
A GA-Based Approach to Automatic Test Data
Generation for ASP.NET Web Applications

Islam T. Elgendy, Moheb R. Girgis, and Adel A. Sewisy

Abstract—One of the major challenges in software testing is
the generation of test data automatically that satisfy a specified
adequacy criterion. This paper presents a GA-based approach
and a supporting tool for data-flow test data generation for
ASP.NET web applications. The proposed tool accepts as input
the web application under test, instruments it, and performs
static analysis to compute the definition-use pairs. The proposed
GA conducts its search by constructing new test data from
previously generated test data that are evaluated as effective
test data. In this GA, the chromosome is a collection of user
interface control objects, where each control is considered as a
gene. Therefore, novel crossover and mutation operators are
developed to manipulate the chromosome, which are called
block crossover and control-based mutation operators. The
proposed GA accepts as input the instrumented version, the
list of definition-use pairs to be covered, and input controls
related information. The tool produces a set of test cases, the
set of definition-use pairs covered by each test case, and a list of
uncovered definition-use pairs, if any. Also the paper presents a
case study to illustrate how the tool works. Finally, it presents
the results of the empirical evaluation that is performed to
evaluate the effectiveness of the generated test data in exposing
web application errors.

Index Terms—Software testing, Data Flow Testing, Automatic
test data generation, Automated Testing Tool, Web Applications
Testing.

I. INTRODUCTION

SOFTWARE testing has been widely used in the industry
as a quality assurance technique for the various artifacts

in a software project. However, software testing is very labor-
intensive, time-consuming and expensive; almost 50% of the
cost [1], [2] and 40% of the time of a software system
development is spent on software testing [3]. Software testing
has two main aspects: test data generation and application
of a test data adequacy criterion. A test data generation
technique is an algorithm that generates test cases, whereas
an adequacy criterion is a predicate that determines whether
the testing process is finished [4].
Web applications (WebApps) are being used extensively in
business, social, organizational, and governmental functions.
The continual availability of WebApps is one of the advan-
tages to use them by many users without regard to their
location or time limitations [5]. However, this demands high
reliability of WebApps. Inadequate testing poses huge risks
including downtime and loss of users’ trust and convenience.
The Web’s ubiquity and users’ reliance on it have made it
crucially important to ensure the quality, correctness, and
security of WebApps.
The process of constructing or choosing test data manually

Manuscript received August 29, 2019; revised February 3, 2020
Islam T. Elgendy and Adel A. Sewisy are with the Department of Com-

puter Science, Faculty of Computers and Information, Assiut University,
Egypt. e-mail: islam.elgendy@aun.edu.eg

Moheb R. Girgis is with the Department of Computer Science, Faculty
of Science, Minia University, Egypt.

to cover a certain testing criterion requires experience and
time. Automating the process of test data generation can
solve these issues. One possible solution is generating test
data at random, which can speed up the process significantly.
However, there is no guarantee that the generated data will
cover the testing criterion, or the data will be useful in
error detection. Therefore, a more sophisticated and intel-
ligent technique is required. Search-based software testing
formulates testing as an optimization problem, which can be
solved using computational search techniques from the field
of Search Based Software Engineering.
This paper presents an automated test data generation ap-
proach based on genetic algorithm (GA) for data flow testing
of ASP.NET webApps. The paper is organized as follows:
Section 2 presents the related work. Section 3 briefly covers
the concepts of GAs and some of the used utilities. Section 4
presents the proposed test data generation approach. Section
5 presents a case study. Section 6 presents the experimental
results. Section 7 presents the conclusion of this work.

