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Stability and Bifurcation Analysis of A Delayed
Worm Propagation Model in Mobile Internet

Jian Ding, Tao Zhao, Zhigang Liu, Qiong Guo

Abstract—This paper is concerned with the Hopf bifur- nodes are being cleaned by the anti-virus software, there
cation of a delayed SEIQR (Susceptible-Exposed-Infectious- js a time delay before those nodes develop themselves into
Quarantined-Recovered) worm propagation model in mobile e recovered ones. In addition, a stability switch and Hopf
internet. Firstly, a distinct set of conditions that ensures | . . - IS .
existence of the Hopf bifurcation are derived by analyzing the bifurcation VY'” occur even '_f Fhe ignored delay is Sma”,
roots of the associated characteristic equation and regarding for @ dynamical model. Realistic examples can be found in
the delay as a bifurcation parameter. Secondly, the normal computer virus models [13-16], predator-prey models [17-
form theory and the center manifold theorem are employed 22] and neural networks [23-25]. The occurrence of Hopf
to determine direction of the Hopf bifurcation and stability it rcation means that the state of worm prevalence changes
of the bifurcating periodic solutions. Finally, some numerical S - - S
simulations are presented to illustrate the theoretical results. from an equmbnum point t(_) a limit cycle, which is not

welcomed in networks. Motivated by the work above, the
time delay representing the period that anti-virus software
uses to clean the worms in the nodes, is incorporated into the
SEIQR model in [12]. And Hopf bifurcation of the delayed
I. INTRODUCTION SEIQR propagation model is also investigated in this paper.
The remaining materials of the present paper are orga-

Index Terms—Delayed SEIQR model, Hopf bifurcation, Pe-
riodic solutions, Worm.

HE cyber security threats have increased sharply in re- .
y y . Py nized as follows. Section 2 formulates the SEIQR worm
cent years as a result of propagation of computer viruses . L .
, opagation model with time delay. Section 3 shows the
in the Internet [1-3]. Worms that can lead to large scale - ) ) .
i ocal stability of the viral equilibrium and existence of
network congestion are one of the most harmful computﬁr

viruses in the Internet. Due to the high similarity betweegliOpf bifurcation, and analyzes the properties of the Hopf

. . . . rurcation. Section 4 examines the results by using some
computer worms and biological viruses, many mathematica . : . ST . )
. nlflmerlcal simulations. A conclusion is given in Section 5.
models [4-8] have been proposed to explore dynamics O
computer worms in the Internet since the pioneering work I
of Kephart and White [9, 10]. '
With the rapid development of network communication

M ODEL FORMULATION
The proposed SEIQR worm propagation model in [12] is

technology, mobile devices have become increasingly perd. follows:

sive, which attracts attackers to propagate worm progranjs %ff) = —BS{)I(t) + uN — pS(t),

among these mobile equipments. However, the above worms ;)

propagation models can not be used directly in the mobilg ~dt BS()I(t) —nE(t) — eE(t) — pE(t),
environment owing to the differences between computers add %(tt) = nE(t) — pl(t) —ol(t) — (1), (1)
smartphones, especially in the Wi-Fi scenario. Chameleop, ()

a new Wi-Fi worm with high performance, appeared in| =5~ = ol(t) —¢Q(t) — nQ(t),

2014 and it could be spread in a manner similar to that dR(t) _
airborne diseases [11]. In order to prevent worms attacks ih 4 eE(t) +71(t) + Q) — pR(),
mobile internet, Xiao et al. [12] proposed an SEIQR worwhereS(t), E(t), I(t), Q(t) and R(t) represent the numbers
propagation model and explored the dynamic behavior 8f the susceptible nodes, the exposed nodes, the infected
worms in mobile internet. nodes, the quarantined nodes and the recovered nodes at time
However, Xiao et al. [12] assume that the exposed nodéstespectivelyV is the total number of nodes in system (1);
the infected nodes and the quarantined nodes revert /Jtd)g the natural birth rate of the nodes and it is also the death
the recovered ones instantaneously in the proposed SEIte of the nodesf is the infection rate of the susceptible
worm propagation model in mobile internet, which is nofodesy, e, o, v andy are the transition rates. Xiao et al. [12]
reasonable as the anti-virus software needs a period of timétddied stability of the worm-free equilibrium and the viral
clean the worms between these nodes. Thus, when the woffgilibrium. Based on system (1), we consider the delayed
in the exposed nodes, the infected nodes and the quarantifalel:

a5 —  _BS(t)I(t) + uN — pS(t
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wherer is the time delay, during which anti-virus softwarens

will clean the worms in the nodes.

