

Abstract—Software-Defined Networking (SDN) is a new method
that aims to virtualize networking by decoupling data plan from
the control plan. As this technique impacted many actors in the
networking community because of its suppleness,
programmability, and central decision management. Many
interrogations have been raised about problems that come with
it. One of the biggest concerns related to SDN is security. This
trait is crucial when determining to implement the SDN as a
solution or not. Applications plane contains applications that
can generate flow rules, those applications are allowed to access
the data store present within the controller to store their rules,
which introduces vulnerabilities in the network making the flow
rules untrustworthy. Access to data store can only be trusted if
the security problems inherent in software-defined networks
are resolved. In this paper, we propose an enhanced SOLID-
FLOW to improve flow rules database integrity inside the SDN
controller. First, we discuss security threats related to SDN
mechanisms regarding the control layer. Secondly, we debate
appropriate solutions that have been presented in the literature
to address security-related issues. Then we present our
enhanced mechanism. Finally, we discuss our implementation
use case and its results. The last section will provide a conclusion
and an overview of future works.

Index Terms— Software-Defined Networking; SDN security;
Control plan; Solid-Flow; OpenFlow.

I. INTRODUCTION
THE SDN - Software-Defined Networking - is the hot
topic that shakes the world of the network in recent years.
The SDN is recognized today as an architecture for

opening the network to the applications and central
management. This is far from the original rigid definition in
which it was just about to separate the control plane and data.
Therefore, OpenFlow [1] is a component of SDN that offers
programming and infrastructure simplification. At this level,
several models of SDN have been designed in parallel. The
work generally focuses on the inherent programmability of
equipment (new programmable devices...), the SDN
controllers and orchestrators whose mission is to provide a
network abstraction layer, network, and virtualization
functions that aim to overcome the
complexity of the underlying physical network making the

Manuscript received August 23, 2019; revised August 23, 2020. This
work was supported in part by Computer, Networks, Mobility and Modeling
Laboratory at the Faculty of Science and Technology in Settat, Morocco.

1Hassan First University, Faculty of Sciences and Techniques, Computer,
Networks, Mobility and Modeling laboratory: IR2M, 26000 - Settat,
Morocco (Email: qasmaoui@gmail.com).
2ORCID ID: https://orcid.org/0000-0002-8857-6586.
 Hassan First University, Faculty of Sciences and Techniques, Computer,
Networks, Mobility and Modeling laboratory: IR2M, 26000 - Settat,
Morocco (Email: abdelkrim.haqiq@uhp.ac.ma).

configuration more agile. The challenge for network
managers is to follow-up on this new stage to take advantage
of these new potentials.
As enterprises choose to implement Software Defined
Networking (SDN), one of the main concerns raised is SDN
security problems. Enterprises are seeking if SDN products
will guarantee that their applications, sensitive data, and
infrastructure won't be exposed to any security risk related to
SDN. With its introduction, new strategies for securing the
SDN application layer, control layer, infrastructure layer are
needed. In this paper, we review the attack vectors affecting
the control plan in case of SDN implementations and share
ways to secure it. After, we propose an enhancement to our
approach called “Enhanced Solid-Flow,” which will rely on
our previous work [2] to more secure the flow rules database
leading to enhance trust in flow rules present in the
controller.
 In summary, we make the following contributions:
§ We propose a new security mechanism based on hashing

algorithms and authorization to handle flow rules
insertion.

§ We design and develop the mechanism that runs in three
scenarios for best performance and efficiency and
accuracy.

§ We evaluate the performance of our solution in deferent
scenarios regarding reactivity CPU usage and response
time.

 The remainder of this paper is organized as follows:
Section II presents SDN architecture and principals. Section
III security challenges facing the SDN controller. Section IV
summary the proposed solutions to dress SDN security
issues. Section IV outlines the enhanced Solid flow
architecture and its scenarios, and Section V discusses our
implementation and performance evaluation. Finally, Section
VI concludes with a discussion of our future works.

II. SDN ARCHITECTURE
 The purpose of SDN technology is to offer some open
interfaces that enable the development of software that can
manage the connectivity supplied by a collection of network
resources and the flow of network traffic through them, along
with possible examination and adjustment of traffic that may
transit in the network [3]. The ONF (Open Networking
Foundation) defined three main principles of SDN [3]:
§ Separating the controller and data planes:
§ Decouple control plan from the data plan. However,

control must be executed within the data plan system.
§ A central control: This aspect will provide a high overview

of the network and can enhance the deployment of
decision making instead of local control, therefore
changes latency are less significant.

§ Exposure of abstract network resources and state to outer
applications.

Enhanced Solid-Flow: An Enhanced Flow Rules
Security Mechanism for SDN

1Youssef QASMAOUI, 2Abdelkrim HAQIQ, IEEE Senior Member

T

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

 These principals are clarified by the SDN architecture,
which is built around three principal layers: Application
plane layer, Controller plane layer and Data plane layer.

A. Data plane
 The data plane includes the forwarding hardware i.e.
switches/routers, and incorporates all software interfaces and
hardware elements [4]. The forwarding operations are
handled using a forwarding table called flow table, which
contains rules that manage forwarding operations. Fig. 1.
Shows the Flow Table Entry architecture.