II. RELATED WORK

As this paper focuses on automatic test data generation
for webApps using GA, this section reviews some of the
research work in the field of search-based test data generation
and webApp testing. Sharma et al. [6] presented a survey of
GA approach for addressing the various issues encountered
during software testing, and discussed the applications of
GA in different types of software testing. They concluded
that using GA, the results and the performance of testing
can be improved. Li et al. [3] presented a broad survey of
testing advances in webApps and discussed the techniques
employed, targets, goals, inputs/outputs and stopping criteria.
They stated that there are various testing goals, such as
ensuring testing adequacy, finding faults, etc. and the choice
of a testing technique depends on the testing goal. Lakshmi
and Mallika [7] presented a comparative study of some of
the techniques, prominent tools, and models for WebApp
testing, and highlighted the research directions for some of
the WebApp testing techniques.
Girgis [8] presented an automatic test data generation tech-
nique based on GA, which is guided by the data flow
dependencies in the program, to search for test data to fulfil
the all-uses criterion. The input to the GA is an instrumented
version of the program under test, number of input variables,
the domain and precision of each input variable, and list of
definition-use (def-use) associations. The output of the GA is
a set of test cases and the list of def-use associations covered
by each test case, and a list of uncovered def-use associations,
if any.
Alshahwan and Harman [5] adapted a set of related search
based testing algorithms for webApp testing, and imple-
mented an automated test data generation approach for PHP

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

webApps. Setiadi et al. [9] proposed a method to reduce
the number of test cases for detecting errors in a concurrent
program. They used data flows and branch structure to
reduce redundant test cases, identifying only the interleavings
that affect the branch outcomes rather than identifying all
interleavings affecting shared variables. Setiadi et al. [10]
further improved their work by analyzing data dependency to
generate test cases affecting sequences of locks and shared
variables, reducing the required memory space. Also, they
generated test cases for detecting race conditions caused
by accesses through reference variables. Furthermore, by
exploiting previous test results, they reduced the effort for
checking race conditions.
Takamatsu et al. [11] extended the Seeker tool developed
by Thummalapenta et al. [12], which is based on branch
coverage, focusing on multiple targets, identifying all the in-
volved targets in uncovered branches and evaluating method
sequences according to a fitness function, while applying a
search strategy to suppress combinatorial explosion. Bous-
sasa [13] introduced the use of Novelty Search (NS) algo-
rithm to the test data generation problem based on statement-
coverage criteria. The NS adaptation attempted to exploit
the large search space of input values and catch relevant
test cases that may cover as much as possible the executed
statements.
Girgis et al. [14] have presented an approach to data flow
testing of WebApps. They presented an approach that in-
cludes the construction of a WebApp data flow model to
aid WebApps data flow analysis. In this approach, testing is
conducted in four different levels, Function, Inter-procedural,
Page, and Inter-Page levels. In each level, the def-use pairs
of the variables are obtained. Then, selecting test data that
cover these def-use pairs ensures the fulfilment of the all-
uses criterion.
Akhter et al. [15] proposed a GA based-test data generation
technique to achieve path coverage of the program under test.
The proposed technique is a multiple population algorithm,
in which small changes are performed and the populations
are combined to find the fittest test data. The fittest solutions
from all the populations form a new population. Crossover is
performed to have a new population which is also combined
with the fittest population and the process continues. After all
iterations, the set of fittest test data is obtained for maximum
path coverage. Azam et al. [16] presented a toolkit for
automated test data generation, and test case prioritization.
They used GA and fuzzy rule based system to generate
automated test data with focus on boundary values testing.
Scalabrino et al. [17] presented a search-based tool, called
Ocelot, for the automatic generation of test cases in C. Run-
ning Ocelot consists of two distinct macro-phases: build and
run. In the build phase, the target program is instrumented,
and then compiled. The output of such a phase is a static
library, which is linked by the tool and used in the run phase,
where a search-based algorithm is exploited to identify a set
of inputs that maximize the code coverage. The output of
this phase is a set of test data that can be used to test the
target program.
As far as the authors are aware, none of these researches
have used GAs to generate test data for data flow testing of
webApps.

III. GENETIC ALGORITHM CONCEPTS AND UTILITIES

This section presents the basic concepts of genetic al-
gorithms (GAs), and some utilities for automated testing,
namely Microsoft Coded User Interface Testing (CUIT) and
Genetic Algorithm Framework (GAF).

A. Genetic algorithms

The basic concepts of GAs were developed by Holland
[18]. GA is a search-based optimization technique inspired
from the natural search and selection processes that leads
to the survival of the fittest individuals. GAs generate a
sequence of populations by using a selection mechanism,
and use crossover and mutation as search mechanisms [19].
The idea behind GAs is that they construct a population of
individuals represented by chromosomes, which is normally
a character string similar to the DNA chromosomes. These
chromosomes represent solutions to a problem. The chro-
mosomes then evolve according to the selection, mutation
and reproduction rules. The fitness of each individual (chro-
mosome) in the environment is measured. Individuals with
high fitness values in the population are selected by repro-
duction, and a new population is derived through crossover
and mutation, in which individuals may have better fitness
in their environment. In crossover two chromosomes swap
genetic information as in the process of sexual reproduction.
Mutation makes slight modifications in a small part of the
population that represents an evolutionary step. The structure
of a simple GA is given in algorithm 1.