Assumption 1.

_ det( mos 1 ) >0, ()
mo2  Mo3
Mo4 1 0 )
D3 =det| mg2 mgo3z mos | >0, (4)
0 mo1  Mo2
mo4 1 0 0
Dy =det| ™oz o3 mos 1 ) >0, (5)
Mmoo M1 Mo2  Mo3
0 0 Moo Mo1
mos 1 0 0 0
mo2 ™Moz Mos 1 0 ]
Ds =det| mo mor mo2 mo3 mos | >0, (6)
0 0 Moo Mo1  Mo2
0 0 0 0 moo
where
moo mo + no + Po + go, Mo1 = M1 +n1 +p1 +4qi,
Mo2 = Mo+ Ng + P2 + g2, M3 = M3 + n3 + ps,
moa = Mg+ Ny,
and
mo = —a44a55(a11022a33 + a13021032),
my = a11a22055(ass3 + asq) + aszagaass (a1 + azz)
+ai3a21a32 (a44 + a55) + a11a22a33044,
my = —ass(a11 + aze)(ass + aq)
—(a11a22055 + azzassass + a13a21a32)
—(a11a22(ass + aaa) + azzagsa(arr + age)),
ms = ass(a11 + age + ass + aqq) + ar11a22 + a33044
+(a11 + az2)(asz + aaa),
my = —(a11 + aze)(asz + asq + ass),
no = —a55b44(a11a22 (a33 + a13a21a32)
—a11044055(a33b22 + az2b33),
n1 = ass(a11 + aze)(aszbas + asabss) — ar1(aas + ass)
(a33b2a + aszbss) + asaassbaz(ar1 + ass)
+aiia99bssa(ass + ass) + a13a21a32b44,
ny = —(bxe(a11a33 + asaass) + bzz(a11022 + asaass)

+baa(ar1asz + azzass)
+bos(a11 + asz)(asq + ass)
+b33(a11 + azz)(ass + ass)
+baa(a1r + azz)(asz + ass)),

Ty

Do
P1

D2

b3
q0
q1
q2
and

a11
a22
ass
bao

bs2

baz(a11 + ass + aaq + ass)

+b33(a11 + azz + asq + ass)

+bas(ar1 + aze + asz + ass),

—(b22 + b33 + baa),

a11055b44 (022033 + a33b22) + a11022a44b22b33,
baobzz(a11a22 + a11044 + a22044)
+baobaa(ariass + ar1ass + azzass)
+b33baa(ar1a22 + a11a55 + assass),
—(bssbaa(a1r + aoz + ass) + bazbzz(arn + aze + as)
+boobas(arr + azs + ass)),

b22b33 + bazbas + b3zbay,

—a11055b22033b44,

(@11 + as5)b22b33baa,

—b22b33b44,

—(BI + ), a13 = BSx, a21 = B,
—(n+ p), as3 = BS«, a3 =,
—(u+0),a43 = 0,044 = — 1, 055 =
—&,b3z = —7,bas = —p,

€,bs53 =7, b514 = .

—H

Assumption 2.Eq.(7) has at least one positive raaj.

fiw) + fiw) =1, ()
where
fi(w) = cosTw, fo(w) = sinTw, (8)
and cos Tw is the root of the following equation
ca(w) cos? Tw + e3(w) cos® Tw + co(w) cos? Tw
+c1(w) cos Tw + cp(w) =0, 9

ri(w)

2(rp(w) x r3(w) — 1 (w) x ra(w)),
2ro(w) x r4(w) + 73 (W) — r3(w),
x ra(w) +7r1(w) X r2(W)),

I
&

6
(

= ()
(

W' + (mf + nj — 2(m3 + p3))w®
+((m3 +p3)* +n3 +2my — 2py
—2mamy — 2mups — 2nany )w®

+(m3 +n3 + p3 — @5 + 2moma + 2maps + 2mapo
+2n9n4 — 2n1n3 — 2(my + p1)(ms3 + p3))w?
+(mi +nf +pf —qf -
—2ngng — 2pop2 — 2myp1)w’