Fig. 1. Open Flow –Table

B. Control plane
Network intelligence is installed in the software-based

logically centralized SDN controller; this controller
communicates through a standard southbound API
(OpenFlow). The control layer regulates and manages the
forwarding decisions of the hardware [4]. ONF designed the
SDN architecture with only a single Controller but new
scenarios use multiple distributed controllers [5][6] to
enhance the availability and scalability of network resources.

C. Application plane
Applications and services explore possibilities offered by

the control and infrastructure layer. The abstract application
layer is located over the control plane layer and enables the
unsophisticated development of network applications [3],
such as network virtualization, traffic monitoring, etc. Those
applications interact with the control layer through the
northbound API.

Application can include SDN specific applications
belonging to SDN providers itself, but it can also have third-
party application developed to meet specific needs such as
applications related to network automation to better align
with the needs of the applications running on it, network
configuration and management to enable real time
configuration and ease of administration , network
monitoring, network troubleshooting, network policies and
security. Those application often present high-risk rate,
specifically third party applications, the threats generally
target the control plan because of its high value, hence
securing the access to control data provided by the SDN
controller is mandatory.

Fig. 2. shows the architecture of the typical SDN network

as described by the Open networking foundation.

	
Fig. 2. SDN Architecture showing the tree layers (Application plan,
Control plan, Data Plane)

III. SDN SECURITY CHALLENGES

Since the introduction of SDN, security issues have been
raised because of the nature of its concept, which consists of
separating the control plane from the data plane. The list of
security issues will grow with the deployment of SDN
technologies.

In this section, we will debate some of the most significant
security challenges menacing the control layer.

A. Security challenges in Control Plane
The SDN control plane is a central making decision entity

because of its particularity. The controller is the most suitable
target for hackers. It’s the brain of any network based on
SDN technology. This entity is exposed to several risks, as
we will present below.

1) Unauthorized controller access
Threats presented by the application layer affect the

control layer; this threat exists because of the lack of any trust
and reliable interaction between third party applications and
the controller [7]. As the controller is responsible for
authorizing applications to use network resources with
proper access levels, these applications need to be separated.
This separation should ensure that applications with low
authorization levels could not handle high privilege. E.g: load
balancing applications need to get packet statistics and IDS
need header fields of the packet, and such custom access
needs custom security policies.

2) Availability:
Denial of Service (DoS) attacks and Distributed Denial of

Service (DDoS) flooding attacks are the main approaches to
terminate the availability of a machine or network resource.
DoS and DDoS attacks are one of the significant security
challenges[8]. Since the SDN control plane is located in the
controller within a physical machine, DDOs attack still a
significant risk to SDN, which compromises the availability
of the controller and consequently impacts the whole SDN
network [8].

3) Scalability & availability
Concentrating network intelligence in the controller

exposes the network to scalability and availability if a DOS

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

/ DDOS attacks succeed to paralyze the regular running of
the controller, so both application layer and data layer
functionalities will hang.

Another issue with the control plan is the adoption of
Transport Layer Security (TLS) [9] mechanisms, which was
proposed to secure the southbound communication with the
transport layer. In the last version of open flow, this
mechanism is optional and vendors rarely implement it
because of its complexity of implementation, the lack of TLS
mechanisms deployment in SDN network exposes it to many
security threats such as DOS / DDOS and man-in-the-middle
attacks.

In this section, we presented the most relevant security
issues that come up with the adoption of the SDN network
solution at the control layer level.

In Table I, we review a list of different threats related to the
control layer.

 TABLE I
 SDN SECURITY THREATS

SDN Layer Threat of
nature

Threat Description

Control
Layer

Lack of
authentication
and
authorization

No suitable authentication &
authorization mechanisms due to
the diversity of third party
applications.

Fake flow rules Malicious or compromised
applications can generate false flow
rules

Lack of access
control and
accountability

Challenging to implement access
control and accountability on third-
party applications that consume
network resources.

Scalability and
availability

Centralizing intelligence in the
control plan will expose the
network to scalability and
availability issues.

Unauthorized
controller
access

No suitable mechanisms for
enhancing access control on
applications.

DoS attacks The centralized nature of
intelligence in the SDN network is
attractive to DDOS attacks

TCP-Level
attacks

TLS is vulnerable to TCP-level
threats

Man-in-the-
middle attack

Due to optional implementation of
TLS, if not used it's exposed the
network to Man-in-the-middle
attack

VI. RELATED WORK

A. Security Solutions in control Plane
Securing the control plan from various types of threats,

which can be resumed as scalability and availability,
unauthorized controller access, fake flow rules and DoS
attacks, these threats have been a challenge since the
introduction of SDN. Many solutions were proposed to solve
these issues [10].

The SDN controller performs an intermediate operation
between the network hardware and applications by
abstracting the network complexity from applications. Thus,
the centralized control architecture enabled by SDN makes it
easy to deploy new applications that would collect network
information through the controller. Therefore, various
network programming languages such as Frentic [11]
Procera [12] and NetCore [13] were proposed to simplify the
development of applications in SDN. Furthermore, FRESCO

was introduced to enable the development of OpenFlow
security applications, besides language programming.
Different frameworks were suggested to solve the
compliance between SDN application and network security
policies.