Algorithm 1: Basic GA

1 begin
2 initialize population;
3 evaluate population;
4 while termination criterion not reached do
5 select solutions for next population;
6 perform crossover and mutation;
7 evaluate population;
8 end
9 end

The termination criterion of the algorithm can be either
reaching a solution to the problem, or reaching the maximum
number of iterations, meaning that a solution cannot be found
given the available resources.

B. CUIT and GAF

In Visual Studio, automated tests that drive an application
through its user interface (UI) are known as coded UI tests
(CUITs) [20]. They are frequently used to verify that the
application is working correctly including its user interface,
and to automate an existing manual test. CUIT is used to run
the webApp with certain data generated from the proposed
tool to test the viability of the test data and the achieved
coverage.
The Genetic Algorithm Framework (GAF) is a .Net/Mono
assembly, freely available via NuGet, that allows a GA based
solution to be implemented in C# [21]. The population,
which is the collection of possible solutions, can be initial-
ized randomly, or a set of starting possible solutions can be

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

Fig. 1: The constructed chromosome and the three groups within each page.

(a) Before Block-crossover. (b) After Block-crossover.

Fig. 2: Two possible chromosomes before and after the Block-crossover.

added to the population. The GAF supports binary, integer,
real and object-based genes (i.e. a chromosome with objects
as genes). The GAF allows the definition of any fitness
function as well as a termination function, which causes the
run to stop. It also provides many genetic operators, such
as: crossover and mutation, and supports adding new custom
genetic operators.

IV. PROPOSED APPROACH

This section describes a proposed approach for data-flow
test data generation for ASP.NET webApps. In an early work,
the authors [22] presented a tool for automated data flow
testing of ASP.NET webApps, where the webApp under test
is instrumented and analyzed to compute the def-use pairs.
This paper extends this work by using a GA for generating
test cases automatically to cover the computed def-use pairs.

A. Representation

The chromosome is constructed from the generated report
of the static analysis [22]. Every user interface (UI) control
is considered as a gene in the chromosome. Figure 1 shows
the constructed chromosome, where P1, P2, ..., Pn represent
the pages of the webApp under test. The web pages in the
webApp under test are added to the chromosome one by
one. Within each page, the UI controls are added in a certain
order. Three groups of controls may exist within each page:
Input controls (such as textboxes, or comboBoxes), clickable
controls (such as radioButtons, checkboxes, or buttons), and
hyper link controls (including linkButtons). Within the
clickable controls block, the buttons are grouped at the end
of the block. The three groups within each web page are
shown in figure 1.
The reason behind this chromosome structure is that we want
to generate first data for input controls that might be used
in the code-behind file, then click on controls that won’t
cause page transfer, and finally choose one of the hyper-
links to transfer to another page. This procedure is repeated
until the chromosome is completed. The GAF framework
[21] allows us to construct the chromosome genes as objects
rather than binary strings. This means that every gene in the
chromosome is a UI control object. Thus, novel crossover

and mutation operators are developed to handle this chro-
mosome representation. The initial population is constructed
with random values for the input controls, random clicking
order for the clickable controls, and one hyperlink is chosen
at random. The tester is required to specify the starting page
of the webApp from which the test starts, and the type of
each textbox value (text or numeric) and the range of possible
values for numeric data, or the string length for text fields.

B. Genetic operators

As explained before, the chromosome is not a binary string
but rather a collection of UI control objects, with each control
is considered to be a gene. Therefore, novel crossover and
mutation operators are developed to manipulate the chromo-
some. These novel operators are called block crossover and
control-based mutation.

1) Block crossover: The chromosome is partitioned as
web pages. The crossover is performed between two chro-
mosomes page-wise. One of the three blocks within the
web page is chosen randomly and swapped between the two
chromosomes. For example, let’s assume that we have three
web pages in the application. Two possible chromosomes are
shown in figure 2a. Assume that for the first page block 2 is
chosen at random, for the second page block 1 is chosen,
and for the third page block 3 is chosen. The generated
chromosomes are shown in figure 2b.

