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Abstract—This paper is concerned with the Hopf bifur-
cation of a delayed SEIQR (Susceptible-Exposed-Infectious-
Quarantined-Recovered) worm propagation model in mobile
internet. Firstly, a distinct set of conditions that ensures
existence of the Hopf bifurcation are derived by analyzing the
roots of the associated characteristic equation and regarding
the delay as a bifurcation parameter. Secondly, the normal
form theory and the center manifold theorem are employed
to determine direction of the Hopf bifurcation and stability
of the bifurcating periodic solutions. Finally, some numerical
simulations are presented to illustrate the theoretical results.

Index Terms—Delayed SEIQR model, Hopf bifurcation, Pe-
riodic solutions, Worm.

I. I NTRODUCTION

T HE cyber security threats have increased sharply in re-
cent years as a result of propagation of computer viruses

in the Internet [1-3]. Worms that can lead to large scale of
network congestion are one of the most harmful computer
viruses in the Internet. Due to the high similarity between
computer worms and biological viruses, many mathematical
models [4-8] have been proposed to explore dynamics of
computer worms in the Internet since the pioneering work
of Kephart and White [9, 10].

With the rapid development of network communication
technology, mobile devices have become increasingly perva-
sive, which attracts attackers to propagate worm programs
among these mobile equipments. However, the above worms
propagation models can not be used directly in the mobile
environment owing to the differences between computers and
smartphones, especially in the Wi-Fi scenario. Chameleon,
a new Wi-Fi worm with high performance, appeared in
2014 and it could be spread in a manner similar to that of
airborne diseases [11]. In order to prevent worms attacks in
mobile internet, Xiao et al. [12] proposed an SEIQR worm
propagation model and explored the dynamic behavior of
worms in mobile internet.

However, Xiao et al. [12] assume that the exposed nodes,
the infected nodes and the quarantined nodes revert to
the recovered ones instantaneously in the proposed SEIQR
worm propagation model in mobile internet, which is not
reasonable as the anti-virus software needs a period of time to
clean the worms between these nodes. Thus, when the worms
in the exposed nodes, the infected nodes and the quarantined
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nodes are being cleaned by the anti-virus software, there
is a time delay before those nodes develop themselves into
the recovered ones. In addition, a stability switch and Hopf
bifurcation will occur even if the ignored delay is small
for a dynamical model. Realistic examples can be found in
computer virus models [13-16], predator-prey models [17-
22], and neural networks [23-25]. The occurrence of Hopf
bifurcation means that the state of worm prevalence changes
from an equilibrium point to a limit cycle, which is not
welcomed in networks. Motivated by the work above, the
time delay representing the period that anti-virus software
uses to clean the worms in the nodes, is incorporated into the
SEIQR model in [12]. And Hopf bifurcation of the delayed
SEIQR propagation model is also investigated in this paper.

The remaining materials of the present paper are orga-
nized as follows. Section 2 formulates the SEIQR worm
propagation model with time delay. Section 3 shows the
local stability of the viral equilibrium and existence of
Hopf bifurcation, and analyzes the properties of the Hopf
bifurcation. Section 4 examines the results by using some
numerical simulations. A conclusion is given in Section 5.

II. M ODEL FORMULATION

The proposed SEIQR worm propagation model in [12] is
as follows:



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




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
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























dS(t)
dt

= −βS(t)I(t) + µN − µS(t),

dE(t)
dt

= βS(t)I(t) − ηE(t)− εE(t)− µE(t),

dI(t)
dt

= ηE(t) − µI(t)− σI(t)− γI(t),

dQ(t)
dt

= σI(t) − ϕQ(t)− µQ(t),

dR(t)
dt

= εE(t) + γI(t) + ϕQ(t)− µR(t),

(1)

whereS(t), E(t), I(t), Q(t) andR(t) represent the numbers
of the susceptible nodes, the exposed nodes, the infected
nodes, the quarantined nodes and the recovered nodes at time
t, respectively.N is the total number of nodes in system (1);
µ is the natural birth rate of the nodes and it is also the death
rate of the nodes;β is the infection rate of the susceptible
nodes;η, ε, σ, γ andϕ are the transition rates. Xiao et al. [12]
studied stability of the worm-free equilibrium and the viral
equilibrium. Based on system (1), we consider the delayed
model:

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
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
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

















dS(t)
dt

= −βS(t)I(t) + µN − µS(t),

dE(t)
dt

= βS(t)I(t)− ηE(t) − εE(t− τ) − µE(t),

dI(t)
dt

= ηE(t)− µI(t)− σI(t)− γI(t− τ),

dQ(t)
dt

= σI(t)− ϕQ(t− τ)− µQ(t),

dR(t)
dt

= εE(t− τ) + γI(t− τ) + ϕQ(t− τ) − µR(t),
(2)
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whereτ is the time delay, during which anti-virus software
will clean the worms in the nodes.