1) Lack of access control and accountability
SDN applications need to follow these applications to claim

the network specifications regarding the information. To dress
this issue, one of the critical solutions is permOF [15], which
is a well-grained permission system that evolves a set of
OpenFlow permission and runtime isolation mechanism
applying for permissions. The permission set is sorted into
reading, notification, write, and system permissions.

Table II shows these permissions and further sub-
categories.

TABLE II
 PERMOF PERMISSION SET

Category Permission

Read

read topology
read all flow
read statistics
read pkt in the payload

Write

flow mod route
flow mod drop
flow mod modify hdr
modify all flows
set device config
set flow priority

Notification

pkt in event
flow removed event
error event
topology event

System

network access
file system access
process runtime access

The read permission defines what information application
can retrieve from the network through the controller. The
write explains whether an application can modify or not the
state of the controller or switches, notification handle
permission of notifying the application if a specific event
acquires and the system category manages access to local
resources of the operating system.

2) Fake flow rules
Fake flow rules remains the first and most critical issue to
deal with, any flow rules residing within the controllers is
legitimate and expose the controller to propagate false and
misleading routing information, hence the importance given
to solve this issue among the researcher community.

Many types of research conducted to propose FLOVER,
which is a model-checking system that verifies the flow
policies against the security policies of a network and make
decision which is transferred to the conroller.

In the SDN architecture, FLOVER [16] is executed as an
OpenFlow application, but logically it is located in parallel
to the controller. The controller is modified to request
FLOVER’s permission on every new flow rule generation or
modification. Primarily, the controller communicates flow
tables and security policies to FLOVER which contains
critical security information to the network preconfigured by
the network administrator, so FLOVER can evaluate
requested changes accordingly and respond to them.
FLOVER also uses the controller to access the current state
and the network information’s and statistics, like flow rule
tables on the switches. Fig. 3. shows the architecture of
FLOVER alongside the communication between Open Flow
controller, OV switches and the FLOVER application.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

Fig. 3. FLOVER architecture

Another flow rule conflict management system is
FortNox. FortNox [17] employs a security enforcement
kernel (SEK) to enforce flow controls for active defense
against different threats. FortNox is an enhancement engine
that is responsible for enforcing and avoiding rule conflicts
from separate security authorizations. FortNox uses two
protection mechanisms:

§ Rule prioritization, which ensures that any new rule that
contradicts the rules produced by FRESCO applications
is simply overridden because of the highest priority.

§ The conflict detection algorithm is applied to each new
rule.

In [18] the authors propose PERM-GUARD a system for
managing and authorizing flow rules. PERM-GUARD uses
an authentication/authorization model to verify the validity
of the controller's flow rules through identity-based
signature, this solution effectively filters out unauthorized
flow rules created by valid applications and traces their
creator in a timely and accurate manner.

3) Authentication and Authorization
The lack of the implementation of any authentication and

authorization mechanism by third-party applications
compromises the normal network behavior. FRESCO [13] a
security-specific application development framework for
Open Flow networks was proposed, FRESCO is a security
application development platform that facilitates the
exportation of API scripts, which help security experts

develop threat detection logic and security monitoring as
programming libraries. Moreover, FRESCO programming
framework was presented to help attain rapid design and
modular composition of different security mitigation and
detection modules using Open Flow.

In [18], the authors proposed a modular SDN security-
control communication architecture, KISS, with innovative
solutions in the context of key distribution and secure
channel support. Besides, they suggest iDVV, the integrated
verification value of the device, a code protocol for
generating a secret code that is deterministic but
indistinguishable from chance. This allows local but
synchronized generation/verification of keys at both ends of
the channel even by message. IDVV should make a
significant contribution to both the robustness and simplicity
of authentication and secure communication problems in
SDN.

4) Scalability & availability
SDN controller is responsible for handling all network

requests and events. As the size of the network keeps
growing the controller can reach a state of a bottleneck.
Benchmarking of the SDN NOX [19] controller shows that
it can support up to 30k demand this rate can be a serious
issue to networks with high requests.

To assuage this matter levelling parallelism in multicore
systems was proposed by Tootoonchian et al. [20] their
approach showed that minor alterations to the NOX
controller increase its performance by an order of greatness
on a single core. It means that a single controller can support
a further larger network, given adequate controller channel
bandwidth with acceptable latency. More improvement can
be achieved by reducing the number of requests sent to the
controller using DIFANE [19] unique switches, called
authority switches. These switches are used to discharge the
tasks of the controller and handle the packets in the data
plane. Most micro-flows are handled in the data-plane to
reduce the need to request the control-plane and increase the
scalability.

Another way to resolve the scalability issue is to distribute
the control plane tasks to multiple controllers. ONIX [20]
delivers a distributed control plane platform while preserving
the reliable network-wide state (Fig. 4).

Fig. 4. Two ONIX controller coordinating and their views of the underlying network state

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

Many other solutions to the scalability issue were presented
in the literature such as HyperFlow [21], which consists of a
physically distributed and logically centralized control
platform. In recent works, Shin et al [22] proposed IRIS-
HiSA, a cluster architecture for distributed controller, it’s the
main objective is to support uninterrupted load balancing and
failover with horizontal scalability, as is done in existing
work, but one of IRIS-HiSA's distinctive features is to
provide transparency between the data plane and the
switches. Thus, the switches do not need to know the internal
details of the controller cluster, and they simply access the
same way a single controller is accessible.

