
 
Abstract—The PVC stripping process is a complex industrial

process with highly nonlinear and time varying. It is difficult to

establish an accurate mathematical model due to multivariable,

nonlinear, coupled and large hysteresis, etc. So the modeling

method based on output-layer structure feedback Elman

(OSF-Elman) neural network and PID decoupling control

strategy of PVC stripping process is proposed. Firstly, the

OSF-Elman neural network modeling method is proposed to

establish the controlled object model with the actual operational

data of the vinyl chloride stripping process. Then a neural

network decentralized decoupling controller is used to decouple

the stripping process to obtain two SISO systems (slurry flow -

tower top temperature and steam flow-tower bottom

temperature). Finally, the whale optimization algorithm (WOA)

based PID controller is applied to the decoupled stripper system

to achieve the effective performance for the PVC stripping

process. The simulation results verify the effectiveness of the

proposed integrated control strategy.

Index Terms—PVC stripping process; Elman neural network;

PID decoupling control; Whale optimization algorithm

I. INTRODUCTION

POLYVINYL chloride (PVC) is a large-scale basic

chemical raw material. PVC is obtained by the

polymerization reaction of vinyl chloride monomer. In order

to ensure the quality of PVC resin, the polymerization

conversion rate is generally controlled at 80%-90%.

Unreacted vinyl chloride monomer is recovered by

self-pressure, but the monomer about 1%-2% remains in the

PVC slurry. Since the vinyl chloride monomer has certain

toxicity, it must be further removed and recovered in the
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production. Removal of vinyl chloride remaining in the

polyvinyl chloride resin can improve the quality of the

polyvinyl chloride resin, reduce the production cost, and

solve the problems of environmental pollution in the

processing and use of plastics. In the current methods of

removing excess VCM monomer from PVC slurry, the

stripping process is very effective [1]. At present, most of the

control researches on the PVC industry are in the stages of

polymerization and rectification. The advanced control

technologies, such as neural networks, fuzzy control, expert

systems and predictive control, are widely used. The neural

network based decoupling and nonlinear adaptive control are

widely used in PVC production process [2-5]. A BP neural

network decoupling controller was applied to the temperature

control of a distillation column and the simulation results

show that the algorithm is robust [2]. Aiming at the PVC

fluidity bed drying process, a steady-state optimization

model for the energy consumption was proposed based on the

artificial neural network. Then the multi-variable state

feedback control system was designed to effectively remove

the correlation between the variables. The actual operation

shows that the system has strong robustness and reaches the

minimum energy consumption control index of the fluidity

bed [3]. A advanced control method based on the neural

network and the predictive control system was proposed

aiming at the rectification tower so as to make the system

have a small overshoot and a short response time [4]. A BP

neural network decoupling controller was applied to the

temperature control of the distillation column and the good

robustness and control effect were realized [5].

Elman neural network is a dynamic neural network based

on BP neural network. It stores the internal states and has the

function of mapping dynamic characteristics so that the

system has the adaption ability to the time-varying

characteristics. Because most of the industrial production

processes are dynamical, when a dynamic neural network

such as BP neural network or RBF neural network is used, the

ideal result is often not obtained. Therefore, in dealing with

this kind of the complex industrial processes, in order to

obtain the better reflection on the dynamic characteristics of

the system, a dynamic neural network is required. The Elman

neural network model was adopted to predict the Kappa value

of pulp [6]. An Elman neural network was used to detect the

fault of the motor fault, and the genetic algorithm (GA) was

introduced to optimize the weights of the Elman neural

network to further improve the detection performance [7].
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The Elman neural network was used to predict the pressure of

the emulsion pumping station and obtained good results [8].

The Elman neural network was adopted to predict the silicon

content of steel mill blast furnace and the particle swarm

optimization (PSO) algorithm was used to optimize the

weights of Elman neural network so as to obtain a good

prediction effect [9]. The Elman neural network was used for

waste water treatment modeling, and the recursive least

squares (RLS) and Kalman filters were used to update the

linear and nonlinear parameters so as to improve the accuracy

and generalization ability of the model [10].

