             Take mitigation action 
9:           End if) 

10: if CST is initiated then 
11:            AHA=DHA 
12: End if 
13: At the beginning of time period Dpt : 
14: Wait-event(); 

15:          If    AHA=DHA then 
16:                 AHA=DHA; 
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Fig. 11. CPU usage 

C. SDN Controller response time to attacks 
By minimizing requests for data checks using the reactive 

mode, the SDN controller does not need to be entirely 
dedicated to processing and responding to periodic checks, 
which will naturally improve the time of its response to the 
actual attacks. Fig. 12. clearly shows that the SOLID-FLOW 
reactive mode effectively makes it possible to have a 
minimization of the order of 30% of the response time 
compared to the normal mode. 
 

 
 
Fig. 12. SDN controller response time to attacks 

VI.    CONCLUSION AND FUTURE WORK 
Currently, SDN technologies attract a lot of interest in the 

networking industry. However, their deployment exposes the 
network to unknown risks and still poorly documented. 

The SDN networks differ from conventional paradigms, 
which introduce new security challenges alongside essential 
practice (although not explicit in standards) such as the use of 
a dedicated management network, the establishment of an 
authentication solution, and integrity as TLS, or equipment 
redundancy in charge of routing. In this paper, we gave state 
of the art on the various security threats targeting the control 
layer and challenges in SDN, and the multiple 
countermeasures proposed. We also introduced a Solid-Flow 
module for ensuring the integrity of the data-store. 

We have implemented the Solid-Flow module and tested 
its behavior regarding deferent aspects; the test result was 
encouraging, as shown in the previous section. In our next 

work, we envisage investigating the mitigation action section 
resulting in a complete trusted config data-store in SDN 
controllers and correct mitigation behavior. 
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