5) Unauthorized controller access
SDN Applications access the controller for a wide range of

reasons, it’s primordial to ensure that these applications work
within their respective perimeter with the legitimate
functional requirement. For that, securing the controller from
the malicious application must be ensured.

SE-Floodlight [23] controller was proposed as an
extended version of the Floodlight controller. SE-Floodlight
introduced several security enhancement methods:

§ Privilege separation by adding a secure
programmable northbound API, this enables SE-
Floodlight to work as a truly independent mediator
between the application layer and the data plane.

§
§ A runtime integrity validator of the modules that

generate flow rules. The runtime copy of the local
flow-rule producer is compared to the original image
installed by the administrator.

§ A Rule Reduction (ARR) algorithm that manages
inline rule-conflict detection.

§ Role-based conflict resolution by comparing the
authoritative roles of the producers of the conflicting
rule

§ PACKET_OUT Control: packet control generated by
OpenFlow apps can be blocked by the administrator.

§ Security Audit: is a subsystem that tracks all security
events

6) DoS attacks
The centralized nature of SDN is revealed to be a single point
of breakdown that can be exploited by one of the Internet’s
most old, high risk and major security threat known as
Distributed Denial of Service (DDoS) Attack. A DDoS attack
is a dispersed and harmonised attack that begins from
multiple network devices. Essentially, the strategy of this
attack is to send a huge volume of spoofed IP packets from
disparate points in order to make the network resources
unattainable to legitimate users. Over recent years, the
attackers have got smarter and have been constantly
enhancing and using advanced DDoS attack methods to
inflict more economical and financial costs.

While it is a standard security issue, DDoS attack
mitigation is still a severe threat to almost every technology ,
Braga et al presented in [24] a detection method that consists
of self-organizing maps (SOMs) to identify
abnormal/injected flows (Fig. 5).
The proposed solution consists of three modules:

§ A flow Collector module that is responsible for
gathering flow from switches.

§ A feature Extractor module that extracts relevant
data distinguishing DDOS attacks.

§ A classifier module analyzes extracted data then
classifies them as normal or abnormal.

Fig. 5. SOMs detection process

In recent works, Dridi et al. [25] suggested SDN-Guard, a
new system that can effectively protect SDN networks
against DoS attacks dynamically by potential redirection of
malicious traffic, flow timing adjustment and aggregation of
flow rules. The solution relays on four module (Flow
management module, Rule aggregation module, Monitoring
module).

De Assis et al. [26] proposed a stand-alone DoS / DDoS
defensive approach for SDN called Game Theory (GT) Game
Theory which is an analytical tool that can model negotiation
situations and deal with many problems in different areas -
Holt-Winters for Digital Signature (HWDS), which combines
detection and anomaly identification provided by an HWDS
system with a decision-making model based on GT.

Yunhe et al. introduced in [27] a system named Software-
Defined Anti-DDoS divided into four modules detection, a
Trigger Module, Detection Module, Traceback Module, and
Mitigation Module, respectively. These modules correspond
to four states:

§ Init State: It is the primary state of the SD-Anti-

DDoS system. A packet_in trigger is used to
program attack detection in this state. If no abnormal
event was found, it will remain in the Init State. Else,
the system will run a Detection State.

§ Detection State: This state is handling the
detection of a DDoS attack. The attack detection will
start to verify the existence of a DDoS attack in the
network.

§ Traceback State: If the detection module detects a
DDoS attack, the Traceback State will start and the
system will try to trace the attack path and the attack
origin switch.

§ Mitigation State: The Mitigation module will try to
stop the threat from its source and will clean the
infected switch from malicious flow entries.

Fig. 6. Illustrate the four state of the above Anti-DDoS
attacks.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

Fig. 6. SD-Anti-DDoS four state diagram

7) Malicious flow rules
Changing the flow rules within switches must be controlled.

FortNox platform allows the NOX controller to check flow
rules contradiction instantaneously, then decide the generated
flow rules. Blocking flow rules insertion request is achieved
using a conflict analysis algorithm when a security
application adds a flow rule. FortNOX restricts other
applications from inserting conflicting flow rules in the same
OpenFlow network.

V. OUR PROPOSED MODEL

A. System Model
 In previous sections, we presented the most relevant
security threats facing the controller from many perspectives.
Then we gave some of the solutions proposed in the literature
to mitigate these threats. None of the previous solutions has
treated the integrity of the controller config data-store. A
malicious application or any mischievous person or system
that gained access illegitimately can alter the data present
within the config data-store. The main goal of the datastore is
to hold the actual configuration of the SDN controller and its
environment making it a suitable target, losing control over
the storage section expose the SDN network-based
implementation to several type of risks, from a simple traffic
deviation to denial of services.