Because the PVC stripping process is a production process

with high non-linearity, strong coupling, and slow

time-varying characteristics. The traditional modeling

methods will result in an unsatisfactory model. However,

there is a lack of research on advanced control methods for

the stripping process in PVC production. The accurate

mathematical model is difficult to establish, so it is difficult

to achieve good control effects by traditional control methods.

In this paper, based on the properties of the stripper process,

considering the characteristics of the nonlinear fitting of the

neural network and the ability to approximate arbitrary

functions with arbitrary precision, an Elman neural network

based modeling method and the decoupling method on the

PVC stripping process are proposed. On the other hand, the

whale optimization algorithm (WOA) is adopted to optimize

the parameters of the decoupled PID controller. The

simulation results show the effectiveness of the proposed

strategy.

II. TECHNIQUE OF PVC STRIPPING PROCESS

During the polymerization reaction process of vinyl

chloride, according to different techniques and resin grades,

the conversion rate of vinyl chloride is generally controlled at

80%-90%. Then the unreacted monomer is recovered in the

kettle and dried by the sedimentation tank, but the resin

remains in the finished product and a small amount of vinyl

chloride monomer affects the quality of the product and

increases the hazard when using plastic. In addition, the

annual discharge of vinyl chloride into the atmosphere not

only causes huge waste of raw materials, but also causes

serious pollution to the environment. At present, the stripping

process is very effective in removing excess VCM monomer

from the PVC slurry. The technique flow of the PVC

stripping process by using a sieve plate through a slab-type

stripper is shown in Fig. 1. After the end of the

polymerization reaction, the PVC slurry is first filtered, and

then sent to the heat ex-changer by the slurry pump and is

carried out the heat exchange with the purified PVC. The

PVC slurry is sent to the top of the stripper and the PVC

slurry is evenly sprayed onto the tray and flows down the

small pores on the tray. At the same time, the low-pressure

steam flows upward from the bottom of the stripper, the PVC

slurry is subjected to heat transfer and mass transfer in the

tray, and the VCM remaining outside the resin is precipitated.

The low pressure steam and VCM gas are condensed from

the top of the stripper into the condensation column and

passed to the condensate tank to recover the VCM gas into

the VCM gas cabinet.

The main parameters affecting the PVC stripping process

or the stable operation of the stripper are temperature, the

flow of steam and slurry, pressure, pressure difference and

liquid level. Table 1 shows the values of the control

parameters in a certain type of resin stripping. By analyzing

the technique of the PVC stripping process, it has strong

non-linearity and coupling characteristics. The main factors

affecting the removal of vinyl chloride monomer in PVC are

the top temperature of the stripping tower and the

temperature at the bottom of the column. The factors

affecting the temperature of the stripper are two main control

quantities: the steam flow and the slurry flow, which are the

main means of regulation in production process. However,

due to the lack of effective mathematical model and strong

coupling between variables, it is difficult to obtain

satisfactory control effects. In this paper, an integrated

modeling and hybrid intelligent control strategy based on

neural network technology is proposed for the PVC stripping

process.

Fig. 1 Technique flowchart of PVC stripping process.
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TABLE 1. CONTROL VALUES TO STRING TOWER PARAMETERS