Assumption 1.

D2 = det

(

m04 1
m02 m03

)

> 0, (3)

D3 = det





m04 1 0
m02 m03 m04

0 m01 m02



 > 0, (4)

D4 = det









m04 1 0 0
m02 m03 m04 1
m00 m01 m02 m03

0 0 m00 m01









> 0, (5)

D5 = det













m04 1 0 0 0
m02 m03 m04 1 0
m0 m01 m02 m03 m04

0 0 m00 m01 m02

0 0 0 0 m00













> 0, (6)

where

m00 = m0 + n0 + p0 + q0,m01 = m1 + n1 + p1 + q1,

m02 = m2 + n2 + p2 + q2,m03 = m3 + n3 + p3,

m04 = m4 + n4,

and

m0 = −a44a55(a11a22a33 + a13a21a32),

m1 = a11a22a55(a33 + a44) + a33a44a55(a11 + a22)

+a13a21a32(a44 + a55) + a11a22a33a44,

m2 = −a55(a11 + a22)(a33 + a44)

−(a11a22a55 + a33a44a55 + a13a21a32)

−(a11a22(a33 + a44) + a33a44(a11 + a22)),

m3 = a55(a11 + a22 + a33 + a44) + a11a22 + a33a44

+(a11 + a22)(a33 + a44),

m4 = −(a11 + a22)(a33 + a44 + a55),

n0 = −a55b44(a11a22(a33 + a13a21a32)

−a11a44a55(a33b22 + a22b33),

n1 = a55(a11 + a22)(a33b44 + a44b33)− a11(a44 + a55)

(a33b22 + a22b33) + a44a55b22(a11 + a33)

+a11a22b44(a33 + a55) + a13a21a32b44,

n2 = −(b22(a11a33 + a44a55) + b33(a11a22 + a44a55)

+b44(a11a22 + a33a55)

+b22(a11 + a33)(a44 + a55)

+b33(a11 + a22)(a44 + a55)

+b44(a11 + a22)(a33 + a55)),

n3 = b22(a11 + a33 + a44 + a55)

+b33(a11 + a22 + a44 + a55)

+b44(a11 + a22 + a33 + a55),

n4 = −(b22 + b33 + b44),

p0 = a11a55b44(a22b33 + a33b22) + a11a22a44b22b33,

p1 = b22b33(a11a22 + a11a44 + a22a44)

+b22b44(a11a33 + a11a55 + a33a55)

+b33b44(a11a22 + a11a55 + a22a55),

p2 = −(b33b44(a11 + a22 + a55) + b22b33(a11 + a22 + a4)

+b22b44(a11 + a33 + a55)),

p3 = b22b33 + b22b44 + b33b44,

q0 = −a11a55b22b33b44,

q1 = (a11 + a55)b22b33b44,

q2 = −b22b33b44,

and

a11 = −(βI∗ + µ), a13 = βS∗, a21 = βI∗,

a22 = −(η + µ), a23 = βS∗, a32 = η,

a33 = −(µ+ σ), a43 = σ, a44 = −µ, a55 = −µ,

b22 = −ε, b33 = −γ, b44 = −ϕ,

b52 = ε, b53 = γ, b54 = ϕ.