 In this section, we will introduce a significant
enhancement to our approach that aims to improve the
controller security, especially the flow rules config datastore
from false and illicit flow rules modification, insertion and
deletion. The Enhanced Solid-Flow module will be
implemented in one of the SDN controller and will be
designed following this perspective such as the open-daylight
[23] controller , Floodlight. Fig 7. shows SDN Floodlight
controller architecture. Our module will target the storage
section of the Floodlight Controller.
The Enhanced Solid flow was designed using java-
programing language and was implemented in two scenarios:

• As module running within the controller
• As a module exposed via a secure rest-api.

Fig. 7. Floodlight Architecture

 As mentioned in the previous paragraph, flow rules are
generally generated by two manners, either from SDN
application operating on the application plan or by users with
system administration rights. To ensure that these flow rules
are generated by one of the above trusted methods, we present
an enhancement of the “Solid-Flow” module, which will be
implemented as a plugin, developed using OSGI framework
Equinox. Our plugin will rely on several mechanisms such as
SHA 256 or SHA 512 [28] cryptography hashing function to
ensure the integrity of the control flow rules present within
the controller data-store.
Solid-flow is attached to the controller environment as shown
in Fig. 9 (next page), and will run a periodic check after the
initiation state on dynamic periodic check calculated on the
fly depending on the number of attacks in the previous cycle.
Our proposed model exposes its services through a secure rest
API, and can run in standalone mode.
Flow rules check will be also triggered in case of newly
arrived legitimate flow from any source whether is an SDN
application or users with administrative privilege. This event
will be triggered to ensure that during the interval between
periodic checks, no flow-rule was inserted illegitimately,
resulting in more reliable config-data store.
Each flow rule will trigger several process from hash
calculation passing through checking the type of flow
(periodic or check) then depending on the type the Solid-flow
will compare hashes and determine the eligibility of the flow
rule then decide what to do with it.

Fig. 8 shows two types of flow rules (legitimate flow-rule and
illegitimate flow-rule) sources insertion along the time line
and the two types of check, a periodic Solid-flow-check and
a check before the insertion in the data-store.
-

Fig. 8. Attack timeline

 Each periodic check will pull a new fresh hash of the flow
rules data-store, a hash calculation will be calculated for each
flow rules and for the global content of the data store, then it

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

Fig. 9. Enhanced Solid-Flow architecture

will be compared with the previous hash’s stored from earlier
calculations.
 When the controller triggers the Solid-flow mechanism by
notification, assuming that this change is legal and made by
one of the trusted methods using one of the solutions
proposed earlier such as permOF [15], a new hash will be
calculated before inserting the new flow rule in the config
data-store. Afterward, solid-flow will confirm to the
controller that no change has been made to the config data-
store. Subsequently, the new flow rule could be inserted
securely, and unique hashes will be calculated and encrypted
for the next comparison.
 Hash comparison will result either in normal config data-
store state or in integrity violation. In the case of integrity
violation, mitigation actions will be conducted depending on
the check type ‘periodic, reactive periodic or notification’.
 The system will determine with high precision where the
illegitimate change has been made

B. Solid-Flow design principals.
 Classification hyperplane of training data may be divided
by linear classification plane or not via mapping the training
data vector to higher dimensional space with some function
and transferring the problem to a linear classification problem
in that space. After the mapping procedure, SVM finds out a
linear separating hyperplane with the maximum margin in the
space.
 Our module will run during the controller initialization
stage. After the initiation phase, the Solid-Flow mechanism
will be prompted to run in three scenarios:

Scenario 1: The periodic hash gathering.
Event 1): Initializing runtime environment and

checking controller state.
Event 2): Gathering policies information from

the controller flow rules data-store.
Event 3): New hash calculation.
Event 4): Hash comparison (between the latest

and previous hash).
Event 5): If integrity violation detected, take

mitigation action.
Event 5): Periodic check timer initiation.

Scenario 2: Event initiated by the controller in case of new

flow rule arrival.
Event 1): Notification form the controller about

new flow inserted by a trusted entity
and wait for the Sloid-flow
confirmation.

Event 2): Gathering policies information from
the controller flow rules data-store.

Event 3) New hash calculation.
Event 4): Hash comparison.
Event 5): If integrity violation detected, take

 mitigation action. Otherwise, permit
 to the controller to insert new flow-
 rule.

Event 4): Hash storing (new hash stored for feature
comparison).

Scenario 3: Reactive periodic mode hash gathering.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

Event 1): Initializing runtime environment and
checking controller state.

Event 2): Gathering policies information from
the controller flow rules data-store.

Event 3): New hash calculation for each rule and
the global config data store.

Event 4): Hash comparison (between the latest
and previous hash).

Event 5): If integrity violation detected, take
mitigation action.

Event 5): Periodic check timer initiation using
the proposed formulate.

 The above scenarios are translated into algorithms. We
propose 3 algorithms related to each previously described
scenario to improve flow rules database integrity inside the
SDN controller. All the parameters used in different
algorithms are presented in Table III.