2) Control-based mutation: The traditional mutation is
not suitable because the chromosome is not a binary string
but consists of UI controls as genes. Thus, for each control
type, there is a different mutation operation. Input controls
mutation involves generating a new value randomly within
the range specified by the tester. Clickable controls mutation
involves flipping the value (clicked to unclicked, or unclicked
to clicked). Button controls mutation involves changing the
order of the button clicks. Hyperlink controls mutation
involves choosing another hyperlink randomly.

C. Fitness function

The fitness function is performed based on the coverage
percentage for the solution. Each chromosome ch is decoded
into a set of test data, which represents the solution, and the

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

instrumented webApp is run with this set of data. Running
the instrumented webApp produces a file containing the
traversed path. This path is checked with the list of def-use
pairs, and its fitness is evaluated as follows:

f(ch) =
number of covered def − use pairs
total number of def − use pairs

(1)

f(ch) is the fitness of the chromosome ch. A test case
which is represented by the chromosome ch is considered
effective if its fitness value f(ch) > 0. In each generation,
every solution in the current population is run and the fitness

Algorithm 2: A GA algorithm to automatically gen-
erate test cases for a given webApp.

input : Instrumented version P ′ of the webApp to
be tested P ;
List of def-use pairs to be covered;
Input controls related information;
Population size (Pop size);
Maximum no. of generations (Max Gen);
Empty input probability;
Starting url address;

output: Set of test cases for P , and the set of
def-use pairs covered by each test case;
List of uncovered def-use pairs, if any;

1 begin
2 Step 1: Initialization
3 Initialize the def-use coverage table to

uncovered;
4 Create Initial Population;
5 Cur population = Initial Population;
6 Set of test cases for P , S = φ;
7 Acc Coverage Percent = 0;
8 No Of Generations = 0;

9 Step 2: Generate test cases
10 while Acc Coverage Percent 6= 100 and

No Of Generations ≤Max Gen do
11 best =

Evaluate Population(Cur population);
12 Cur Coverage = checkCoverage(best);
13 if Cur Coverage >

Acc Coverage Percent then
14 Acc Coverage Percent =

Cur Coverage;
15 S = S ∪ best;
16 Update the def-use coverage table;
17 end
18 Create New Population using

block-crossover and control-based
mutation operators;

19 Cur Population = New Population;
20 Increment No Of Generations;
21 end

22 Step 3: Produce output
23 Return S, and set of def-use pairs covered by

each test case;
24 Report on uncovered def-use pairs, if any;
25 end

is calculated. The best solution, which achieves the highest
coverage percentage, is selected as a test case. The population
goes through block crossover and control-based mutation to
produce a new population. The new population is evaluated
using the same procedure while keeping the last coverage
percentage to achieve a better accumulated coverage percent-
age. To illustrate this, let’s assume that we have a total of 50
def-use pairs in a webApp. The first generation was evaluated
and the best solution covered 20 def-use pairs. Hence, the
coverage is 40%. Now, the new generation will keep that 40%
coverage in the evaluation. Assume that the next solution
covered 5 more def-use pairs, which means that with this
solution the total number of covered def-use pairs became
25, so the accumulated coverage is now 50%. This procedure
is repeated until a full coverage is achieved or the maximum
number of generations is reached.

Algorithm 3: Population evaluation.
input : The population Pop;

The pageList data structure;
output: Best solution of the population;

1 begin
2 pageIndex = FindStart(Pop, url);
3 for every chromosome ch in Pop do
4 Decode every gene into a UI control object;
5 Initialize values of the array visited to false;
6 Create an empty coded UI file (CUIF);
7 startIndex = pageList[pageIndex].start;
8 endIndex = pageList[pageIndex].end;
9 visited[pageIndex] = true;

10 for every UI control uic in ch from the
startIndex to endIndex do

11 Write coded UI command into CUIF
based on the type of the uic object to
perform the corresponding action on this
UI control;

12 if uic.Type = hyperlink then
13 targetPage = uic.Target;
14 tInd =

search(targetPage, pageList);
15 if tInd 6= −1 and !visited[tInd] then
16 startIndex =

pageList[tInd].start;
17 endIndex = pageList[tInd].end;
18 else
19 close CUIF ;
20 break;
21 end
22 end
23 end
24 Compile and run CUIF to automatically run

the webApp with the generated test data;
25 Calculate f(ch) based on the percentage of

the covered def-use pairs by the traversed
path;

26 end
27 Return the best chromosome that has the highest

coverage.
28 end

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

Fig. 3: The GA test data generator form.