Control points Scope Alarm range
Normal

range

Real

value

Temperature of
tower top

0-150℃

Upper limit：

110℃

Lower limit：

70℃

80-105℃ 85℃

Temperature of
tower bottom

0-150℃

Upper limit：

130℃

Lower limit：

100℃

105-113℃ 107℃

Pressure of tower
top

0-0.1
MPa

Upper limit：
0.08 MPa

Lower limit：
0.02 MPa

0.03-0.06
MPa

0.03
MPa

Pressure difference
of Tower

0-60
MPa

Upper limit：30

MPa

Lower limit：5

MPa

10-25
MPa

15
MPa

Intake steam flow
0-4000

kg/h

Upper limit：
3500 kg/h

Lower limit：
1000 kg/h

1500-3000
kg/h

2200
kg/h

Inlet slurry flow
0-80

m3/h

Upper limit：70

m3/h

Lower limit：15

m3/h

35-50

m3/h

40-45

m3/h

Tower steam
pressure

0-0.6
MPa

Upper limit：0.5

MPa

Lower limit：
0.15 MPa

0.35-0.4
MPa

0.38
MPa

III. ADAPTIVE DECOUPLING CONTROL METHOD OF PVC

STRIPPING PROCESS

A. Structure of Intelligent Decoupling Controller

The structure of the decoupling model proposed in this

paper is shown in Fig. 2. The control system establishes two

models for the slurry flow - stripping tower top temperature

and the steam flow - striping bottom temperature. The entire

control system consists of two open-loop decoupling

controllers ENN1 and ENN2 established by two OSF-Elman

neural networks and two PID controllers optimized by the

Whale Optimization Algorithm (WOA).

In Fig. 2, (s)
i

R is the input quantity, ( )
i

Y s is the output

quantity and x
i

represents the output of the PID controller,

( )
i

U s represents the decouple output vector, and
i
u′

represents the control input vector ( 1,2i = ). This method

divides the establishment of the stripping decoupling model

into two phases:

(1) Training stage. In the training stage, the controlled

system is in an open loop state. Firstly, the OSF-Elman neural

network (ENN1) is trained. At this time, ENN2 should be

kept without input. The decoupling success flag is that the

model corresponding to “slurry flow-striping top

temperature” has no output, that is to say 1
(s) 0Y = . The

parameters of ENN1 are adjusted when 1
( )Y s is a label for

ENN1. The ENN2 is trained with the same method. Finally,

the controlled object of the stripper is decoupled into two

single-input single-output (SISO) systems, that is to say

"slurry flow-stripper top temperature" and "steam

flow-stripper bottom temperature".

(2) Control stage. Parameters of two PID controllers are

online optimized by the identical WOA to achieve the

closed-loop control of two single-input single-output systems.

When the training process is completed, the trained weights

and thresholds remain unchanged. The two systems are

closed-loop controlled by using two PID controllers

optimized by WOA. WOA is used to adjust the parameters

p
K , i

K and d
K of the two PID controllers.

B. Elman Neural Network with Feedback of Output

Layer Structure

1) Elman Neural Network

The Elman neural network is an important type of neural

network. Because of the added feedback linkage among

layers, it can represent the time delay between input and

output, so the dynamic equations are adopted to carry out the

description. The foreword network only implements the

nonlinear mapping. On the other hand, it is precisely because

of this feedback that the network has the ability of remember,

so it has been widely used in many fields, such as sequence

analysis, system identification, control, etc [11]. The

structure model of the Elman neural network is shown in Fig.

3. In addition to the input layer, the output layer and the

hidden layer, there is a special layer, the receiving layer (also

known as the structural layer).

The structural unit is used to memorize the output of the

units in the hidden layer at the previous moment, which can

be considered as a delay operator. Therefore, the

feed-forward connection part can perform the connection

weight correction, but the recursive part is fixed so that it is

not performed the learning correction.

)(1 sGc

)(2 sG c

1ENN

)(11sGP

)(11sGP

)(11sGP

)(11sGP

1x

2x
)(2 sU

)(1 sU

)(1 sY

)(2 sY

)(1 sR

)(2 sR
2ENN

kp1 ki1 kd1

kp2 ki2 kd2

1u′

2u′

Fig. 2 Block diagram of PVC strippering process decoupling control system.
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( 1)u k −

( )cx k

Fig. 3 Structure of Elman neural network .