Table III
PARAMETERS OF ALGORITHMS

Parameters Meaning

PT Periodic Timer

DPT Default Periodic Timer

RT Reactive Timer

DHA Data Store Hash

AHA Actual Hash
CT(ER) Number of wrong hash counter

CST Controller State
CVF Controller Verification

T_HRMAX Maximum Threshold (time)
T_HRMIN Minimum Threshold (time)

Among the parameters, PT, DPT, RT, represent the

periodic timer, the default periodic timer, and the reactive
timer respectively. DHA and AHA, describe the data store
hash and the actual hash. CT(ER), CST and CVF represent
the number of the wrong hash counter, the controller state,
and the controller verification. T_HRMAX and T_HRMIN
represent the maximum threshold and the minimum
threshold, respectively. The value of some parameters is set
according to the attack model or scenario setting.
For the first scenario, as shown in algorithm 1, we initiate the
Periodic Timer PT to a Default Periodic Timer. The Number
of wrong hash counter CT(ER) is in state 0. If the Controller
State CST is initialized, then the value stored AHA is the
same as Data Store Hash DHA. At the beginning of time
period DPT, if the stored value Actual Hash AHA is different
from that of the Data Store Hash DHA, the Number of the
wrong hash counter will be 1, and Take mitigation action.

Algorithm 1: The periodic hash gathering
1: Let PT = DPT;
2: Let CT(ER) =0;
3: if CST is initiated then
4: AHA = DHA;
5: End if
6: At the beginning of time period DPT :
7: If AHA == DHA then
8: AHA = DHA;
9: Else if AHA != DHA
10: CT(ER) += 1;
11: Take mitigation action
12: End if
13: end of time period DPT restart over

For the second scenario, the event is initiated by the
controller in case of a new flow rule arrival. In this case, the
controller sends a verification about new flow inserted by a
trusted entity and waits for the Sloid-flow confirmation. The
newly calculated hash called in the algorithm. Actual Hash
AHA is compared with the data stored hash DHA. If integrity
violation detected, take mitigation action. Otherwise, permit
the controller to insert a new flow-rule.

The new hash is stored for feature comparison.

Algorithm 2: Event initiated by the controller
in case of new flow rule arrival
1: Let PT = DPT;
2: Let CT(ER) =0;
3: Event: event (“controller ask for
verification”)
4: Action: (If AHA == DHA then
5: AHA = DHA;
6: Else if AHA != DHA
7: CT(ER) += 1;
8: Take mitigation action
9; End if)
10: if CST is initiated then
11: AHA = DHA;
12: End if
13: At the beginning of time period DPT :
14: Wait-event();
15: If AHA == DHA then
16: AHA = DHA;
17: Else if AHA != DHA
18: CT(ER) += 1;
19: Take mitigation action
20: End if
21. end of time period DPT restart over

For the last scenario, relative to reactive periodic mode
hash gathering. We were initializing the runtime environment
and checking the controller state. The New hash calculation
for each rule and the global config data are calculated and
compared (the latest and previous hash). If integrity violation
detected, take mitigation action. and the periodic check timer
initiation using the proposed formula:

DPT=

Algorithm 3: Reactive periodic mode hash
gathering

1: Let PT = DPT;
2: Let CT(ER) =0;
3: Event: event (“controller ask for
verification”)

4: Action: (If AHA== DHA then
5: AHA=DHA;
6: Else if AHA!=DHA
7: CT(ER)+= 1;
8: Take mitigation action
9: End if)

10: if CST is initiated then
11: AHA=DHA
12: End if
13: At the beginning of time period Dpt :
14: Wait-event();

15: If AHA=DHA then
16: AHA=DHA;

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

Fig. 11. CPU usage

C. SDN Controller response time to attacks
By minimizing requests for data checks using the reactive

mode, the SDN controller does not need to be entirely
dedicated to processing and responding to periodic checks,
which will naturally improve the time of its response to the
actual attacks. Fig. 12. clearly shows that the SOLID-FLOW
reactive mode effectively makes it possible to have a
minimization of the order of 30% of the response time
compared to the normal mode.

Fig. 12. SDN controller response time to attacks

VI. CONCLUSION AND FUTURE WORK
Currently, SDN technologies attract a lot of interest in the

networking industry. However, their deployment exposes the
network to unknown risks and still poorly documented.

The SDN networks differ from conventional paradigms,
which introduce new security challenges alongside essential
practice (although not explicit in standards) such as the use of
a dedicated management network, the establishment of an
authentication solution, and integrity as TLS, or equipment
redundancy in charge of routing. In this paper, we gave state
of the art on the various security threats targeting the control
layer and challenges in SDN, and the multiple
countermeasures proposed. We also introduced a Solid-Flow
module for ensuring the integrity of the data-store.

We have implemented the Solid-Flow module and tested
its behavior regarding deferent aspects; the test result was
encouraging, as shown in the previous section. In our next

work, we envisage investigating the mitigation action section
resulting in a complete trusted config data-store in SDN
controllers and correct mitigation behavior.

REFERENCES
[1] Nick McKeown, Tom Anderson, Hari Balakrishnan, Scott Shenker and

Jonathan Turner, “OpenFlow: Enabling Innovation in Campus
Networks”, ACM SIGCOMM Computer Communication Review, vol.
38, no. 2, pp. 69-74, April 2008.

[2] Youssef Qasmaoui and Abdelkrim Haqiq, “Solid-flow: A flow rules
security mechanism for SDN,” in the Proceedings of the 3rd
International Conference of Cloud Computing Technologies and
Applications, CloudTech 2017, Rabat, Morocco, 24-26 Oct. 2017
(Published in IEEE Xplore: DOI: 10.1109/CloudTech.2017.8284734,
08 February 2018).