D. The Overall GA Algorithm

Algorithm 2 shows the steps of the proposed GA algorithm
(GATestDataGenerator). The algorithm accepts as input
an instrumented version of the webApp to be tested, the list
of def-use pairs to be covered, the input controls related
information (type and range for each input control). Also,
it accepts the starting URL of the webApp, population size,
maximum number of generations, and the empty probability
(the probability that no input controls are used and buttons
are clicked right away) . The algorithm produces a set of test
cases, the set of def-use pairs covered by each test case, and
the list of uncovered def-use pairs, if any.
The algorithm uses a table, called the def-use coverage table,
to record the traversed def-use pairs. In this table, each
element corresponds to a def-use pair. Initially, all pairs
are marked as uncovered. A set of final test cases S is
initially empty, and the GA population is created initially
at random. Line 11 calls Algorithm 3 (which is explained in
the next subsection) to evaluate the population and returns
the resultant best solution. Then this best solution is checked
for coverage in line 12. If the coverage of the best solution
increases the accumulated coverage, that solution is added
to the set S as one of the final test cases, the accumulated
coverage is set to the best coverage, and the def-use coverage
table is updated. The number of generations is incremented,
and the new population is created using block-crossover and
control-based mutation operators. The process is repeated
until a full coverage is achieved or the max number of
generations is reached. The set S is returned, and a report
that includes the def-use pairs covered by each test case and
the list of uncovered def-use pairs, if any, is displayed.

E. Running tests

In order to evaluate the fitness of the solution, we use
the algorithm Evaluate Population (Algorithm 3). In this
algorithm, the chromosome is decoded into a set of test data
and run automatically on the webApp using Microsoft coded
UI test. This requires generating a coded UI file based on
the current chromosome, and the file is compiled and run
automatically to perform the test on the webApp. Running
the instrumented webApp produces a text file that contains

the line numbers of the traversed path, which is used to check
the fitness of the chromosome as explained before. We use
a data structure named pageList to track the start and end
indices of every web page and its internal blocks within the
chromosome. The pageList is used to retrieve information
about the positions of the UI controls of the web pages.
Also, we use an array of Boolean values named ”visited”
to keep track of the status of the web pages. The value true
means a web page is visited, false otherwise.

V. CASE STUDY

This section presents a case study to show how the
tool generates automatically test data to cover the def-
use pairs of a webApp. The webApp used in the case
study consists of three web pages named ”webForm1.aspx”,
”webForm2.aspx”, and ”webForm3.aspx”. The code and
description of the webApp is provided on GitHub 1.
The initial static analysis showed that the webApp has a total
of 230 statements, 82 variables, 36 anomalies, and 91 def-use
pairs. Figure 3 shows the GA test data generator form, where
the tester enters the starting URL page from which the test
will run, the population size, the number of generations, and
the empty probability. This is the probability of creating a
solution without any data for the input controls and directly
clicking on the buttons and hyper-link. The form also shows
the input controls from the analysis phase, and for each input
control the tester determine the type of the data in the text
box whether it is text or by default numeric and the range
of the data in the input control. In case of the text type,
the range indicates the possible length of the input string.
The characters themselves are generated at random. For list
controls, the range determines the selected index that might
be chosen for the control. If the control is left without any
data, this means that the tool will not generate any data for
this control.
Once the tester specifics all the required data, he/she clicks
on the ”Build Controls” button, and then browses for the text
path file that will be used to check the coverage of the current
test run. Finally, the tester clicks on the ”Run Test” button
that will automatically start generating data for the webApp

1https://github.com/islamelgendy/webApplication/tree/master

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

Fig. 4: During the run.