+mg +ng + pa — g5 + 2mopo,

—2n40° + 2(ng — mang + na(ms + p3))w
+2(many — no + nz(ma — p2)

—na(ms + ps) — na(my — p1))w®
+2(no(ms + p3) + na(m1 — p1)
—n1(ma — p2) — n3(mo — po))w
+2(n1(mo — po) — no(m1 — p1))w,

2m0m2

7

3
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—4pow” + 4(po — map1 + pa(ms3 + ps))w”
—4(po(ms + ps) + mapz + map1 )w®
+4(mapo — mop1)w,

2(mgng — n3)w® + 2(n1 — mygne

ro(w) =

+nz(ms + p3) — na(ma + pz))wﬁ

+2(myng + na(ma + p2) + na(mo + po)
—n1(ms + p3) — ng(m1 + p1))w
+2(n1(my + p1) — na(mo + po))WQ
+2n0(mo + po),

4(p1 + mapa)w’

+4(mapa + mapo — p1(ms + P3))w4
+4mipiw? — dmopo.

ry(w) =

Assumption 3.

Gigr X Gar + G X Gy # 0,

where
Gir = (5wj —3(m3 — p3)w +m1 + p1) cos Towo
—2((mg — p2)wo — 2maw}) sin Towo
+2gowo sin 27wo + g1 €os 27Towo + N1 — 3nawa,
Gir = (5‘“3 —3(m3 — ps)wg + mq — p1) sin Towo
+2((ma + p2)wo — 2mawy) cos Towo
+2qowq cos 2Towo — q1 sin 27pwo
+2nowg — 4n4u;§7
Gor = (wg — (m3 —p3)wd +my — p1)wi cos Towo
—((ma + p2)wd — mawy — mo — po) sin Towo
+(gowo — QQWS) sin 21gwo — 2q1wo €cos 2Tpwo,
Gor = (Wé — (ms +p3)w§ +ma +p1)w§ sin Towo

+((ma — pg)wg - m4w§ — mo + Po) COS Towo

+(qowo — qawp) cos 2Towo + 2q1wo Sin 27pwo.

Remark 1. It is easy to see thatgy = 1. +n+0+e+
v+ ¢+ 5u > 0. Therefore, undeAssumptiori, system (2)

M AIN RESULTS

without delay is locally asymptotically stable based on the

Routh-Hurwitz criterion.
Theorem 1. Under Assumptionsl, 2 and 3, the viral e-
quilibrium P, (S., E., L., Q«, R.) is locally asymptotically

stable whenr € [0,7); a Hopf bifurcation occurs at the

viral equilibrium P, (S, E., I, Q«, R.) whenT = 15 and a

family of periodic solutions bifurcate from the viral equilibri-

um P, (S., E., I, Q., R.), wherer, = w—lo{arccos fi(wo)}.

Proof. By direction computation, we obtain the unique viral

equilibrium P, (S., E., L., Q., R.) of system (2), where
(ntet+mlo+vy+p)

S, )
Bn
B - MN*&%L:MN*&%
n+tetp B
0. - ol 7R*:€E*+7L«+90Q*.
p+p I

Straightforward calculations show that the characterist

equation of system (2) at the viral equilibriuf, is as
follows:

A —a 0 —ai13
—a21 A —ag — bye —as3
0 —as32 A — agg — bgze™ T
0 0 —a43
0 7b52€7/\7— 7b53€7/\7—
0 0
0 0
0 0 =0.
A — Qg4 — b44€7)‘7 0
—bsge™ T A —ass
(10)

Eq.(10) equals

A%+ mg\t + mg)\s + moA? + mg A + mo
+(n4)\4 + 1322 + A2 + ) + no)(f)"r
+(psA® + paA® + p1A + po)e” PN

+(2A? + 1A + qo)e > =0, (11)

Multiplying e*” on both sides of Eq.(11), Eq.(11) becomes
714)\4 + 713)\3 + 712)\2 +niA+ng
+()\5 + madt + masd3 + mad? + mg ) + mo)e)‘T

+(p3A® 4+ paA? + p1A + po)e

+(QQ>\2 + @A+ QQ>€72>\T =0, (12)