Assumption 2. Eq.(7) has at least one positive rootω0.

f2
1 (ω) + f2

2 (ω) = 1, (7)

where
f1(ω) = cos τω, f2(ω) = sin τω, (8)

andcos τω is the root of the following equation

c4(ω) cos
4 τω + c3(ω) cos

3 τω + c2(ω) cos
2 τω

+c1(ω) cos τω + c0(ω) = 0, (9)

with

c0(ω) = r20(ω)− r21(ω),

c1(ω) = 2(r0(ω)× r3(ω)− r1(ω)× r2(ω)),

c2(ω) = r23(ω) + 2r0(ω)× r4(ω) + r21(ω)− r22(ω),

c3(ω) = 2(r3(ω)× r4(ω) + r1(ω)× r2(ω)),

c4(ω) = r24(ω) + r22(ω),

and

r0(ω) = ω10 + (m2
4 + n2

4 − 2(m3 + p3))ω
8

+((m3 + p3)
2 + n2

3 + 2m1 − 2p1

−2m2m4 − 2m4p2 − 2n2n4)ω
6

+(m2
2 + n2

2 + p22 − q22 + 2m0m4 + 2m2p2 + 2m4p0

+2n0n4 − 2n1n3 − 2(m1 + p1)(m3 + p3))ω
4

+(m2
1 + n2

1 + p21 − q21 − 2m0m2

−2n0n2 − 2p0p2 − 2m1p1)ω
2

+m2
0 + n2

0 + p20 − q20 + 2m0p0,

r1(ω) = −2n4ω
9 + 2(n2 −m4n3 + n4(m3 + p3))ω

7

+2(m4n1 − n0 + n3(m2 − p2)

−n2(m3 + p3)− n4(m1 − p1))ω
5

+2(n0(m3 + p3) + n2(m1 − p1)

−n1(m2 − p2)− n3(m0 − p0))ω
3

+2(n1(m0 − p0)− n0(m1 − p1))ω,
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r2(ω) = −4p2ω
7 + 4(p0 −m4p1 + p2(m3 + p3))ω

5

−4(p0(m3 + p3) +m1p2 +m2p1)ω
3

+4(m1p0 −m0p1)ω,

r3(ω) = 2(m4n4 − n3)ω
8 + 2(n1 −m4n2

+n3(m3 + p3)− n4(m2 + p2))ω
6

+2(m4n0 + n2(m2 + p2) + n4(m0 + p0)

−n1(m3 + p3)− n3(m1 + p1))ω
4

+2(n1(m1 + p1)− n2(m0 + p0))ω
2

+2n0(m0 + p0),

r4(ω) = 4(p1 +m4p2)ω
6

+4(m2p2 +m4p0 − p1(m3 + p3))ω
4

+4m1p1ω
2 − 4m0p0.

Assumption 3.

G1R ×G2R +G1I ×G2I 6= 0,

where

G1R = (5ω4
0 − 3(m3 − p3)ω

2
0 +m1 + p1) cos τ0ω0

−2((m2 − p2)ω0 − 2m4ω
3
0) sin τ0ω0

+2q2ω0 sin 2τ0ω0 + q1 cos 2τ0ω0 + n1 − 3n3ω
2
0,

G1I = (5ω4
0 − 3(m3 − p3)ω

2
0 +m1 − p1) sin τ0ω0

+2((m2 + p2)ω0 − 2m4ω
3
0) cos τ0ω0

+2q2ω0 cos 2τ0ω0 − q1 sin 2τ0ω0

+2n2ω0 − 4n4ω
3
0,

G2R = (ω4
0 − (m3 − p3)ω

2
0 +m1 − p1)ω

2
0 cos τ0ω0

−((m2 + p2)ω
2
0 −m4ω

4
0 −m0 − p0) sin τ0ω0

+(q0ω0 − q2ω
3
0) sin 2τ0ω0 − 2q1ω0 cos 2τ0ω0,

G2I = (ω4
0 − (m3 + p3)ω

2
0 +m1 + p1)ω

2
0 sin τ0ω0

+((m2 − p2)ω
2
0 −m4ω

4
0 −m0 + p0) cos τ0ω0

+(q0ω0 − q2ω
3
0) cos 2τ0ω0 + 2q1ω0 sin 2τ0ω0.