Fig. 5: After the finish of the run.

and evaluates each run in terms of coverage. In the duration
of generating test data, the tester will not have control over
the computer, but he/she can only pause the process at any
time and then resume it again. After each generation, the
best solution is selected and the tester will be notified with
the current coverage in the progress bar as shown in figure
4. The GA algorithm will finish once it satisfies the stopping
criteria. The final solutions will be displayed in the bottom
text area showing the coverage percentage reached with every
test case and in which generation. Also the unfulfilled def-use
pairs left will be shown. In this example, the tool managed
to find an accumulated coverage of 93.41% with only 6 def-
use pairs left uncovered, 2 of which are infeasible. The end
results and parameters used in this run are shown in figure
5.

VI. EXPERIMENTAL EVALUATION

Two types of experiments have been conducted. The
purpose of the first one is to evaluate the ability of the test
data generated by the proposed GA to cover the def-use
pairs of the webApp being tested (i.e. fulfils the all-uses
criterion). The purpose of the second one is to evaluate
the effectiveness of the generated test data in exposing
webApp errors. The materials for these experiments were
five different webApps 2 3 4.

2https://github.com/islamelgendy/CS651 TEST ,
https://github.com/islamelgendy/MySessions

3https://code.msdn.microsoft.com/Getting-Started-with-221c01f5
4https://www.codeproject.com/Articles/1575/ASP-NET-To-Do-List-

Application

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

TABLE I: Empirical evaluation of the def-use coverage of the test data generated by proposed GA approach.

Web
Application

web
pages

def-use
pairs Method Coverage % % infeasible

def-use pairs
of test

cases

generation #
for the last

test case

UIControls Test 3 91
GA 93.40%

2.20%
7 23

RT 86.81% 12 21

ToDo list 2 118
GA 71.19%

8.47%
5 14

RT 65.25% 6 13

Wingtip toys 6 67
GA 56.72%

4.48%
4 4

RT 47.76% 3 18

CS651 TEST 1 45
GA 84.44%

15.56%
3 3

RT 84.44% 3 5

Sessions 2 28
GA 85.71%

7.14%
2 2

RT 76.92% 2 2

TABLE II: The number and percentage of discovered errors
of each type. The error code ’C’ stands for ”Computation
errors”, the error code ’D’ stands for ”Domain errors”, the
error code ’E’ stands for ”Event errors”, and the error code
’P’ stands for ”Presentation errors”

Error
Code

Error
Freq.

discovered
errors

% of
discovered

errors

C1 5 4 80%

C2 1 1 100%

C3 18 10 55.56%

C4 21 19 90.48%

C5 4 3 75%

C6 1 1 100%

Subtotal 50 38 76%

D1 16 16 100%

D2 2 2 100%

D3 4 3 75%

D4 3 3 100%

D5 8 5 62.5%

D6 1 1 100%

Subtotal 34 30 88.24%

O2 1 1 100%

O3 12 9 75%

O4 6 6 100%

O6 8 6 75%

O7 4 0 0%

Subtotal 31 22 70.97%

E1 3 3 100%

E2 4 4 100%

Subtotal 7 7 100%

P1 20 20 100%

P2 3 3 100%

P3 4 3 75%

P4 2 2 100%

P5 9 7 77.78%

P6 2 2 100%

Subtotal 40 37 92.5%

Total 162 134 82.72%

TABLE III: The number and percentage of discovered errors
in webApps.