[3] Yawar Abbas Bangash, Qamar ud Din Abid, Alshreef Abed Ali A and
Yahya E. A. Al-Salhi, “Security Issues and Challenges in Wireless
Sensor Networks: A Survey”, IAENG International Journal of
Computer Science, vol. 44, no.2, pp135-149, 2017.

[4] Z. Yan, P. Zhang and A. V. Vasilakos, “A security and trust framework
for virtualized networks and software-defined networking”, Secur.
Commun. Networks, vol. 9, no. 16, pp. 3059–3069, 2016.

[5] A. Mateen, Q. Zhu, S. Afsar and S. A. Sahil, “Effect of Encryption
Delay on TCP and UDP Transport Layer Protocols in Software Defined
Networks (SDN)”, in the Proceedings of the International
MultiConference of Engineers and Computer Scientists, Hong kong,
Hong kong, 13-15 March, 2019.

[6] Dongkyun Kim, Yong-Hwan Kim, Chanjin Park and Kyu-Il Kim,
“KREONET-S: Software-Defined Wide Area Network Design and
Deployment on KREONET”, IAENG International Journal of
Computer Science, vol. 45, no.1, pp. 27-33, 2018.

[7] M. C. Dacier, H. König, R. Cwalinski, F. Kargl and S. Dietrich,
“Security Challenges and Opportunities of Software-Defined
Networking”, IEEE Secur. Priv., vol. 15, no. 2, pp. 96–100, 2017.

[8] Yunhe Cui, Lianshan Yan, Saifei Li, Huanlai Xing, Weike Pan, J. Zhu
and Xiao-Yang Zheng, “SD-Anti-DDoS: Fast and efficient DDoS
defense in software-defined networks”, Journal of Network and
Computer Applications, vol. 68, pp. 65-79, June 2016.

[9] C. Cremers, M. Horvat, S. Scott and T. V. D. Merwe, “Automated
Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed
Authentication,” in the Proceedings of the 37th IEEE Symposium on
Security and Privacy (SP), pp. 470–485, Fairmont, San Jose,
California, USA, May 23-25, 2016.

[10] C. Lorenz , D. Hock , J. Scherer, R. Durner, W. Kellerer , S. Gebert ,
N. Gray ,T. Zinner and P. Tran-Gia, “An SDN/NFV-Enabled
Enterprise Network Architecture Offering Fine-Grained Security
Policy Enforcement,” IEEE Commun. Mag., vol. 55, no. 3, pp. 217–
223, 2017.

[11] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher
Monsanto, Jennifer Rexford, Alec Story and David Walker, “Frenetic:
A Network Programming Language”, ACM SIGPLAN Notices, vol.
46, no. 9, September 2011.

[12] A. Voellmy, H. Kim“ and N. Feamster, Procera: A language for high-
level reactive network control”, in the Proceedings of the 1st ACM
International Workshop on Hot Topics in Software Defined Networks
(HotSDN'12), 10.1145/2342441.2342451. 2012.

[13] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker,
“A Compiler and Run-time System for Network Programming
Languages”, in the Proceedings of the 39th annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages:
POPL’12, Philadelphia, PA, USA, January 25–27, 2012.

[14] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure
controller platform for openflow applications”, in the Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software
defined networking, New York, USA, pp. 171-172 , 2013.

[15] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model
checking invariant security properties in OpenFlow”, in the
Proceedings of the 2013 IEEE International Conference on
Communications (ICC), Budapest, Hungary, pp. 1974-1979, 2013.

[16] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson and G. Gu, “A
security enforcement kernel for OpenFlow networks”, in the
Proceedings of the first workshop on Hot topics in Software Defined

0
5

10
15
20
25
30

0
200

400
600

800
1000

C
PU

 R
at

e
%

Number of Flow Rules

Normal
Mode
Reactive
mode

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

Networks (HotSDN’12), pp. 121–126, Helsinki, Finland, August 13,
2012.

[17] M. Wang, J. Liu, J. Chen, X. Liu and J. Mao, “PERM-GUARD:
Authenticating the Validity of Flow Rules in Software Defined
Networking”, in the Proceedings of the 2nd IEEE Int. Conf. Cyber
Secur. Cloud Comput. CSCloud 2015 - IEEE Int. Symp. Smart Cloud,
IEEE SSC New York, USA, no. 37, pp. 127–132, 2016.

[18] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin
Casado, Nick McKeown and Scott Shenker, “NOX: Towards an
operating system for networks”, ACM SIGCOMM Computer
Communication Review”, vol. 38, no. 3, pp. 105-110, July 2008.

[19] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,
“Scalability of ONOS reactive forwarding applications in ISP
networks”, Comput. Commun., vol. 102, pp. 130–138, 2017.

[20] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control
Plane for OpenFlow”, in the Proceedings of the 2010 Internet Network
Management Conference on Research on Enterprise Networking,
Berkeley (INM/WREN'10), CA, USA , April 2010.