III. M AIN RESULTS

Remark 1. It is easy to see thatm04 = βI∗ + η + σ + ε+
γ + ϕ+ 5µ > 0. Therefore, underAssumption1, system (2)
without delay is locally asymptotically stable based on the
Routh-Hurwitz criterion.
Theorem 1. Under Assumptions1, 2 and 3, the viral e-
quilibrium P∗(S∗, E∗, I∗, Q∗, R∗) is locally asymptotically
stable whenτ ∈ [0, τ0); a Hopf bifurcation occurs at the
viral equilibriumP∗(S∗, E∗, I∗, Q∗, R∗) whenτ = τ0 and a
family of periodic solutions bifurcate from the viral equilibri-
um P∗(S∗, E∗, I∗, Q∗, R∗), whereτ0 = 1

ω0

{arccos f1(ω0)}.
Proof. By direction computation, we obtain the unique viral
equilibriumP∗(S∗, E∗, I∗, Q∗, R∗) of system (2), where

S∗ =
(η + ε+ µ)(σ + γ + µ)

βη
,

E∗ =
µ(N − S∗)

η + ε+ µ
, I∗ =

µ(N − S∗)

βS∗
,

Q∗ =
σI∗
ϕ+ µ

,R∗ =
εE∗ + γI∗ + ϕQ∗

µ
.

Straightforward calculations show that the characteristic
equation of system (2) at the viral equilibriumP∗ is as
follows:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ− a11 0 −a13
−a21 λ− a22 − b22e

−λτ −a23
0 −a32 λ− a33 − b33e

−λτ

0 0 −a43
0 −b52e

−λτ −b53e
−λτ

0 0
0 0
0 0

λ− a44 − b44e
−λτ 0

−b54e
−λτ λ− a55

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(10)
Eq.(10) equals

λ5 +m4λ
4 +m3λ

3 +m2λ
2 +m1λ+m0

+(n4λ
4 + n3λ

3 + n2λ
2 + n1λ+ n0)e

−λτ

+(p3λ
3 + p2λ

2 + p1λ+ p0)e
−2λτ

+(q2λ
2 + q1λ+ q0)e

−3λτ = 0, (11)

Multiplying eλτ on both sides of Eq.(11), Eq.(11) becomes

n4λ
4 + n3λ

3 + n2λ
2 + n1λ+ n0

+(λ5 +m4λ
4 +m3λ

3 +m2λ
2 +m1λ+m0)e

λτ

+(p3λ
3 + p2λ

2 + p1λ+ p0)e
−λτ

+(q2λ
2 + q1λ+ q0)e

−2λτ = 0, (12)

Let λ = iω(ω > 0) be a root of Eq.(12) whenτ > 0.
Then,

{

q1ω sin 2τω + (q0 − q2ω
2) cos 2τω = P1(ω),

q1ω cos 2τω − (q0 − q2ω
2) sin 2τω = P2(ω),

where

P1(ω) = (ω5 − (m3 + p3)ω
3 + (m1 − p1)ω) sin τω

−(m4ω
4 − (m2 + p2)ω

2 +m0 + p0) cos τω

+n2ω
2 − n4ω

4 − n0,

P2(ω) = −(ω5 − (m3 + p3)ω
3 + (m1 + p1)ω) cos τω

−(m4ω
4 − (m2 − p2)ω

2 +m0 − p0) sin τω

+n3ω
3 − n1ω.

Then, the following equation can be obtained

r0(ω) + r1(ω) sin τω + r2(ω) sin τω cos τω

+r3(ω) cos τω + r4(ω) cos
2 τω = 0, (13)

It is known to all,sin τω = ±
√
1− cos2 τω. Thus, Eq.(13)

can be transformed into

r0(ω) + r3(ω) cos τω + r4(ω) cos
2 τω =

±(r1(ω)
√

1− cos2 τω + r2(ω)
√

1− cos2 τω cos τω).

(14)

It is equivalent to Eq.(9). According to the discussion
about Eq.(9) in [26, 27], we can obtain the expression of
cos τω, say f1(ω). Also, we can obtain the expression of
sin τω, say f2(ω). Further we can obtain Eq.(7). Under
Assumption2, we have

τ0 =
1

ω0
{arccosf1(ω0)}.
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Taking the derivative ofλ with respect toτ in Eq.(12), we
have

[

dλ

dτ

]−1

=
G1(λ)

G2(λ)
− τ

λ
,

with

G1(λ) = 4n4λ
3 + 3n3λ

2 + 2n2λ+ n1 +

(5λ4 + 4m4λ
3 + 3m3λ

2 + 2m2λ+m1)e
λτ

+(3p3λ
2 + 2p2λ+ p1)e

−λτ

+(2q2λ+ q1)e
−2λτ ,

G2(λ) = 2(q2λ
3 + q1λ

2 + q0λ)e
−2λτ

+(p3λ
4 + p2λ

3 + p1λ
2 + p0λ)e

−λτ

−(λ6 +m4λ
5 +m3λ

4

+m2λ
3 +m1λ

2 +m0λ)e
λτ .