2) Output-layer Structure Feedback Elman (OSF-Elman)

Neural Network

In the standard Elman neural network, the function of the

structure layer is too simple, because it just remembers the

output value of the hidden layer at the last moment like a

delay operator. Therefore, this paper introduces the feedback

between the output layer and the receiving layer on the

standard Elman neural network so as to make the entire

network more rigorous without complex structure. The

structure of the output-layer structure feedback Elman neural

network (OSF-Elman) is shown in Fig. 4. It can be seen from

Fig. 4 that the output of the receiving layer at time k is equal

to the output of the hidden layer at time k -1 plus the output

of the output layer.

, ,
( ) ( 1) ( 1)

c l c l l
x k x k x kα= • − + − (1)

where, 1,2, ,l n= ⋯ , ,c l
x is the output of the l th unit of the

receiving layer, ( )
l
x k is the output of the l th unit of the

hidden layer, and α is the self-feedback factor.

3W

2W
1W

( )
c
x k

( )x k

α αiii

i i i

Fig. 4 Structure of OSF Elman neural network.

The mathematical model of the OSF-Elman neural

network can be described as follows:

1 2( ) ( ( ( ) ( )) ( 1))
c

x k f W x k y k W u k= + + − (2)

( ) ( ( 1) ( 1)) ( 1)
c c
x k x k y k x kα= − + − + −i (3)

3( ( ))
k
y g W x k= (4)

where, 1W is the connection weight between the receiving

layer and the hidden layer, 2W is the connection weight

between the input layer and the hidden layer, 3W is the

connection weight between the output layer and the hidden

layer, ( )f x is a nonlinear activation function applied in

hidden layer and ( )g x is a linear activation function

generally used in the output layer. Their expressions are

described as follows.

1
( )

1 x
f x

e−
=

+
(5)

3 ( )
k
y W x k= (6)

where,
k
y is the output of the OSF-Elman neural network.

3) Learning Algorithm of OSF-Elman Neural Network

Before defining the learning algorithm of the neural

network, first give the error of the neural network:

1
( ( ) ( )) ( ( ) ( ))

2

T

d d
E y k y k y k y k= − − (7)

where ( )
d
y k is the desired output and ( )y k is the actual

output of the neural network. The partial derivative operation

is carried out on 3W in Eq. (7) to obtain:

,3 3

'

,

( )
( ( ) ( ))

( ( ) ( )) ( ) ( )

i

d i

ij ij

d i i j

y kE
y k y k

w w

y k y k g x k

∂∂
= − −

∂ ∂

= − − i

(8)

where 3

ij
w is the connection weight between the output layer

unit and the hidden layer unit,
,d i

y is the expected output and

i
y is the actual output of the neural network.

Assume 0 '

,
( ( ) ( )) ( )

i d i i
y k y k gδ = − • and obtain:

0

3

,

( )
i j

i j

E
x k

w
δ

∂
= −

∂
(9)

where, 1,2, ,i m= ⋯ , 1, 2, ,j n= ⋯ , ' ( )
i

g • is the activation

function of the output layer unit, and the bias of the deviation

E on 2W can be expressed as:

0 3 '

2 2
1

( )
( ) ( ) ( 1)

( )

m

i

i ij j q

iij j ij

y kE E
w f u k

w x k w
δ

=

∂∂ ∂
= = − • −

∂ ∂ ∂ ∑ (10)

where,
2

ij
w represents the connection weight between the i th

output of the input layer and the j th input of the hidden layer,

( 1)
q
u k − is the input of the input layer at the previous
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moment and
'
( )

j
f • is the derivative of the activation function

in the hidden layer.

Set 0 3 '
( ) ( )

h

j j ij j
w fδ δ= •∑ and obtain:

3
( 1)h

j q

ij

E
u k

w
δ

∂
= − −

∂
(11)

where, 1, 2, ,j n= ⋯ , 1,2, ,q r= ⋯ .