Let A = iw(w > 0) be a root of Eq.(12) whem > 0.
Then,

{ qrwsin 27w + (go — qaw?) cos 217w = P (w),

1w cos 27w — (qo — qaw?) sin 27w = P (w),

where
P(w) = (w5 — (ms +p3)w3 + (mq — p1)w) sinTw
—(maw* — (Mg + pa)w? + mo + po) cos Tw
+n2w2 — n4w4 - ng,
P(w) = —( 5_ (ms +p3)w3 + (m1 + p1)w) cos Tw

—(maw* — (m2 — pa)w?® + mo — po) sin 7w
+n3w3 — nw.
Then, the following equation can be obtained

ro(w) 4+ r1(w) sin 7w + 79 (w) sin 7w cos Tw
2

+r3(w) cos Tw + r4(w) cos® Tw = 0, (13)

Itis known to all,sin 7w = ++v/1 — cos? Tw. Thus, Eq.(13)
can be transformed into

ro(w) 4 73(w) cos Tw + 1r4(w) cos® Tw =

+(r1(w)V1—cos? 7w+ ra(w) V1 — cos? Tw cos Tw).

(14)

It is equivalent to Eq.(9). According to the discussion
about EQ.(9) in [26, 27], we can obtain the expression of
cosTw, say fi(w). Also, we can obtain the expression of
sinTw, say fa(w). Further we can obtain Eq.(7). Under
fassumptior2, we have

T0 = wio{arccos J1(wo)}-
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Taking the derivative o with respect ta- in Eg.(12), we with

have _ ail 0 ais 0 0
[Q} 1 = G () T a1 a2 Q23 0 0
dr GQ()‘) A Apar = 0 as2 ass 0 0 ,
with 0 0 a43 Qa4 0
0 0 0 0 as5
Gl ()\) = 4714)\3 + 3713)\2 + 2712)\ + ni1 + 0 0 0 0 0
(5A* + 4mg A3 + 3maA? + 2ma) + ml)e)"r 0 by 0 0 0
+(3psA? 4+ 2pa XA + p1)e M Bpaz=| 0 0 bz 0 0
+(2(J2)\ 4 (11)6—2/\7'7 0 0 0 bas 0
Ga(\) = 2N + @ \% + goA)e T 0 bs2 bsz bsa O
+(p3A* + paX® + p1 A2 + poh)e Based on Riesz representation theorem, thergésp) in
~ (08 4 maX® + maA? 6 € [—1,0] such that
3 2 AT 0
FmaX A"+ moA)e”. L= [ dn6.000) forocc. @
Thus, -

In fact, we choose
77(9, Q) = (TO + Q)(Amazé(e) + Bmaz(s(e + 1))7

whered(0) is the Dirac delta function.

|:d)\}l Gir X Gar + G115 X Gag
Re| — = 5 5 .
AT | x—iw, Gor +Gap

Clearly, undelAssumptiors, Rq%]/\:iwo # 0. Therefore,
based on the Hopf bifurcation theorem from Hassard et al.For ¢ ¢ C([|—1, 0], R%), define
[28], Theorem 1 is obtained and the proof is completed.

Theorem 2.The sign ofu, determines direction of the Hopf %(f), -1<60<0,
bifurcation: if uo > 0 (u2 < 0), then the Hopf bifurcation is Alo)o = 0 4 0 g
supercritical (subcritical); The sign ¢ determines stability JZ1dn(0,0)6(0), =0,

of the bifurcating periodic solutions: i, < 0 (52 > 0), then gnd
the bifurcating periodic solutions are stable (unstable); The 0, -1<6<0,
sign of T, determines period of the bifurcating solutions: if (0)¢ = { P 0—0
T» > 0 (T3 < 0), then the period of the bifurcating periodic (e,9), o
solutions increases (decreases). The expressionsg, gh < Then system (16) is equivalent to
0 andT, > 0 are as follows

| ] u(t) = A(o)ur + R(0)us. (18)
C1(0) :R@O()!{Hg% —2lguf* - %) + 5 Fory € C*([0,1]), (R%)*, the adjoint operatad* of A(0)
12 = — Re((ro) ]’ (15 is defined as following
By = 2Re{C1(0)}, . 22l p<s <,
T, = _Im{C1(0)}:)l:)20|m{/\/(To)}. A(p) = { ffl dnT(&O)@(*S)a s=0,