Thus,

Re

[

dλ

dτ

]−1

λ=iω0

=
G1R ×G2R +G1I ×G2I

G2
2R +G2

2I

.

Clearly, underAssumption3, Re[dλ
dτ
]λ=iω0

6= 0. Therefore,
based on the Hopf bifurcation theorem from Hassard et al.
[28], Theorem 1 is obtained and the proof is completed.
Theorem 2.The sign ofµ2 determines direction of the Hopf
bifurcation: if µ2 > 0 (µ2 < 0), then the Hopf bifurcation is
supercritical (subcritical); The sign ofβ2 determines stability
of the bifurcating periodic solutions: ifβ2 < 0 (β2 > 0), then
the bifurcating periodic solutions are stable (unstable); The
sign ofT2 determines period of the bifurcating solutions: if
T2 > 0 (T2 < 0), then the period of the bifurcating periodic
solutions increases (decreases). The expressions ofµ2, β2 <
0 andT2 > 0 are as follows

C1(0) =
i

2τ0ω0

(g11g20 − 2|g11|2 − |g02|
2

3 ) + g21
2

µ2 = − Re{C1(0)}
Re{λ′(τ0)}

,

β2 = 2Re{C1(0)},

T2 = − Im{C1(0)}+µ2Im{λ′(τ0)}
τ0ω0

.

(15)

Proof.
Letting u1(t) = S(t) − S∗, u2(t) = E(t) − E∗, u3(t) =

I(t) − I∗, u4(t) = Q(t) − Q∗, u5(t) = R(t) − R∗, and
rescaling the delay byt → (t/τ). Let τ = τ0 + ̺, ̺ ∈ R,
and the Hopf bifurcation occurs at̺ = 0. Then, system (2)
becomes

u̇(t) = L̺ut + F (̺, ut), (16)

where ut = (u1(t), u2(t), u3(t), u4(t), u5(t))
T =

(S,E, I,Q,R)T ∈ R5, ut(θ) = u(t + θ) ∈ C =
C([−1, 0], R5) andL̺ : C → R5, F (̺, ut) → R5 are given
respectively by

L̺φ = (τ0 + ̺)(Amaxφ(0) +Bmaxφ(−1)),

and

F (̺, φ) =













−βφ1(0)φ3(0)
βφ1(0)φ3(0)

0
0
0













.

with

Amax =













a11 0 a13 0 0
a21 a22 a23 0 0
0 a32 a33 0 0
0 0 a43 a44 0
0 0 0 0 a55













,

Bmax =













0 0 0 0 0
0 b22 0 0 0
0 0 b33 0 0
0 0 0 b44 0
0 b52 b53 b54 0













.

Based on Riesz representation theorem, there isη(θ, ̺) in
θ ∈ [−1, 0] such that

Lµφ =

∫ 0

−1

dη(θ, ̺)φ(θ), forφ ∈ C. (17)

In fact, we choose

η(θ, ̺) = (τ0 + ̺)(Amaxδ(θ) +Bmaxδ(θ + 1)),

whereδ(θ) is the Dirac delta function.

For φ ∈ C([−1, 0], R5), define

A(̺)φ =







dφ(θ)
dθ

, −1 ≤ θ < 0,
∫ 0

−1 dη(θ, ̺)φ(θ), θ = 0,

and

R(̺)φ =

{

0, −1 ≤ θ < 0,

F (̺, φ), θ = 0.

Then system (16) is equivalent to

u̇(t) = A(̺)ut +R(̺)ut. (18)

Forϕ ∈ C1([0, 1]), (R5)∗, the adjoint operatorA∗ of A(0)
is defined as following

A∗(ϕ) =







− dϕ(s)
ds

, 0 < s ≤ 1,
∫ 0

−1 dη
T (s, 0)ϕ(−s), s = 0,

Next, we define the bilinear inner form forA andA∗

〈ϕ(s), φ(θ)〉 = ϕ̄(0)φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ϕ̄(ξ−θ)dη(θ)φ(ξ)dξ,

(19)
whereη(θ) = η(θ, 0).