Finally, the partial derivation of E on the connection

weight 1W among the hidden layer, the receiving layer and

the output layer can be represented as:

0 3

1 1
1

( )
( )

m
j

i ij

ijl jl

x kE
w

w w
δ

=

∂∂
=

∂ ∂∑ (12)

where, 1, 2, ,j n= ⋯ , 1,2, ,l n= ⋯ .
1

jl
w is the hybrid

connection weight, that is to say it is the connection weight

between the neurons of the output layer and the receiving

layer, or between the neurons of the hidden layer and the

receiving layer. The calculation expression of
1

( ) /
j jl

x k w∂ ∂
can be expressed as:

1 2

,1 1
1 1

,' 1

, 1

( )
( ( ( ) ( 1)) ( 1))

( )
( ) ( ) ( 1)

h r
j

j jl c j i jl i

i ijl jl

c j

j c j i jl

jl

x k
f w x k y k w u k

w w

x k
f x k y k w

w

= =

∂ ∂  
= + − + − ∂ ∂  

 ∂
= + − + 

∂  

∑ ∑

∑i

(13)

where, ,
( )

c j
x k is the output of the j th neuron in the

receiving layer. It can be seen from the structural diagram of

the OSF-Elman neural network that the relationship between

( )
c
x k and 1

jl
w

is negligible. Therefore, the above formula

can be rewritten as:

'

,1

( )
( )( ( 1) ( 1))

j

j c l l

jl

x k
f x k y k

w

∂
= − + −

∂
i (14)

where, ( )
j

x k is the output value of the j th neuron.

' ' '

, ,
( ) ( ) ( )( ( 1) ( 1)) ( ) ( )

j c j j c l j c j
f x k f x k y k f x kα= − + − +i i i (15)

Substitute Eq. (14) into Eq. (15) to obtain:

'

1 1

( ) ( 1)
( )( ( 1) ( 1))

j j

j c l

jl jl

x k x k
f x k y k

w w
α

∂ ∂ −
= − + − +

∂ ∂
i (16)

By adopting
E

W
w

η
∂

∆ = −
∂

, the learning algorithm of

Elman neural network can be described as:

3 0

1 ( )ij i jw x kη δ∆ = (17)

2

2 ( 1)h

jq j gw u kη δ∆ = − (18)

1 0 3

3 1
1

( )
( )

m
j

ij j ij

i jl

x k
w w

w
η δ

=

∂
∆ =

∂∑ (19)

where, 1,2, ,i m= ⋯ , 1, 2, ,j n= ⋯ , 1,2, ,q r= ⋯ ,

1,2, ,l m= ⋯ , 1
η , 2

η , and 3
η are the learning rates of 1W ,

2W and 3W .

0 '

,
( ( ) ( )) ( )

i d i i
y k y k gδ = − • (20)

0 3 '
( ) ( )

h

j i ij i
g w fδ= •∑ (21)

4) Procedure of Establishing OSF-Elman Neural Network

Decoupling Model

The steps of the OSF-Elman neural network decoupling

algorithm are described as follows.

Step 1: Connect the neural decouple ENN1 and ENN2 with

the controlled process.

Step 2: Initialize the all weights of the neural decouple,

which is generally randomly initialized and requires the

initial value to be small enough.

Step 3: Given input and ensure that the output data of the

PID controller corresponds to the input data of the neural

decouple.

Step 4: Calculate the output of the hidden layer, the output

layer and the output layer by using Eq. (2)-(4) according to

the number of samples and the given time interval.

Step 5: Calculate the weights increments of the output

layer and the hidden layer by adopting Eq. (8), (10) and (12)

to update 3W , 2W and 1W .

Step 6: Repeat Step 4 and Step 5 until the specified number

of iterations, and thereby determine 3W , 2W and 1W .

The above updating strategy is used to train the weights of

OSF-Elman neural network, which is equivalent that the dual

input-dual output system is decoupled into two SISO

nonlinear systems.