Proof. Next, we define the bilinear inner form fot and A*
Letting ui(t) = S(t) — S., us(t) = E(t) — Ex, us(t) =

0 0
I(t) — L, ua(t) = Q(t) — Qx, us(t) = R(t) — R, and s — 3 _ S(e_
rescaling the delay by — (¢/7). 5Let T=T+0 0€R, (els) 9(6)) = £(0)9(0) /(9:_1 /5—0 PE-O)dn()HE)L,

and the Hopf bifurcation occurs at= 0. Then, system (2) (19)
becomes Wheren((ﬂ) = 77(9,(0). N o
’ _ Let p 9) = 1ap25p3ap47p5) e'7owo? and p* S =
w(t) = Loue + Flo,ur), (16) (1, p5, p5, pi, pi)Teimowos pe the eigenvectors fad(0) and
where w, = (ui(t),uz(t),us(t), ua(t),us(t))T = A(0) corresponding tetirowo and—irowo. Then, it is not
(S,E,I,Q,R)T € R’ w() = u(t+6) ¢ ¢ = difficultto show that
C([-1,0],R%) and L, : C — R5, F(p,u;) — R® are given _ az1 + as3p3 _ o — a1l
respectively by Pz = 1wy — Qg2 — bage~iTowo P3 = a3
_ a43p3 _ bs2pa + bs3ps + bsapa
LQ¢ = (TO + Q)(Ama1¢(0) + Bmaw(b(_l))) P4 - in — Qaq — b4467i7'0w0 ' P5 = in _ a556i'rgwg ?
N wo +a
and ph = =0
—B¢1(0)¢3(0) 021 . _
B1(0)¢3(0) P (iwo + az + b22e'™%0) p5 — bsge' ™0 4 pg
F(o,¢) = 0 : ° as2 ’
0 baa + bsapi P51
i = = - ) 5= ) 20
0 Pa (two + agq)e™T0w0 Ps P52 (20)
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where Then, the expressions of,, 2 < 0 andT> > 0 are ob-
tained. Based on the properties of the Hopf bifurcation stated

* . TTOW . IToW *
= (iw a b2oe" %) (4w, a b3ze'70w0 . .
P51 (itwo + azz + b2z J(iwo + az3 + bss P2 i [28], we have Theorem 2 and the proof is completed.
«  032043bg4€"70%0
—a13G32 + Q2303209 + ——————
1Wo + Q44
X G32043b54€5T0%0
P52 = a32b53e" ™00 — ek
1Wo + Qg4 790
—bgoe' o0 (’in + ags + bzze'™0w0). 780

770

I(t)

According to Eq.(19), we have

760

D = [L+ paps+ psps + paps + psps + 10e” T (boopaps TP
—% —% —k —k]— 740
+b33p3p3 + b53P3P5 + b44p4p4 + b54p4p5] ! 1920 400 Jows oy 5000
such that(p*, p) = 1 and (p*, p) = 0. s o w0 ‘020 B =
Next, using the algorithms given in [28] and following E0) 80 s
the similar computation process as in [29, 30], we get the _ _ o ,
expressions Ofigo, gi1s Goz and go1 @S follows Z(l)g46128 Dynamic behavior of system (21): projection on S-E-thwi =
920 = 2BmoDps(p5 —1),911 = BroD(ps + p3)(p3 — 1),
go2 = 2B70Dp3(p3 — 1),
= 1 1oy,
gn = 2870D(p5 — (WL (0)ps + 5 Wi (0)ps
1 2500
W (0) + Wi (0
+WP(0) + 5 W5 (0)),
with £ 2400 @
Wao(0) = 7i920p(0)e”°w°9 e |
Towo 2300
i 193020(0) e~ iT0wed 4 o2iTowod s s o080 %0
ToWwo 460 440 4900
911(0) irgwoo , 1911P(0) _iriweo Qv . st)
Wu(0) = - eimon? 4 e im0l 4 B,

Towo Towo
. . . Fig. 2. Dynamic behavior of system (21): projection on S-Q-Fhwi =
FE; and E» can be obtained by the following two equat|0n§094628_ Y Y (21): proj