Web
Application

of
seeded
errors

of
detected
errors

% of
detected
errors

UIControls Test 40 38 95.00%

ToDo list 54 44 81.48%

Wingtip toys 23 10 43.48%

CS651 TEST 24 22 91.67%

Sessions 21 20 95.24%

Total 162 134 82.72%

In the first experiment, the proposed GA technique
was compared with random testing (RT) technique. In order
to have fair comparison, the random test data generator was
designed to randomly generate a number of test cases equals
to the maximum number of generations of the proposed
GA. The population size was set to 15, and the number of
generations was set to 25, for all applications. In addition,
the block-crossover probability was set to 0.8, the mutation
probability was set to 0.08 for the input and clickable
controls, and the mutation probability was set to 0.64 for the
hyperlink controls. All these parameters were experimentally
determined. For each webApp, we applied both techniques
ten times, and reported the average results. Table I shows the
results of the first experiment. In this table, column 1 shows
the name of the webApp under test, column 2 shows the
number of web pages in the webApp, column 3 shows the
number of def-use pairs in the webApp, column 4 shows the
used method, column 5 shows the coverage percentage of
the generated data using the proposed GA and RT methods,
column 6 shows the percentage of the infeasible def-use
pairs, column 7 shows the number of test cases required
to achieve the reported coverage percentage, and the last
column shows the generation/iteration number where the
last test case occurred. For webApp UIControls Test, the
proposed GA technique uncovered only 6.6% (6 pairs) out
of them there were two infeasible pairs, and the last test case
occurred at generation number 23. While the RT technique
uncovered only 13.19% (12 pairs), and the last test case
occurred at iteration number 21. All of the def-use pairs of
CS651 Test webApp were covered, by both techniques,
apart from the 7 infeasible def-use pairs in both techniques.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

It is worth noting that, in small webApps the performance
of both techniques are close, like in CS651 Test webApp
and Sessions webApp. However, in more complex and
large applications, the performance of the proposed GA is
better than RT in terms of both coverage percentage and the
number of used test cases to cover the reported coverage
percentage.
In the second experiment, a number of errors were seeded
manually in the five webApps, and the tool was applied
to the erroneous versions of the applications. The errors,
which may occur in webApps, fall into five categories:
computation errors, domain errors, object-oriented errors,
event errors, and presentation errors. The first four groups,
[23] are related to the code-behind file, while the last
group, [24]. is related to the ASPX file. The output of the
executions (actual output) were compared with the correct
output (expected output), and the static and dynamic reports
produced by the tool were studied. If the error showed up
either by some deviation in the output, or by one of the
messages of the report, then this meant that the generated
test data which fulfilled the all-uses criterion have enabled
the discovery of the error. Table II shows the number and
percentage of discovered errors of each type. From this
table, it can be observed that, using the generated test data,
76% of the computation errors were discovered, 88.24%
of the domain errors were discovered, 70.97% of the
object-oriented errors were discovered, 100% of the event
errors were discovered, and 92.5% of the presentations
errors were discovered. A total of 82.72% of the errors were
discovered using the generated test data. Table III shows
the number and percentage of discovered errors in the five
webApps. In most cases, it is observed that the higher the
def-use coverage percent achieved for the webApp, the
higher the errors were detected.

VII. CONCLUSION

This paper presented a GA-based approach and a sup-
porting tool for data-flow test data generation for ASP.NET
webApps. The proposed tool accepts as input the webApp
under test, instruments it, and statically analyses it to com-
pute the def-use pairs. In the proposed GA, each gene in the
chromosome is a UI control object. Two novel GA operators,
block crossover and control-based mutation operators, were
developed to manipulate such chromosome.
In each generation, every solution in the population is
evaluated, and the best solution, which achieves the highest
coverage percentage, is selected as a test case. This process
is repeated until the best accumulated coverage percentage is
achieved. The tool produces the combined set of test cases,
the set of def-use pairs covered by each test case, and a
list of uncovered def-use pairs, if any. A case study was
presented to illustrate how the tool works. In order to evaluate
the effectiveness of the generated test data in fulfilling the
all-uses criterion and exposing webApp errors, an empirical
evaluation was performed. From the experiments it can be
concluded that: the higher the def-use coverage percent
achieved for the webApp, the higher the errors were detected.

REFERENCES

[1] B. Korel, ”Automated software test data generation,” IEEE Transactions
on Software Engineering, vol. 16, pp 870-879, 1990.

[2] J. Edvardsson, ”A Survey on Automatic Test Data Generation,” In Pro-
ceedings of the 2nd Conference on Computer Science and Engineering,
pp 21-28, 1999.

[3] Y. F. Li, P. K. Das, and D. L. Dowe, ”Two Decades of Web Application
Testing - A Survey of Recent Advances,” Information Systems, vol. 43,
pp 20-54, 2014.

[4] P. G. Frankl, S. N. Weiss, ”An Experimental Comparison of The Effec-
tiveness of Branch Testing and Data Flow Testing,” IEEE Transactions
on Software Engineering, vol. 19, no. 8, pp 774-787, 1993.

[5] N. Alshahwan, and M. Harman, ”Automated Web Application Testing
using Search Based Software Engineering,” In 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2011), pp. 3-12, 2011.