IV. PARAMETER TUNING OF PID CONTROLLER BASED

ON WHALE OPTIMIZATION ALGORITHM

The whale optimization algorithm (WOA) is a global

optimization algorithm based on swarm intelligence

technology inspired by the hunting behavior of humpback

whales in 2016 [12]. This algorithm simulates three

behaviors of the humpback whales (searching for prey,

surrounding prey and preying with bubble nets). This paper

uses the whale optimization algorithm to optimize the PID

controller parameters.

A. Multivariable PID Decoupling Controller

The mathematical formula of the PID controller can be

expressed as[13]:

( ) ( ) ( ) ( ) 

 0

1 t
d

p

i

T de t
u t K e t e t dt

T dt

 
= + + 

 
∫ (22)

where, i P i
K K T= , d p dK K T= , and ( )e t is the feedback

deviation.

The OSF-Elman neural network is used to eliminate the

coupling between the channels of the original coupling

system. WOA is adopted to optimize the control parameters

of the PID controller. The structure is shown in Fig. 2.
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B. Coding and Fitness Function

The parameters of the PID controller are optimized by

using WOA for obtaining better control effects. In view of the

fact that the PID controller design is actually a

multidimensional function optimization problem, WOA

adopts the real number coding method. For the PVC stripping

process, the parameters of the muti-variable PID controllers

can be directly coded as:

PID1： { }
1111 ,,X dip kkk= ，PID2： { }

2222 ,, dip kkkX = (23)

The optimization of the controller parameters is designed

to make the overall control deviation of the system tend to

zero, have a faster response speed and a smaller overshoot. In

this paper, the integrated time absolute error (ITAE) is used

in the simulation experiments.

0
( )ITAE t e t dt

∞
= ∫ (24)

C. Parameter Searching Space

The searching space of WOA is centered on the parameters

obtained by the Ziegler-Nichols (Z-N) method, and is

extended to the left and right sides so that the reasonable

kernel of the Z-N method can be fully utilized and the

searching space of the actual parameters is reduced. If the

optimal solution of the parameters is very close to the

boundary of the searching space, it should be further

expanded based on the solution and a new round of searching

is conducted.

PPP KKK ′∗+≤≤′∗− )1()1( αα (25)

iii KKK ′∗+≤≤′∗− )1()1( αα (26)

ddd KKK ′∗+≤≤′∗− )1()1( αα (27)

where, (KP，Ki，Kd) are the PID controller parameters, (KP’,

Ki’, Kd’) are the tuned parameters based on the Z-N method,

and α is a predetermined value in [0, 1].

V. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

A. OSF-Elman NN Modeling on PVC Stripping Process

In order to verify the effectiveness of the proposed

algorithm, 280 sets of data in the PVC stripping process were

collected to train the OSF-Elman neural network model, and

80 sets of data from another batch were selected as test

samples to verify the validity of the trained model. In this

paper, the OSF-Elman neural network model is established to

model the relationship between the tower top temperature of

the stripper and the slurry flow. The simulation results of the

tower top temperature Y1 using an unmodified Elman neural

network are shown in Fig. 5 and Fig. 6. Fig. 5 is a comparison

of the predicted output of the training data with the actual

output, and Fig. 6 is the predicted output and actual data for

the testing data. The simulation results of the tower top

temperature Y1 using an OSF-Elman neural network are

shown in Fig. 7 and Fig. 8. Fig. 7 is a comparison of the

predicted output of the raining data with the actual output,

and Fig. 8 is the predicted output and actual data for the

testing data. It can be seen from Fig. 5 that the model

established by the original Elman neural network clearly

inherits the shortcomings of the BP network, and a partial

over-fitting phenomenon occurs. It can be seen from Fig. 6

that the prediction effect of the test data is obviously not as

good as that of Fig. 8. It can be seen from Fig. 6 that the

model established by the OSF-Elman neural network

effectively jumps over-fitting, and the established model has

certain generalization ability. Therefore, seen from Fig. 8, the

prediction effect is better than that of Fig. 5 when the test data

is simulated. The simulation results of the tower bottom

temperature Y2 using an unmodified Elman neural network

are shown in Fig. 9 and Fig. 10.