Wo — a11 0 —a13
—az1 a/22 —a23
E1 = 0 —as2 a’33
0 0 —a43
0 _b52€—2imwo _b53€—2imw0
-1
0 0 —Bps3
0 0 Bp3
0 0 X o |,
Ay 0 0
7b54672”-0w0 2iwo — ass 0
1 4900
all 0 a3 0 0 E(t) 1300 S(t)
a1 azz + baa a23 0 0
Ey = — 0 a3z ass + bss 0 0 Fig. 3. Dynamic behavior of system (21): projection on S-E-thwi =
48.3616.
0 0 a43 agq +bsgs 0
0 bs2 bss3 bs4 ass
—B(p3 + p3)
Blps ‘Bp3) IV. NUMERICAL SIMULATION
X )
8 In order to validate the previous main theorems, some
numerical simulations are presented in this section. By
where _ extracting part of values from [12] and considering the
ahy = 2iwy — agy — bage” 27O conditions for existence of Hopf bifurcation, we choose
. 2 the following set of parametergi = 0.00004, © = 0.03
- 9 _ —b 2iTowo ’ ’
33 = S0 T fas T 08 n = 0.05 & = 0.03, ¢ = 0.05 v = 0.01, » = 0.05 and
alyy = 2iwy — agq — byge” 200, N =10000. Then, the following specific case of system (2)
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stability of the Hopf bifurcation have been derived. Finally,
through numerical simulations, it can be shown that the time

QWM

S()

Fig. 4. Dynamic behavior of system (21): projection on S-Q-Fhwi =
48.3616

is aquired:
45— _0.000045(t)I(t) + 300 — 0.035(t),
4EL = 0.000045(t)1(t) — 0.08E(t) — 0.03E(t — 7),
A — 0.05E(t) — 0.08I(t) — 0.011(t — 7),
49— 0.051(t) — 0.05Q(t — 7) — 0.03Q(¢),
/Y — 0.03E(t—7) + 0.011(t — 7)
+0.05Q(t — 7) — 0.03R(1).

(21)

By using Matlab software package, the unique viral e-

quilibrium P, (4950, 1377.3,765.1515,478.2197,2429.4) is
obtained. Also,\'(19) = 1.7349 — 0.8215¢, wy = 0.3153
and o = 44.4792 are acquired.

Then,r = 40.4682 € [0, 79) is set. The viral equilibrium
P,(4950,1377.3,765.1515, 478.2197,2429.4) is asymptoti-

cally stable as depicted in Figure 1 and Figure 2. This med#€l
that the worms can be controlled easily. Figure 3 and Figure

4 show that bifurcating periodic solutions occur whernis
larger thanry = 44.4792 such as- = 48.3616. Thus, we can

conclude that the time delay is vital to the solutions of syste
(21). It is shown that if we shorten the period that anti-virus

software uses to clean the worms in the exposed nodes,
infected nodes and the quarantined nodes, the propagatio
worms in nodes can be controlled.

In addition, by some complex computations, we obtaii4]

C1(0) = —0.7656 + 0.2960i. Then, according to Eq.(15),
we getpus = 0.4413 > 0, B2 = —1.5312 < 0 and Ty =

0.0047 > 0. Thus, it is known that the Hopf bifurcation
at 7y is supercritical. Also, the bifurcating periodic solution
are stable and the period of the bifurcating periodic solutio

increases based on Theorem 2. Since the bifurcating periodic
solutions are stable, it can be shown that the five classes/'d
nodes in system (21) can coexist in an oscillatory mode from
the view of ecology. Therefore, it is concluded that the time

delay is harmful for system (21).

V. CONCLUSIONS

In this paper, the time delay is introduced into an SEIQR
o

worm propagation model in mobile internet. Stability
the viral equilibrium and existence of Hopf bifurcation ar

studied by analyzing the associated characteristic equation
and regarding the time delay as a bifurcation parameter.

Furthermore, with the help of normal form theory and cent

manifold theorem from Hassard et al.[28], direction and
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delay that the anti-virus software uses to clean worms in
the exposed nodes, the infected nodes and the quarantined
nodes plays an important role in the worms propagation. And
the worms may be controlled by shortening the period that
the anti-virus software uses to clean worms. These results
obtained in the present paper may help understand the laws

governing the spread of worms in mobile internet.
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