[6] C. Sharma, S. Sabharwal, R. Sibal. ”A Survey on Software Testing
Techniques using Genetic Algorithm,” International Journal of Computer
Science Issues (IJCSI), vol. 10, no. 1, pp 381, 2013.

[7] D. R. Lakshmi, and S. S. Mallika. ”A Review on Web Application
Testing and its Current Research Directions,” International Journal of
Electrical and Computer Engineering (IJECE) Vol. 7, No. 4, pp. 2132-
2141, August 2017.

[8] M. R. Girgis, ”Automatic Test Data Generation for Data Flow Testing
Using a Genetic Algorithm,” Journal of Universal Computer Science,
vol. 11, no. 6, pp 898-915, 2005.

[9] T. E. Setiadi, A. Ohsuga, and M. Maekawa. ”Efficient Execution Path
Exploration for Detecting Races in Concurrent Programs,” IAENG
International Journal of Computer Science, vol. 40, no. 3, pp 143–163,
2013.

[10] T. E. Setiadi, A. Ohsuga, and M. Maekawa. ”Efficient Test Case Gen-
eration for Detecting Race Conditions,” IAENG International Journal
of Computer Science, vol. 41, no. 2, pp 112–130, 2014.

[11] H. Takamatsu, H. Sato, S. Oyama, and M. Kurihara. ”Automated
Test Generation for Object-Oriented Programs with Multiple Targets,”
IAENG International Journal of Computer Science, vol. 41, no. 3, pp.
198–203, 2014.

[12] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su.
”Synthesizing Method Sequences for High-Coverage Testing,” ACM
SIGPLAN Notices, vol. 46, no. 10, pp 189–206, 2011.

[13] M. Boussaa, O. Barais, G. Sunyé, B. Baudry. ”A Novelty Search
Approach for Automatic Test Data Generation,” In 2015 IEEE/ACM
8th International Workshop on Search-Based Software Testing, pp 40-
43, 2015.

[14] M. R. Girgis, A. I. El-Nashar, T. A. Abd El-Rahman, and M.
A. Mohammed. ”An ASP.NET Web Applications Data Flow Testing
Approach,” International Journal of Computer Applications, vol. 975,
pp 8887, 2016.

[15] N. Akhter, A. Singh, G. Singh, ”Automatic Test Case Generation by
using Parallel 3 Parent Genetic Algorithm,” International Journal for
Research in Applied Science and Engineering Technology, vol. 6, pp
114-121, 2018.

[16] M. Azam, K. Sultan, S. Dash, S. Naqeeb, M. Alam, ”Automated Test-
case Generation and Prioritization Using GA and FRBS,” International
Conference on Advanced Informatics for Computing Research, pp 571-
584, 2018.

[17] S. Scalabrino, G. Grano, D. Di Nucci, M. Guerra, A. De Lucia, H.
Gall, R. Oliveto, ”OCELOT: A Search-Based Test-Data Generation Tool
for C”, In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp 868-871, 2018.

[18] J. Holland, ”Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Application to Biology,” Control and artificial
intelligence, 1975.

[19] M. Srinivas, L. M. Patnaik, ”Genetic Algorithms: A Survey,” IEEE
Computer, vol. 27, no. 6, pp 17-26, 1994.

[20] https://docs.microsoft.com/en-us/visualstudio/test/use-ui-automation-
to-test-your-code?view=vs-2017, April 2019.

[21] https://bitbucket.org/johnnewcombe/gaf/wiki/Home, April 2019.
[22] I. T. Elgendy, M. R. Girgis, A. Seiwsy, ”An Automated Tool for Data

Flow Testing of ASP.NET Web Applications,” Applied Mathematics &
Information Sciences, vol. 14, no. 4, pp 679-691, 2020.

[23] L. J. White and E. I. Cohen. ”A Domain Strategy for Computer
Program Testing,” IEEE Transactions on Software Engineering, vol.
6, no. 3, pp 247-257, 1980.

[24] N. Mansour and M. Houri, ”Testing Web Applications,” Information
and Software Technology, vol. 48, no. 1, pp 31–42, 2006.

IAENG International Journal of Computer Science, 47:3, IJCS_47_3_24

Volume 47, Issue 3: September 2020

__