Fig. 5 Simulation results of Elman NN model on tower top temperature (Training data).
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Fig. 6 Simulation results of Elman NN model on tower top temperature (Testing data).

Fig. 7 Simulation results of OSF-Elman NN model on tower top temperature (Training data).

Fig. 8 Simulation results of OSF-Elman NN model on tower top temperature (Testing data).
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Fig. 9 Simulation results of Elman NN model on tower bottom temperature (Training data).

Fig. 10 Simulation results of Elman NN model on tower bottom temperature (Testing data).

Fig. 11 Simulation results of OSF-Elman NN model on tower bottom temperature (Training data).
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Fig. 12 Simulation results of OSF-Elman NN model on tower bottom temperature (Testing data).

Fig. 9 is a comparison of the predicted output of the

training data with the actual output, and Fig. 10 is the

predicted output and actual data for the testing data. The

simulation results of the tower bottom temperature Y2 using

an OSF-Elman neural network are shown in Fig. 11 and Fig.

12. Fig. 11 is a comparison of the predicted output of the

training data with the actual output, and Fig. 12 is the

predicted output and actual data for the testing data. It can be

seen from Fig. 9 and Fig.10 that when the Elman neural

network is adopted to model the tower bottom temperature,

the phenomenon of over-fitting also appears, which thus

seriously affects the decoupling effect of the decouples. Seen

from Fig. 11 and Fig. 12, the adoption of the OSF-Elman

neural network can effectively weakens the over-fitting

phenomenon of the original Elman neural network and

effectively improves the generalization ability of the model.

B. Stability Analysis of Decoupling Controller

In order to verify the effectiveness of the decoupling model

established by the OSF-Elman neural network, the control

performance was verified by the simulation experiments. The

parameters setting of the model are described as follows. The

OSF-Elman neural network has five units in the input layer,

six units in the hidden layer and one unit in the output layer.

The learning rate of the OSF-Elman neural network is 0.8.

For the adopted WOA to optimize the parameters of the PID

controller, the number of search agents is 30, the number of

iterations is 1000, the search path selects the logarithmic

spiral curve, and other parameters are randomly set at the

initialization stage. It is known from the actual engineering

experience that the temperature at the tower top is generally

85 °C, but it must not be higher than 110 °C. Otherwise, the

PVC will be decomposed. Therefore, the standard signal of

the temperature at the tower top is set to 85 °C. The optimum

temperature at the tower bottom is 107 ° C, and generally

cannot be higher than 113 ° C. In order to take into account

the situation that occurred in the actual PVC stripping process

as much as possible, this paper simulates the situation of

external disturbance. The simulation results are shown in Fig.

13 and Fig. 14.

(a) Tower bottom temperature curves under disturbance
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(b) Tower top temperature curves under disturbance
Fig. 13 Tower bottom temperature under disturbance.

(a) Tower top temperature curves under disturbance

(b) Tower bottom temperature curves under disturbance

Fig. 14 Tower top temperature under disturbance.
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It can be seen from the above simulation results that it has

been basically achieved to decouple the temperature at the

tower bottom and the tower top. At this time, the temperature

at the top of the tower fluctuates around zero degree. Then the

simulation experiments are carried out on the temperature at

the top of the tower. It can be seen from Fig. 14 that the

temperature at the top of the tower begins to change after the

introduction of the disturbance, but it still floats around 85

degree. At the same time, the temperature at the bottom of the

tower floats at zero degree. That is to say that the system has a

certain anti-interference ability and achieves the satisfied

decoupling result at the same time.

VI. CONCLUSION

The PVC stripping process is highly nonlinear and time

varying, and is a complex nonlinear industrial process. In this

paper, the improved Elman neural network (OSF-Elman NN)

is adopted to model the PVC stripping process with the actual

operational data. The parameters of the PID controller are

optimized by using whale optimization algorithm (WOA).

Simulation results verify the effectiveness of the proposed

integrated control strategy.
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