[21] J. Shin, T. Kim, B. Lee and S. Yang, “IRIS-HiSA: Highly Scalable and
Available Carrier-Grade SDN Controller Cluster”, Journal of Mobile
Networks and Applications, vol. 22, pp. 894–905, 2017.

[22] I. Ahmad, S. Namal, M. Ylianttila and A. Gurtov, “Security in Software
Defined Networks: A Survey”, IEEE Commun. Surv. Tutorials, vol.
17, no. 4, pp. 2317–2346, 2015.

[23] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow”, in Ithe Proceedings of the EEE
Local Computer Network Conference, Denver, Colorado , USA, pp.
408–415, 2010.

[24] L. Dridi and M. F. Zhani, “SDN-Guard: DoS Attacks Mitigation in
SDN Networks,” in the Proceedings of the 5th IEEE International
Conference on Cloud Networking (Cloudnet), Pisa, Italy, pp. 212–217,
2016.

[25] M. V. O. De Assis, A. H. Hamamoto, T. Abrão, and M. L. Proença, “A
Game Theoretical Based System Using Holt-Winters and Genetic
Algorithm With Fuzzy Logic for DoS/DDoS Mitigation on SDN
Networks”, IEEE Access, vol. 5, pp. 9485–9496, 2017.

[26] Martin Fong, Phillip Porras, Keith Skinner and Vinod Yegneswaran,
“Securing the Software-Defined Network Control Layer”, in the
Proceedings of the 2015 Network and Distributed System Security
Symposium (NDSS), San Diego, California, February 8-11, 2015.

[27] S. Gueron, “Speeding Up SHA-1, SHA-256 and SHA-512 on the 2nd
Generation Intel® CoreTM Processors,” in the Proceedings of the
Ninth International Conference on Information Technology - New
Generations, Las Vegas, USA, pp. 824–826, 2012.

[28] De Oliveira, R. L. S., Schweitzer, C. M., Shinoda, A. A. and Prete, L.
R, “Using mininet for emulation and prototyping software-defined
networks”, in the Proceedings of the IEEE Colombian Conference on
Communications and Computing (COLCOM), Bogota, Colombia, pp.
1-6, 2014.

1 Youssef Qasmaoui received his Master degree in Networks and IT

Security and his Bachelor degree in Networks and IT Systems, respectively
in 2012 and 2010 from the Faculty of Sciences and Techniques (FST), Settat
– Morocco. He also received a second Master degree in Information System
Engineering at the University of Western Brittany at Brest – France. He is
also doing his Ph.D. thesis at the FST, Settat - Morocco. His research
interests include Software Defined Networks, Virtual Laboratory and
Networks Security.
 2 Prof. Abdelkrim HAQIQ has a High Study Degree (Diplôme des
Etudes Supérieures de troisième cycle) and a PhD (Doctorat d'Etat), both in
the field of modeling and performance evaluation of computer
communication networks, from Mohammed V University, Faculty of
Sciences, Rabat, Morocco. Since September 1995 he has been working as a
Professor at the department of Applied Mathematics and Computer at the
Faculty of Sciences and Techniques, Settat, Morocco. He is the Director of
Computer, Networks, Mobility and Modeling laboratory: IR2M. He is an
IEEE senior member and an IEEE Communications Society member. He is
also a member of Machine Intelligence Research Labs (MIR Labs),
Washington, USA. He was a co-director of a NATO Multi-Year project
entitled “Cyber Security Analysis and Assurance using Cloud-Based
Security Measurement system”, having the code: SPS-984425. Prof.
Abdelkrim HAQIQ's interests lie in the areas of modeling and performance
evaluation of communication networks, mobile communications networks,
cloud computing and security, emergent technologies, Markov chains and
queueing theory, Markov decision processes theory, and game theory. He is

the author and co-author of more than 170 papers (international journals and
conferences/workshops). He supervised 15 PhD thesis and co-supervised 3
PhD thesis. Actually, he is supervising and co-supervising other PhD thesis.
He is an associate editor of the International Journal of Computer
International Systems and Industrial Management Applications (IJCISM), an
editorial board member of the International Journal of Intelligent
Engineering Informatics (IJIEI) and of the International Journal of
Blockchains and Cryptocurrencies (IJBC), an international advisory board
member of the International Journal of Smart Security Technologies (IJSST)
and of the International Journal of Applied Research on Smart Surveillance
Technologies and Society (IJARSSTS). He is also an editorial review board
of the International Journal of Fog Computing (IJFC) and of the International
Journal of Digital Crime and Forensics (IJDCF). Prof. Abdelkrim HAQIQ
was a chair and a technical program committee chair/member of many
international conferences and scientific events. He was also a Guest Editor
and Co-Editor of special issues of some journals, books and international
conference proceedings. From January 1999 to December 1999 he had a
Post-Doctoral Research appointment at the department of Systems and
Computers Engineering at Carleton University in Canada. He also has held
visiting positions at the High National School of Telecommunications of
Paris, the Universities of Dijon, Versailles St-Quentin-en-Yvelines and
LAAS CNRS, Toulouse in France, the University of Ottawa in Canada, the
FUCAM in Belgium, the National Engineering School of Sfax, Tunisia, the
University of Naples Federico II, Italy and the University of Algarve,
Portugal.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_20

Volume 47, Issue 3: September 2020

__