Let ρ(θ) = (1, ρ2, ρ3, ρ4, ρ5)
T eiτ0ω0θ and ρ∗(s) =

(1, ρ∗2, ρ
∗
3, ρ

∗
4, ρ

∗
5)

T eiτ0ω0s be the eigenvectors forA(0) and
A∗(0) corresponding to+iτ0ω0 and−iτ0ω0. Then, it is not
difficult to show that

ρ2 =
a21 + a23ρ3

iω0 − a22 − b22e−iτ0ω0

, ρ3 =
iω0 − a11

a13
,

ρ4 =
a43ρ3

iω0 − a44 − b44e−iτ0ω0

, ρ5 =
b52ρ2 + b53ρ3 + b54ρ4

iω0 − a55eiτ0ω0

,

ρ∗2 = − iω0 + a11
a21

,

ρ∗3 = − (iω0 + a22 + b22e
iτ0ω0)ρ∗2 − b52e

iτ0ω0 + ρ∗5
a32

,

ρ∗4 = − b44 + b54ρ
∗
5

(iω0 + a44)e−iτ0ω0

, ρ∗5 =
ρ∗51
ρ∗52

, (20)
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where

ρ∗51 = (iω0 + a22 + b22e
iτ0ω0)(iω0 + a33 + b33e

iτ0ω0)ρ∗2

−a13a32 + a23a32ρ
∗
2 +

a32a43b44e
iτ0ω0

iω0 + a44
,

ρ∗52 = a32b53e
iτ0ω0 − a32a43b54e

iτ0ω0

iω0 + a44
−b52e

iτ0ω0(iω0 + a33 + b33e
iτ0ω0).

According to Eq.(19), we have

D̄ = [1 + ρ2ρ̄
∗
2 + ρ3ρ̄

∗
3 + ρ4ρ̄

∗
4 + ρ5ρ̄

∗
5 + τ0e

−iτ0ω0(b22ρ2ρ̄
∗
2 + b52ρ2ρ̄

∗
5)

+b33ρ3ρ̄
∗
3 + b53ρ3ρ̄

∗
5 + b44ρ4ρ̄

∗
4 + b54ρ4ρ̄

∗
5]

−1

such that〈ρ∗, ρ〉 = 1 and 〈ρ∗, ρ̄〉 = 0.
Next, using the algorithms given in [28] and following

the similar computation process as in [29, 30], we get the
expressions ofg20, g11, g02 andg21 as follows

g20 = 2βτ0D̄ρ3(ρ̄
∗
2 − 1), g11 = βτ0D̄(ρ3 + ρ̄3)(ρ̄

∗
2 − 1),

g02 = 2βτ0D̄ρ̄3(ρ̄
∗
2 − 1),

g21 = 2βτ0D̄(ρ̄∗2 − 1)(W
(1)
11 (0)ρ3 +

1

2
W

(1)
20 (0)ρ̄3

+W
(3)
11 (0) +

1

2
W

(3)
20 (0)),

with

W20(θ) =
ig20ρ(0)

τ0ω0
eiτ0ω0θ

+
iḡ02ρ̄(0)

3τ0ω0
e−iτ0ω0θ + E1e

2iτ0ω0θ,

W11(θ) = − ig11ρ(0)

τ0ω0
eiτ0ω0θ +

iḡ11ρ̄(0)

τ0ω0
e−iτ0ω0θ + E2.

E1 andE2 can be obtained by the following two equations

E1 =













iω0 − a11 0 −a13
−a21 a′22 −a23
0 −a32 a′33
0 0 −a43
0 −b52e

−2iτ0ω0 −b53e
−2iτ0ω0

0 0
0 0
0 0
a′44 0

−b54e
−2iτ0ω0 2iω0 − a55













−1

×













−βρ3
βρ3

0
0
0













,

E2 = −













a11 0 a13 0 0
a21 a22 + b22 a23 0 0
0 a32 a33 + b33 0 0
0 0 a43 a44 + b44 0
0 b52 b53 b54 a55













−1

×













−β(ρ3 + ρ̄3)
β(ρ3 + ρ̄3)

0
0
0













,

where
a′22 = 2iω0 − a22 − b22e

−2iτ0ω0 ,

a′33 = 2iω0 − a33 − b33e
−2iτ0ω0 ,

a′44 = 2iω0 − a44 − b44e
−2iτ0ω0 .

Then, the expressions ofµ2, β2 < 0 andT2 > 0 are ob-
tained. Based on the properties of the Hopf bifurcation stated
in [28], we have Theorem 2 and the proof is completed.
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Fig. 1. Dynamic behavior of system (21): projection on S-E-I with τ =

40.4628.
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Fig. 2. Dynamic behavior of system (21): projection on S-Q-R with τ =

40.4628.
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Fig. 3. Dynamic behavior of system (21): projection on S-E-I with τ =

48.3616.

IV. N UMERICAL SIMULATION

In order to validate the previous main theorems, some
numerical simulations are presented in this section. By
extracting part of values from [12] and considering the
conditions for existence of Hopf bifurcation, we choose
the following set of parameters:β = 0.00004, µ = 0.03,
η = 0.05, ε = 0.03, σ = 0.05, γ = 0.01, ϕ = 0.05 and
N = 10000. Then, the following specific case of system (2)
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Fig. 4. Dynamic behavior of system (21): projection on S-Q-R with τ =

48.3616

is aquired:


















































dS(t)
dt

= −0.00004S(t)I(t) + 300− 0.03S(t),

dE(t)
dt

= 0.00004S(t)I(t)− 0.08E(t)− 0.03E(t− τ),

dI(t)
dt

= 0.05E(t)− 0.08I(t)− 0.01I(t− τ),

dQ(t)
dt

= 0.05I(t)− 0.05Q(t− τ) − 0.03Q(t),

dR(t)
dt

= 0.03E(t− τ) + 0.01I(t− τ)
+0.05Q(t− τ) − 0.03R(t).

(21)
By using Matlab software package, the unique viral e-

quilibrium P∗(4950, 1377.3, 765.1515, 478.2197, 2429.4) is
obtained. Also,λ′(τ0) = 1.7349 − 0.8215i, ω0 = 0.3153
andτ0 = 44.4792 are acquired.

Then,τ = 40.4682 ∈ [0, τ0) is set. The viral equilibrium
P∗(4950, 1377.3, 765.1515, 478.2197, 2429.4) is asymptoti-
cally stable as depicted in Figure 1 and Figure 2. This means
that the worms can be controlled easily. Figure 3 and Figure
4 show that bifurcating periodic solutions occur whenτ is
larger thanτ0 = 44.4792 such asτ = 48.3616. Thus, we can
conclude that the time delay is vital to the solutions of system
(21). It is shown that if we shorten the period that anti-virus
software uses to clean the worms in the exposed nodes, the
infected nodes and the quarantined nodes, the propagation of
worms in nodes can be controlled.

In addition, by some complex computations, we obtain
C1(0) = −0.7656 + 0.2960i. Then, according to Eq.(15),
we getµ2 = 0.4413 > 0, β2 = −1.5312 < 0 and T2 =
0.0047 > 0. Thus, it is known that the Hopf bifurcation
at τ0 is supercritical. Also, the bifurcating periodic solutions
are stable and the period of the bifurcating periodic solutions
increases based on Theorem 2. Since the bifurcating periodic
solutions are stable, it can be shown that the five classes of
nodes in system (21) can coexist in an oscillatory mode from
the view of ecology. Therefore, it is concluded that the time
delay is harmful for system (21).

V. CONCLUSIONS

In this paper, the time delay is introduced into an SEIQR
worm propagation model in mobile internet. Stability of
the viral equilibrium and existence of Hopf bifurcation are
studied by analyzing the associated characteristic equation
and regarding the time delay as a bifurcation parameter.
Furthermore, with the help of normal form theory and center
manifold theorem from Hassard et al.[28], direction and

stability of the Hopf bifurcation have been derived. Finally,
through numerical simulations, it can be shown that the time
delay that the anti-virus software uses to clean worms in
the exposed nodes, the infected nodes and the quarantined
nodes plays an important role in the worms propagation. And
the worms may be controlled by shortening the period that
the anti-virus software uses to clean worms. These results
obtained in the present paper may help understand the laws
governing the spread of worms in mobile internet.
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